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Abstract

One linear bi-criterion mathematical program, which appears as a large-scale problem in practice, is considered.
Problems, related to the large size, are usually solved with the help of the methods, based on the possibilities

created by the zeros of the matrix of the problem. In this way, a large number of different separation schemes

have been suggested in the scientific literature. However, the problems considered here have no such possibility
due to its large size. In order to overcome the size problem during the solution of the problem, the possibility

of reducing it to a smaller problem is investigated. The reduction is carried out without disturbing the original

structure of the problem. The goal is to maintain the possibility of using the existing effective solution methods
for the problems before the reduction also for the problems received after the reduction. Suggested here method

mainly uses sequential approximation schemes in fulfilling.
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1. Introduction

The following bi-criterion linear programming is considered:

Ix ≤ Ax−Bx+ b, x ≥ 0, y1 (x) =
(
c1, x

)
→ max, y2 (x) =

(
c2, x

)
−→ max. (1.1)

Here I, A, B ∈ Rn×n, x, b, c1, c2 ∈ Rn. Is a unit matrix, the coordinates of the vector b are positive and the
elements of the matrices A and B are nonnegative (b > 0, A,B ≥ 0). When B = 0 in scalar objective case, the problem
(1.1) is studied in [22] and sequential decision making method is suggested to solve it and given extensive studies a
number of real practical problems to illustrate possibility of the method [21]. Theoretical foundation of the method is
given in [6]. All success obtained as a result of application of the method is to due to the used sequential approximation
being varied monotonically. Such property depends on special structure of the condition matrix of the problem. For
example, if matrix A is M–matrix monotonicity property takes place. As mentioned in [7], in the large–scale case the
problem like (1.1) cannot be solved by well known separation schemes developed on the base of various decomposition
techniques [8, 9, 20]. Decomposition technique is used to reduce large–scale problem into a number of smaller problems.
In this way we handle smaller tasks than to handle a very large problem as a whole. A problem is divided into smaller
sub problems. Each sub problems is then solved independently, and then solutions are combined to solve the original
problems. The problem (1.1) is not investigated in [21, 22] when B ̸= 0 and when objective function is scalar function.
But we meet such kind of problem when we are going, for example, to investigate of the stability of the solution ([21],
p.164). Stability problems for non-dominated solutions in multi-decision–making in more general case are studied
in [23, 33]. As a solution of the problem (1.1) here we assume the set of all Pareto optimal criterion estimations
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(we call this set as Pareto bound (front)) of the problem and minimal volume of non-dominated solution’s set that
defines this front. The multistage decision making procedure is used to solve the problem. Procedure suggested here
is rather simple and convenient from algorithmic point of view. The solution defined by this procedure is of piece-wise
broken line curve. The number of broken points of coordinate plane depends on required accuracy of the Pareto front
we want to set. Here regular approximation variant is used [13]. Another form of accuracy is integral form used in
[28]. Determining of all efficient solutions to a linear vector maximation problem in more general case are given in
[12, 14]. Each of these methods in [13] and [28] solves linear programming problem at each step of approximation.
However the first variant uses the same condition as it is in the original problem unlike the second variant. Under the
circumstantial, existing any method that solves the linear programming with condition as in (1.1) can be successfully
used when solving the problem (1.1). Effectiveness of the method we are going to suggest mainly depends on how
efficiently each stage of approximation is performed. Many authors try to suggest new ideas and methods in order to
solve large–scale problems [10, 11, 17, 18, 25, 30–32, 34–38]. Our paper attempts to implement an efficient algorithm
that allows us to reduce the large-scale problem (1.1) into the problems of smaller dimension. We apply this idea at
the each step of decision-making. Therefore the scheme, considered here works as two-stage procedure, where the first
stage tries to solve the dimension problem on the whole for all sub-procedures and the second one stage tries to solve
dimension problem for each of sub-procedures which defines broken points of Pareto front. Then the scheme is applied
when criteria is scalar fractional linear criteria and scalar linear parametric function. We suggest new methods to solve
each of two these problems under the condition as in (1.1). As a result we have possibility to solve new large–scale
bi-criterion linear fractional programming more efficiently in comparison with standard methods (for example [14]).
We suggest Pareto bound (front) method to solve considered large–scale linear parametric programming and such
approach allows us to use only simple iterative procedures to realize setting up of the solution of the problem.

