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 Abstract 
Zoonotic viruses, capable of crossing the species barrier from animals to humans, pose 

significant threats to global health, as demonstrated by outbreaks such as SARS, MERS, 

and COVID-19. Early identification of these viruses is critical for pandemic preparedness 

and containment strategies. Machine learning has increasingly been utilized in healthcare 

and virology to enhance predictive modeling. This study presents a machine learning-

based approach for assessing the zoonotic potential of viruses by analyzing key 

biological features, including protein stability, RNA energy, protein folding success, and 

codon usage patterns. A curated dataset of viral spike protein sequences was compiled, 

encompassing both zoonotic and non-zoonotic viruses. To address class imbalance, the 

Synthetic Minority Oversampling Technique (SMOTE) was applied, ensuring a balanced 

representation of both categories. The dataset was then normalized using z-score 

transformation to standardize feature distributions. A logistic regression model was 

trained and optimized through hyperparameter tuning to achieve an optimal balance 

between sensitivity, specificity, and accuracy. The model was evaluated using multiple 

validation strategies, including an independent testing dataset, to assess its robustness 

and generalizability. Results indicate that the model achieved a prediction accuracy of 

78.57%, demonstrating its reliability in distinguishing zoonotic from non-zoonotic 

viruses. The high specificity ensures that the model effectively minimizes false positives, 

while sensitivity enables the detection of potential zoonotic threats. The interpretable 

nature of logistic regression makes the model transparent and applicable to real-world 

decision-making. By providing a systematic and data-driven approach, this study 

contributes to the early identification of emerging zoonotic threats, ultimately enhancing 

global health preparedness and response strategies. 

 
 

 

 

Introduction  

The number of zoonotic disease outbreaks has 

increased rapidly in recent decades, with disastrous 

repercussions for human health, economics, and 

society. The emergence of Coronavirus disease 

2019 (COVID-19) occurred in Wuhan, China, in 

https://doi.org/10.22034/jzd.2023.17108
https://jzd.tabrizu.ac.ir/article_17108.html
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late 2019 and swiftly expanded to become a 

significant pandemic (1). The single-stranded 

positive-sense RNA virus, severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), is the 

causal pathogen of this disease (2, 3). It belongs to 

the beta coronavirus family and shares a close 

relation with the human SARS-CoV virus, 

responsible for the SARS outbreak from 2002 to 

2004 (4). As on the 31st of March 2023, about 760 

million people have been infected and over 6.9 

million deaths attributed to COVID-19 so far (5). 

Coronaviruses (CoVs) belong to the family 

Coronaviridae of the order Nidovirales are large 

(genome size: 27-32 Kb), enveloped, non-

segmented, positive single-strand RNA viruses that 

have been responsible for many respiratory illness 

outbreaks including SARS and MERS (6–10). They 

are called ‘corona viruses’ because of their 

characteristic protein spikes (11). By attaching to 

the ACE2 receptor on the surface of the host cell, 

the SARS-CoV-2 spike protein functions as the 

primary viral attachment protein, enabling the virus 

to enter human cells (11–13). This interaction is 

critical for viral infectivity, making the spike 

protein a primary target for vaccine development. 

The COVID-19 pandemic, however, has brought 

into sharp focus the critical demand for timely virus 

discovery and diagnosis of zoonotic viruses with 

high potential of cross-species jump from animal to 

humans (14). Predicting viruses with zoonotic 

potential is essential for improving response to 

emerging infectious diseases and effective global 

health preparedness (15). Logistic regression and 

other machine learning algorithms can help identify 

patterns and characteristics associated with 

zoonotic potential by examining several biological 

and structural properties of viruses (16). Logistic 

regression is a statistical method that can predict 

binary events, such as whether a given virus could 

jump from animals to humans (17).  