The results obtained here can be applied to a number of practical problems [1–5, 15, 24, 29].

2. Basic notations and definitions

We solve the problem (1.1) under the conditions:

(1) the spectral radius of the matrix A+B is less than one.
(2) b > B(I −A)b.

Denote by X the set of all feasible solutions of the problem (1.1). And consider the set of all criterion valuations
Y =

{
y (x) ∈ R2 | y1(x) =

(
c1, x

)
,y2(x) =

(
c2, x

)
, x ∈ X

}
. Y P =

{
y0 ∈ Y |y ∈ Y, y ≥ y0 =⇒ y =yo

}
is Pareto set (or

Pareto front of the problem (1.1)).
The set XP =

{
x ∈ X |

( (
c1, x

)
,

(
c2, x

))
∈ Y P

}
is called Pareto optimal solutions set of the problem.

Lemma 2.1. The set X is bounded.
From the condition i) we have justify the inequality (I −A)

−1 ≥ 0. Therefore we can write:

(I−A)x + y = b, x ≥ 0, y ≥ 0, x + (I + A)
−1

y = (I−A)
−1

b.

From here we have:

x ≤ (I−A)
−1

b. (2.1)

Consider the canonical form of the problem (1.1):

x + y = Ax− Bx + b, x ≥ 0y ≥ 0, (c1, x) → max, (c2, x) → max. (2.2)

Let pair (x0, y0) be any feasible solution of (2.2).

Lemma 2.2.

x0i + y0i > 0, i = 1, n. (2.3)

Indeed, from (2.2) and from (2.1) we can write:

x0i − (Ax0)i + y0i ≥ −(B(I −A)b)i + bi.
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From here and from the condition ii) we have:

x0i + y0i > 0, i = 1, n. (2.4)

From the inequalities (2.4) and the definition of basis the following propositions easily can be proved.

Proposition 2.3. The feasible solution (x0, y0) is basis solution if and only if the condition x0i . y
0
i = 0, i = 1, n

is true.

Proposition 2.4. When we solve the problem by simplex method then only one of columns (I −A+B)i , (I)i of
matrices I − (A−B) and I can be basis column.

From (2.4) we also have:

Corollary 2.5. All basis solutions of the problem (1.1) are non-degenerate extreme points.
Consider the points yi =

(
yi1 , y

i
2

)
∈ Y P , i = 1, l such that yi1 < yi+1

1 i = 1, l − 1 and define the sets

Y i = [y
i
yi+1 ], i = 1, l − 1 as line segments and the set

Y 0
P =

l−1⋃
i=1

Y i. (2.5)

The distance between the sets Y P and Y 0
P we call as d.

Definition 2.6. Y 0
P will be called ε− solution of the problem (1.1) if d ≤ ε.

3. Method of finding the solution Y 0
P

The Pareto front of the problem (1.1) is of the graphic of the concave and strictly decreasing function on the
coordinate plane [26].

Step 1. Define two Pareto points y1
(
x1

)
, y 2(x2) and Pareto optimal solutions x1, x2 from the solutions of the

following linear programming problems:

y12
(
x1

)
= max

x∈X
y2 (x) , y21

(
x2

)
= max

x∈X
y1(x) ,

y1
(
x1

)
=

(
y1

(
x1

)
, y2

(
x1

) )
, y 2

(
x2

)
= ( y1

(
x2

)
, y2

(
x2

)
).

Further, the number of Pareto defined points recall as l. At the first step l = 2, y1, yl are the left-end point and
the right- end point of the Pareto front correspondingly. Set two new vectors α = (α1, α2) = (y22 − y12 , y

1
1 − y21),

c = α1c
1 + α2c

2 then form the following linear programming:

x ≤ Ax− Bx + b, x ≥ 0, (c, x) → max. (3.1)

Step 2. Take the optimal solution x∗ of the problem and define the new Pareto point y3 = y(x∗). Then take the
triangular with the vertices y1, y3, y2. Now take the altitude of the triangular drawn through the vertex y2. Let h be
the length of it. If the inequality h < ε is true then (2.5) defines the solution of the problem (1.1) and go to the Step
End. Otherwise go to the next step. Here ε is the advanced given required precision.