In this study, logistic regression is applied for the 

classification of viruses having COVID-like threat 

potential. Specifically, it determines whether a virus 

has traits that increase its likelihood of jumping 

from animals to humans. To accomplish this, a 

dataset was compiled consisting viral spike protein 

sequences of SARS-CoV-2 and viruses belonging 

to coronaviridae family that have successfully 

infected humans and spike protein sequences of 

viruses that have not demonstrated human 

infectivity. Key biological and structural 

characteristics, including Protein stability, RNA 

energy, the Absolute Contact order (AbsCO) score, 

which indicates success of protein folding and the 

Root Mean Square Deviation (RMSD) of codon 

usage were analysed. These features were selected 

based on their importance in viral function, 

structure, and evolutionary history.  

To prepare the dataset for analysis and ensure that 

all features are on a comparable scale, Z-score 

normalization (18) was applied to the dataset. One 

of the significant challenges in viral threat 

identification is the class imbalance between 

viruses that have jumped to humans and those that 

have not. The Synthetic Minority Oversampling 

Technique (SMOTE) (19) was applied to address 

this issue, ensuring an equal representation of both 

classes. Logistic Regression was the major 

classification technique because of its simplicity, 

interpretability, and efficacy in binary classification 

problems (20). The hyperparameter adjustment of 

the regularization parameter (21) was performed, 

which was important for enhancing the model’s 

generalization ability and accuracy. 

After fine-tuning, the model was tested on a 

separate dataset comprising 14 viruses, representing 

real-world examples to assess its predictive 

performance. The model accurately predicted 11 

viruses, demonstrating its ability to identify 

zoonotic threats effectively. These results further 

confirm the utility of the model as a reliable scoring 

function for predicting zoonotic potential, 

emphasizing its robustness and scalability for 

assessing future viral threats.  

By integrating key biological features and utilizing 

machine learning techniques, this study offers a 

comprehensive and interpretable approach for the 

early identification of viruses with zoonotic 
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potential. The final testing findings underscore the 

model’s utility as a valuable tool in the global effort 

to limit the risks posed by the emerging infectious 

illness, thereby considerably boosting health 

preparedness and response strategies.  

 

Methods 

Data collection 

For this study, two distinct datasets were required: 

a positive dataset and a negative dataset. The 

positive dataset was created to include sequences of 

viruses capable of infecting humans, focusing on 

proteins required for host cell entry. In contrast, the 

negative dataset comprised of sequences from 

viruses that are known not-infect humans.  

For the positive dataset, spike protein sequences 

from different lineages of SARS-CoV-2 were 

retrieved from the NCBI (National Centre for 

Biotechnology Information) Virus database (22). 

Additionally, spike protein sequences of a few other 

viruses belonging to the coronaviridae family were 

also added.  

The sequences of viruses for the negative dataset 

were also downloaded from the NCBI database. 

Due to reduced availability of RNA sequences for 

some viruses non-infectious to humans, a reverse 

translation process was employed. The Sequence 

Manipulation Suite (SMS) was used to convert 

these viruses’ amino acid sequences to their 

corresponding RNA sequences (23). The Codon 

Usage Table for each virus from the Codon Usage 

Database was employed to guide the reverse 

translation of amino acid sequences into RNA 

sequences during this process. 

Parametric selection 

Successful viral host jump is governed by the 

combination of molecular and structural factors that 

enable adaptation to new hosts. This study 

incorporates four key factors: protein structure 

stability, RNA energy, protein folding and codon 

conformity. Protein structural stability is essential 

for maintaining the functional integrity of entry 

proteins, ensuring their ability to bind effectively to 

host receptors under diverse physiological 

conditions. RNA energy, a measure of the stability 

of RNA secondary structures, regulates viral entry 

protein expression and replication efficiency, which 

are pivotal for initiating infection. Proper protein 

folding ensures that the entry proteins achieve their 

functional states, as misfolded proteins ay fail to 

facilitate host receptor binding or evade immune 

surveillance. Codon usage reveals how well the 

viral genetic material is optimized for the host’s 

translational machinery, which has a direct impact 

on the synthesis and functionality of entry proteins. 