Step 3. We have two pare of Pareto points: (y1, y3), (y3, y2). We apply step1 to each of them and define new two
Pareto points. We call them z1, z2 correspondingly and make new notations

y5 = y2, y4 = z2, y3 = y2, y2 = z1.

In the new case l = 5. Now verify just how these five Pareto points approximates the Pareto front. For take two
pair triangular y1y2y3, y3y4y5 and evaluate theirs altitudes as it was at the step 2. The following situations can be
occurred:

Case 1. All altitudes satisfy accuracy. It means that we have solved the problem and go to the Step End.
Case 2. There is an altitude such that doesn’t satisfy accuracy. In this case remember the triangular which satisfies

accuracy and eliminate it from further consideration. Then return to step1 and apply it to the triangular that doesn’t
satisfy accuracy and define new Pareto points. In this way the set of Pareto points is extended until the requisite
accuracy is satisfied.
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Step End.

Remark 3.1. Calculation volume used to evaluate a Pareto front mainly depends on how efficiently the problems
(3.1) are solved at each step of iterations.

4. Reduction of the problem (3.1)

In this section we study haw the problem (3.1) can be reduced to the problem with the same structure and with
the smaller dimension.

Take the problem dual to the problem (3.1):

y ≤ yA− yB + c, y ≥ 0, y,b → min. (4.1)

Solve the problem as limit of the approximations ψ1, ψ2, ..., ψk, ... constructed according to the following scheme:

ψ1 = 0, ψk+1 = max
(
0, c+ ψkA− ψkB

)
, k = 1, 2, ... (4.2)

The limit limk→∞ ψk = ψ∗ gives the optimal solution to the problem (4.1) ([6], p.16). Define the sets:

G∗ = {i | i ∈ [1 : n] , ψ⋆
i ̸= 0 } , G∗ = {1, 2, . . . , n}nG∗

.
The feasible solution y of the problem (4.1) will be optimal if it satisfies the conditions:

yi = (yA− yB + c) i , i ∈ G∗, yj = 0, j ∈ G∗.

From here and from the duality theorem we come to the conclusion that the feasible solution x of the primal problem
(4.1) will be optimal if it satisfies the conditions:

xi = (Ax−Bx+ b) i , i ∈ G∗, xj = 0, j ∈ G∗.

Therefore, to have the set G∗ is sufficient to identify the optimal basis variables of the problem (1.1). The more
we have information about this set the more we have chance to solve the dimension problem for the problem (3.1).
Consider the case when B = 0 and construct the following approximations:

t1 = 0 , tk+1 = max
(
0, c+ tkA

)
k = 1 , 2 , . . .

Sequence t1, t2, · · · , tk, · · · , is bounded and increasing sequence. Denote

Lim
k→∞

tk = t∗.

Lemma 4.1. ψk ≤ tk , k = 1, 2 , . . .
Validity of the lemma easily obtained from the definition of sequences. From the lemma we have

Corollary 4.2. ψ⋆
i = 0.i ∈ T ∗ = {i | i ∈ [1 : n] , t⋆i = 0}. Take b0 = c− t0B and consider the approximations:

g1 = 0 , gk+1 = max
(
0, c+ gkA+ b0

)
k = 1, 2, · · ·

Denote Limk→∞ gk = g∗.

Lemma 4.3. gk ≤ ψk, k = 1, 2 , . . .

Corollary 4.4. ψ⋆
i > 0, i ∈ G∗ = {i | i ∈ [1 : n] , g⋆i > 0 }.

The following theorem is proved.

Theorem 4.5. The problem (3.1) and the following problem are equivalent:

x + y = Ax− Bx + b, x > 0, y > 0,

yi = 0, i ∈ G∗, xi = 0, i ∈ T ∗.

(c, x) → max.

From the theorem as a result we have:
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Corollary 4.6. The dimension of the basis simplex table of the problem (3.1) is (n × 2n), but the dimension of the
new problem is (m× 2m), where m = n− [G∗ ∪ T ∗].