These parameters collectively provide a 

mechanistic insight into how entry-related viral 

proteins adapt during host jumps, forming the basis 

of this study’s approach. 

Protein Stability Assessment 

To assess the stability of predicted protein 

structures, a two-step computational approach was 

employed. 

Structure Prediction: For the structure prediction of 

the proteins, the amino acid sequences were 

submitted to the Phyre2 server (24), which is a 

powerful protein structure homology modelling 

platform (24). 

Stability calculation: The generated PDB structures 

were then examined for protein stability using the 

FoldX software (25). The FoldX Stability 

determines the Gibbs free energy (ΔG) needed to 

fold a protein from its unfolded state (26). The 

software generates an output file that breaks the 

overall G into different energy components. The 

total energy is an empirical score derived from 

several energy terms, which are sidechain H bond, 

van der Waals, solvation polar, solvation 

hydrophobic, backbone Hbond, electrostatics, van 

der Waals clashes, entropy side chain, entropy main 

chain, sloop entropy, Mloop entropy, cis bond, 

torsional clash, backbone clash, helix dipole, water 

bridge, disulfide, electrostatic kon, partial covalent 

bonds, energy ionization, entropy complex and 

residue number (25).  

RNA energy calculation 

RNA energy, an important factor in viral host jump 

prediction, was determined using the RNAfold 
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software (27). This tool uses thermodynamics 

concepts to estimate the secondary structure of 

RNA molecules based on their primary sequence. 

The key output of RNAfold is the Minimum Free 

Energy (MFE) (28), the most stable secondary 

structural configuration of an RNA molecule under 

specified thermodynamic conditions. By computing 

the MFE for each RNA sequence, insights into the 

RNA molecule’s structural stability were obtained. 

The RNA energy calculation was done for the RNA 

sequences.  

Protein folding success: Absolute Contact Order 

(AbsCO) 

The Absolute Contact Order (AbsCO) was 

determined for the protein structures, to determine 

the likelihood of successful protein folding. This 

metric gives a quantitative assessment of a protein’s 

folding complexity and stability. AbsCO is 

calculated by identifying pairs of amino acid 

residues within a specific distance (usually 6 

Angstroms) inside a protein structure, representing 

crucial interactions for stability. The absolute 

difference between each pair’s sequential positions 

throughout the protein backbone is calculated, and 

these values are added to get the final AbsCO score. 

A higher AbsCO suggests a more compact folding 

pattern, potentially increasing the risk of folding 

(29). 

Codon conformity analysis 

Codon usage bias, the non-uniform use of 

synonymous codons throughout a genome, can 

have a major impact on protein expression 

efficiency. To determine the possibility of viral host 

jump, the codon usage patterns of viral sequences 

were compared to those of human host.  

To calculate the Root Mean Square Deviation 

(RMSD) of viral and human codon usage frequency 

distributions a quantitative approach was used as 

given in equation 1. The potential adaptability of a 

virus to the new host was analysed based on its 

codon conformity profile, where 𝑓𝑖
𝑉is the frequency 

of codon i in the viral sequence, 𝑓𝑖
𝐻is the frequency 

of codon i in the human genome and N is the 

number of codons. 

𝑅𝑀𝑆𝐷 =  √
1

𝑁
∑(𝑓𝑖

𝑉 − 𝑓𝑖
𝐻)

2
𝑁

𝑖=1

                                                                   𝐸𝑞. 1 

  

Data preprocessing 

The raw data frequently contains inconsistencies, 

errors, and missing values, which can significantly 

impact the accuracy and reliability of the results. 

Therefore, data preprocessing is employed before 

data analysis since it optimizes the work of machine 

algorithms. In this step, the raw data is prepared for 

modelling. It involves cleaning, transforming, and 

organizing data to ensure its quality and suitability 

for analysis. Data cleaning is removing noise and 

inconsistencies from data to improve its quality. To 

rescale the data methods, such as normalization and 

standardization are used. This is known as data 

transformation.  

The normalization (30) is a data preprocessing 

technique that scale numerical features to a 

common range. This is important as, in the learning 

process, features with larger magnitudes tend to 

dominate those at lower scales, resulting in biased 

models. Normalizing the data such that all features 

are on a common scale ensures that all features have 

roughly the same effect on the model’s predictions. 

There are several normalizing methods, including 

min-max scaling, z-score normalization, and 

decimal scaling (31). In this study, Z-score 

normalization was applied to the dataset. The 

Python script for Z-score normalization is available 

in the GitHub repository: 

https://github.com/varunibhardwaj/Supplementary

_Code_Zoonotic_Prediction/blob/main/z_score_no

rmalization.py.  Z-score normalization standardizes 

data by subtracting the mean from each data point 

and dividing by its standard deviation (32). This 

converts the data into a standard normal distribution 

https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/z_score_normalization.py
https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/z_score_normalization.py
https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/z_score_normalization.py
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with a mean of 0 and a standard deviation of 1 (33). 

This method of normalization was chosen to ensure 

the dataset containing the virus data points, with 

features protein stability, protein folding success, 

RNA energy and codon conformity had equal 

importance. The z-score normalization ensured that 

the model was not biased towards the features with 

larger magnitudes. This method enabled a more 

balanced comparison of the features, enhancing the 

model’s ability to detect patterns.  

Resampling is another data preprocessing technique 

for correcting class imbalance in datasets where one 

class significantly outnumbers the other (34, 35). It 

can be done in two ways: under sampling, which 

reduces the number of samples in the majority class, 

and oversampling, which increases the number of 

samples in the minority class (36). The Synthetic 

Minority Over-Sampling Technique (SMOTE) was 

employed to solve the dataset’s class imbalance. 

The implementation details can be found in the 

GitHub repository: 

https://github.com/varunibhardwaj/Supplementary

_Code_Zoonotic_Prediction/blob/main/smote_resa

mpling.py. SMOTE is an over-sampling method 

that generates synthetic training samples for the 

minority class using the existing minority class 

samples and their nearest neighbours (37, 38). By 

applying SMOTE, the dataset was augmented with 

new negative data points, so that model can be 

equally trained on both classes. This procedure 

resulted in a more balanced representation of both 

classes, essential for training a robust model that 

can accurately distinguish between positive and 

negative classes. 

Logistic regression and Hyperparameter tuning 

In this study, a Logistic regression model was 

employed to the dataset. Logistic regression is a 

type of machine learning algorithm that provides a 

starting point for many binary classification tasks 

by modelling the probability that each input belongs 

to any particular category (39). The regularization 

strength in logistic regression is controlled by the 

regularization parameter C. It reduces overfitting by 

penalizing large coefficients, ensuring the model 

generalizes well to unseen data.  

The model was fine-tuned by adjusting the value of 

hyperparameter C (21, 40). Various C values were 

examined to evaluate their impact on model 

performance. 

The five-fold cross-validation was used to see the 

performance of model changes across different 

values of C. The logistic regression models were 

trained and tested for each value of C. By analysing 

the performance metrics across the five iterations, 

the optimal C value was determined, balancing 

underfitting and overfitting to provide most reliable 

predictive model. 

Model evaluation  

After tuning the logistic regression model, 

evaluation measures were calculated. These 

measures were true positives, true negatives, false 

positives, and false negatives. These values were 

used to calculate performance indicators like 

accuracy, precision, specificity, and sensitivity. 

Accuracy (Eq. 2) assesses the model’s overall 

correctness, whereas precision (Eq. 3) represents 

the proportion represents the proportion of true 

positives among all predicted positives. Specificity 

(Eq.4), or true negative rate, assesses the model’s 

capacity to accurately identify negative situations, 

whereas sensitivity (Eq.5) (recall) shows the 

model’s ability to recognize true positives. 