Corollary 4.7. Monotonous of the sequences which we use to define the sets G∗, T ∗ allows us to interrupt further
iterations when desire reduction of dimension is reached.

5. Application of reduction scheme

Now we are going to demonstrate the possibility of reduction scheme based on the problem like (1.1) on the
parametric and fractional-linear programming problems.

Consider the problem under the condition as in (1.1):

Ix ≤ Ax− Bx + b, 0 ≤ x ≤ d1+λd2, 0 ≤ λ ≤ 1, (c, x) → max (5.1)

The following additional conditions are also assumed:

a)c > 0, d1, d2 > 0; b)b−Bd1 −Bd2 > 0.

Condition b) makes the problem (5.1) is non-degenerate at the each mean of the parameter. Really:

x+ z = A x−B x+ b , x ≥ 0, z ≥ 0,

(I −A)x+ z = −Bx+ b,

x+ (I −A)
−1
z = ( I −A ) −1 ( b−B x) ,

x ≥ ( I −A )
−1 (

b− Bd1 −Bd2
)
> 0.

Take the dual problem to the problem (4.1):

y ( I −A+B ) + t ≥ c, y ≥ 0, t ≥ 0, yb+ t
(
d1 + λd2

)
→ min, 0 ≤ λ ≤ 1. (5.2)

According to the second duality theorem, the condition of the problem can be written as following:

y (I −A+B) + t = c.

Then, after simple transformation the problem (5.2) can be written as:

y (I −A+B) ≤ c, y ≥ 0,

y ((I −A+B)−b) + λ(y (I −A+B) d2 + λcd2 + cd1 → max, 0 ≤ λ ≤ 1. (5.3)

Denote

(I −A+B) d1 − b = e1 , ( I − A+B ) d2 = e2.

The problem (5.3) in new notation has such form:

y ≤ yA− yB + c, y ≥ 0, y e1 + λ y e2 − λcd2 − cd1 → max, 0 ≤ λ ≤ 1. (5.4)

The solution of the problem (5.4) is presented as the Pareto bound of the following two-criterion problem:

y ≤ yA− yB + c , y ≥ 0, y r1 + cl1 → max, ye1 + c d1 → max. (5.5)

Here r1 = e1 + e2, l1 = d1 + d2. Let xi ∈ XP such that y1
(
xi
)
< y1

(
xi+1

)
, i ∈ 1, l and assume that

Y 0
P =

l⋃
i=1

[( y1
(
xi
)
, y2

(
xi
)
]

piece-wise linear approximates Pareto front of the problem (5.5).
Define the vectors

ni = (yi2−yi+1
2 , yi+1

1 − yi1),

ni+1 = ( yi+1
2 −yi+2

2 , yi+2
1 − yi+1

1 ), i ∈ [1 : l − 2] .
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Then construct the following sets, by using them:

Λi = µ
ni

ni1 + ni
2

+ (1− µ)
ni+1

ni+1
1 + ni+1

2

, 0 ≤ µ ≤ 1i ∈ [1 : l − 2] .

Proposition 5.1.
(∧ i

, xi
)
, i ∈ [ 1 : l − 2] is ε− approximation of the solution of the problem (5.1).

Now we are going to illustrate how reducing scheme can be used to solve the fractional linear programming:

Ix ≤ Ax− Bx + b, x ≥ 0,

(c , x ) + d

(e, x) + f
→ max. (5.6)

Assumption: (e, x) + f > 0.
Based on this assumption without loss of the generality, we can also assume that the numerator of the fraction is

positive. Then

Y =

{
(y1, y2) | y1 = l0 ∗ − (c, x) + d , y2 = (e, x) + f , x ∈ X

}
will be convex, closed and bounded set of the first quadrant. Let x0 be optimal solution to the problem (5.6) and

y0
(
x0

)
=

(
y01
(
x0

)
, y

0

2

(
x0

))
∈ Y. y0(x0) has the following property: the straight line, connecting this point with the

coordinate origin is the support line of Y and keeps the set Y to the left side of the line. Our aim is to obtain the
optimal solution by solving a finite number of problems such as (3.1) that differs only by their criteria.