  

 

 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
                                                    𝐸𝑞. 2  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                           𝐸𝑞. 3 

https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/smote_resampling.py
https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/smote_resampling.py
https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/smote_resampling.py
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Model testing 

A separate testing dataset of 14 viruses was 

prepared, to evaluate the model’s predictive power 

further. The fine-tuned logistic regression model 

was applied to this dataset to independently assess 

the model’s ability to distinguish between viruses 

with zoonotic potential and those without. The 

testing procedure involved calculating the 

classification outputs for each virus and comparing 

them to their actual labels, which allowed for the 

assessment of the model’s predictive reliability.  

 

Results and discussion 

Data Collection 

973 spike protein sequences were retrieved from the 

NCBI Virus database for the positive dataset. These 

sequences reflect different lineages of SARS-CoV-

2 and were collected between January 2020 and 

March 2023. Additionally, spike protein sequences 

of 4 other viruses belonging to coronaviridae family 

that have earlier jumped into humans were added 

into the positive dataset. A total of 977 sequences 

constituted the positive dataset. A set of 62 virus 

sequences that had been known for their inability to 

infect humans, was obtained from the NCBI Virus 

database for the negative dataset. These included 

viruses from both coronaviridae and non-

coronaviridae families (such as Flaviviridae, 

Retroviridae, Picornaviridae, and others), 

providing a degree of taxonomic diversity. Among 

these, 16 viruses belong to families other than 

Coronaviridae, thereby enhancing the biological 

variety of the negative class. As RNA sequences of 

12 of these viruses were unavailable, reverse 

translation was performed using Sequence 

Manipulation Suite (SMS) and Codon conformity 

table for each virus. All 12 sequences were 

converted, resulting in a complete negative dataset. 

Protein stability calculation 

A total of 1039 protein structures were generated 

using the Phyre2 server based on homology 

modelling. The stability of the anticipated 

structures was evaluated by calculating their Gibbs 

free energy (ΔG) using FoldX. The ΔG values for 

viruses infectious to humans had range from 924.47 

kcal/mol to 2165.49 kcal/mol. For viruses non-

infectious to humans, the range of ΔG values lied 

between 25.65 kcal/mol to 2629.2 kcal/mol. The 

Gibbs free energy and energy components provided 

insights into the stability of the proteins.  

RNA energy calculation 

RNAfold was used to calculate the RNA energy of 

1039 sequences. The Minimum Free Energy (MFE) 

for each RNA sequence was determined. The RNA 

energy range for viruses in the positive dataset was 

-1087.9 Kcal/mol to -595.6 Kcal/mol, while viruses 

in the negative dataset ranged from -1350.4 

Kcal/mol to -66.6 Kcal/mol. 

AbsCO score calculation 

The Absolute Contact Order (AbsCO) was 

calculated for all protein structures. AbsCO values 

were in the range of 31.24 to 40.04 for positive viral 

proteins, indicating a relatively consistent folding 

complexity. However, for negative viral proteins, 

AbsCO score ranged from 1.94 to 61.92, reflecting 

greater variability in folding.  

Codon conformity analysis 

The Root Mean Square Deviation (RMSD) between 

viral and human codon usage patterns was analysed 

to determine the likelihood of viral host adaptation. 

The viruses infectious to humans had RMSD value 

between 0.0108 to 0.0545, showing a high level of 

codon similarity with the human host. In contrast, 

viruses non-infectious to humans showed the higher 

RMSD scores, from 0.0247 to 0.0573, indicating of 

lower codon compatibility.Supplementary 

information 1 provides the data of four parameters 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                         𝐸𝑞. 4 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                        𝐸𝑞. 5 
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for both positive and viruses non-infectious to 

humans. 

Data preprocessing 

As the raw data may contain errors and 

inconsistencies, it was important to curate the raw 

data for modelling.  Data cleaning, normalization 

and standardization were included in the process of 

preprocessing of data. 