Step 1. Take any vector y(1) =
(
y11 , y

1
2

)
? y as initial approximation and vector n = (n1, n2) =

(
−y12 , y11

)
. Then

solve the following problem:

n1((c, x) + d) + n2((e, x) + f) → max, x ∈ X. (5.7)

Let x2 be the optimal solution to the problem (5.7). By using this solution form the vectors.

y(2) =
(
y1

(
x2

)
, y2

(
x2

))
, n(2) = (−y21 , y22).

Step 2. Take y1 = y2 , n1 = n2, return to the step 1. Continue the process in this way. The process is finite.
The value of the objective function increases at the each step. That is, the process is monotonous. It ends when next
approximation coincides with the previous one.

The proposed solution to problem (5.6) is different from the existing standard way of solution (see [18]). The
standard way of solution doesn’t leave the initial structure of the problem and does not allow us to take advantage of
the reduction proposed here.

6. Numerical example

We demonstrate the reduction process on the example for the problem (5.1) when λ = 0 :

x ≤ x A − xB + b , 0 ≤ x ≤ d , ( c, x) → max). (6.1)

A =


0.20 0.00 0.00 0.06 0.00
0.00 0.30 0.00 0.00 0.10
0.30 0.00 0.10 0.00 0.20
0.00 0.10 0.20 0.30 0.00
0.00 0.00 0.06 0.00 0.20

 , B =


0.00 0.10 0.30 0.00 0.00
0.10 0.00 0.00 0.20 0.00
0.00 0.20 0.00 0.08 0.00
0.04 0.00 0.00 0.00 0.30
0.00 0.05 0.00 0.10 0.00

 ,

x = (x1, x2, x3, x4, x5) , b = (15, 8, 4, 10, 6) , d = (9, 12, 6, 8, 10) , c = (5, 2, 1, 1, 1) .

Step 1.
Set the problem (5.5):
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In our case the problem (5.5) has such form:
y ≤ Ay −By + c, ey −→ max, where

e = d (I −A+B)− b.

e = (9, 12, 6, 8, 10)


0.80 0.10 0.30 −0.06 0.00
0.10 0.70 0.00 0.20 −0.10
−0.30 0.20 0.90 0.08 −0. 20
0.04 −0.10 −0.20 0.70 0.30
0.00 0.05 −0.06 0.10 0.8

− (15, 8, 4, 10, 6) =

= (−8.08, 2.20, 1.90, −1.06, 2.00)

Step 2.
Construct the approximations:

η(1) = 0, η(i)+1 = max
(
0 , eT + Aη(i)

)
, i = 1, 2 , . . .

η(1) =


0
0
0
0
0

 , η(2) = max




0
0
0
0
0

 ,


−8.08
2.20
1.90
−1.06
2.00


 =


0

2.20
1.90
0

2.00

 ,

η(3) = max




0
0
0
0
0

 ,


−8.08
2.20
1.90
−1.06
2.00

+


0.80 0.10 0.30 −0.06 0.00
0.10 0.70 0.00 0.20 −0.10
−0.30 0.20 0.90 0.08 −0. 20
0.04 −0.10 −0.20 0.70 0.30
0.00 0.05 −0.06 0.10 0.80




0
2.20
1.90
0

2.00


 =


0

3.06
2.49
0

2.51

 ,

η(4) = max




0
0
0
0
0

 ,


−8.08
2.20
1.90
−1.06
2.00

+


0.80 0.10 0.30 −0.06 0.00
0.10 0.70 0.00 0.20 −0.10
−0.30 0.20 0.90 0.08 −0. 20
0.04 −0.10 −0.20 0.70 0.30
0.00 0.05 −0.06 0.10 0.80





−8.08
2.20
1.90
−1.06
2.00

 =


0

3.37
2.65
0

2.65

 ,

η(5) = max




0
0
0
0
0

 ,


−8.08
2.20
1.90
−1.06
2.00

+


0.80 0.10 0.30 −0.06 0.00
0.10 0.70 0.00 0.20 −0.01
−0.30 0.20 0.90 0.08 −0. 20
0.04 −0.10 −0.20 0.70 0.30
0.00 0.05 −0.06 0.10 0.80





0

3.37
2.65
0

2.65

 =


0

3.48
2.70
0

2.69

 ,

η(6) = max




0
0
0
0
0

 ,


−8.08
2.20
1.90
−1.06
2.00

+


0.80 0.10 0.30 −0.06 0.00
0.10 0.70 0.00 0.20 −0.01
−0.30 0.20 0.90 0.08 −0. 20
0.04 −0.10 −0.20 0.70 0.30
0.00 0.05 −0.06 0.10 0.80





0

3.48
2.70
0

2.69

 =


0

3.51
2.71
0

2.70

 ,

η(7) = max




0
0
0
0
0

 ,


−8.08
2.20
1.90
−1.06
2.00

+


0.80 0.10 0.30 −0.06 0.00
0.10 0.70 0.00 0.20 −0.01
−0.30 0.20 0.90 0.08 −0. 20
0.04 −0.10 −0.20 0.70 0.30
0.00 0.05 −0.06 0.10 0.80





0

3.51
2.71
0

2.70

 =


0

3.52
2.71
0

2.70

 ,

η(8) = max




0
0
0
0
0

 ,


−8.08
2.20
1.90
−1.06
2.00

+


0.80 0.10 0.30 −0.06 0.00
0.10 0.70 0.00 0.20 −0.01
−0.30 0.20 0.90 0.08 −0. 20
0.04 −0.10 −0.20 0.70 0.30
0.00 0.05 −0.06 0.10 0.80





0

3.52
2.71
0

2.70

 =


0

3.53
2.71
0

2.70

 ,
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η(9) = max




0
0
0
0
0

 ,


−8.08
2.20
1.90
−1.06
2.00

+


0.80 0.10 0.30 −0.06 0.00
0.10 0.70 0.00 0.20 −0.01
−0.30 0.20 0.90 0.08 −0. 20
0.04 −0.10 −0.20 0.70 0.30
0.00 0.05 −0.06 0.10 0.80





0

3.53
2.71
0

2.70

 =


0

3.53
2.71
0

2.70

 .

Based on the last seven iterations we get: T ∗ = {1, 4} . That is, xop1 = d1 = 9, xop4 = d4 = 8. The given problem turns
from the five-variable problem into the three-variable new problem.

Step 3.
Setting the new problem:
y1 ≤ A1y1 − B1 + b1, y1 ≥ 0, e1y1 −→ max. Here y1 = ( y 2, y3 , y5),
b1i = bi,− (9, 0 , 0 , 8 , 0) ( I −A+B)i I = 2, 3 , 5. From here we have:

b1 = (7.90, 2.90, 3.60) ,

A1 =

 0.30 0.00 0.10
0.00 0.10 0.20
0.00 0.06 0.20

 , B 1 =

 0.00 0.00 0.00
0.20 0.00 0.00
0.05 0.00 0.00


e1 = d1

(
I −A1 +B1

)
− b1, d1 = (12, 6, 10) . Calculate the value of the vector e1 = (2.20, 1.90, 2.00). For

the new problem G∗ = (2, 3, 5). As a result of the Theorem 1, the remaining coordinates of optimal solution of the
new problem can be found from the system of equations:

0.70 x2 + 0.20 x3 + 0.05 x5 = 7.9,

0.90 x3 − 0.06 x5 = 2.9,

−0.10x2 − 0.20 x3 + 0.8 x5 = 3.6,

x2 = 9.76, x3 = 3.66, x5 = 6.64.

Finally, the optimal solution for the considered example will be the vector (9.00, 9.76, 3.66, 8.00, 6.64).
Numeric calculation of the given example is performed by MATLAB.

7. Conclusion

Many problems have been considered and are being considered related to large size and different separation schemes
have been suggested to solve them. However, existing separation schemes essentially have been based on the possibilities
created by the zeros of matrix of the problems. The problem considered here has no such possibility due to its large
size. But if the dimension reason it is shown that the problem considered successfully can be solved by existing
iterative procedure. Here we try to solve the problems: i) how to identify Pareto front problem considered by using
iterative procedure; ii) how to use iterative procedure to reduce the dimension of the problem: iii) how to carry out i)
and ii) without disturbing the original structure of the problem. We demonstrate usability of the suggested method
for parametric and fractional programming. Numerical example is solved.
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