Normalization of the viral datapoints of (a) protein 

stability, (b) folding success, (c) RNA energy and 

(d) codon conformity was done by applying Z-score 

normalization on the dataset. This transformation 

ensured all features were normalized, with a mean 

of 0 and a standard deviation of one, allowing for 

balanced comparison across features. Following 

normalization, the positive dataset exhibited the 

following feature ranges: ΔG from -1.6778 

kcal/mol to 4.2791 kcal/mol, RNA energy from -

0.31298 kcal/mol to 4.6646 kcal/mol, AbsCO from 

-2.0896 to 0.6004, codon conformity from -0.2481 

to 4.3846. For the negative dataset, the normalized 

ranges were: ΔG from -5.9929 kcal/mol to 6.5084 

kcal/mol, RNA energy from -2.9670 kcal/mol to 

10.0132 kcal/mol, AbsCO from -11.0465 to 7.892 

and codon conformity from 1.0921 to 4.6940. The 

normalized data of four parameters for the dataset 

is given in supplementary information 2. 

After normalization of the dataset resampling of the 

dataset was carried out. SMOTE was applied to the 

dataset to address the class imbalance, resulting in 

a balanced dataset of 977 positive and 977 negative 

samples as given in supplementary information 3. 

This resampling process ensured that both classes 

were evenly represented as shown in Figure 1. 

 

 
Fig. 1. The dataset before resampling and after resampling 

 

The logistic regression and hyper parameter tuning 

Logistic regression model was evaluated using five 

different datasets. Various values of the 

regularization parameter C (0.001, 0.002, 0.003, 

0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 

0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.01, 0.9, 

0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 1) were tested to 

assess their impact on model performance.  

Model performance evaluation and final model as a 

scoring function 

The performance of the different values of 

regularization parameter C on the model was 

assessed and compared. The values obtained are 
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given in supplementary information 4. Among the 

tested values, C = 0.001 demonstrated the optimal 

balance of performance metrics across all folds, as 

shown in supplementary information 5. The model 

exhibited high sensitivity from 0.995 to 1.00, 

indicating its ability to identify true positives 

accurately. Precision values were consistent, 

highlighting the model’s ability to minimize false 

positives effectively. Specificity ranged from 0.841 

to 0.918, reflecting variability in correctly 

identifying true negatives across folds. The F1-

score and AUC further validated the model’s 

balanced performance.  

The finalized model, with regularization parameter 

C = 0.001, was saved. The code for saving the 

model is available in the GitHub repository: 

https://github.com/varunibhardwaj/Supplementary

_Code_Zoonotic_Prediction/blob/main/save_mode

l.py.  This saved model functions as a scoring tool 

to assess new viruses for their transformation into 

“human-infectors” or not by evaluating their protein 

stability, RNA energy, folding success and codon 

conformity features. The python script for 

predicting the zoonotic potential of viruses is 

available in the GitHub repository: 

https://github.com/varunibhardwaj/Supplementary

_Code_Zoonotic_Prediction/blob/main/predict_zo

onotic_risk.py. 

Evaluation of the final model  

The final saved model was applied to the testing 

dataset comprising of data of 14 viruses. Of these, 

11 viruses belonged to families other than 

Coronaviridae, including Orthomyxoviridae 

(Influenza A virus), Retroviridae (HIV-1), 

Filoviridae (Zaire ebolavirus, Marburg virus), 

Paramyxoviridae (Henipavirus nipahense, 

Henipavirus hendraense), Flaviviridae (Zika virus, 

Dengue virus, Yellow fever virus), Rhabdoviridae 

(Lyssavirus rabies, Snakehead rhabdovirus), and 

others. This diverse representation was 

intentionally selected to evaluate the 

generalizability of the model across a wide range of 

viral families. The model achieved a prediction 

accuracy of 78.57%, highlighting its strong ability 

to identify viruses with zoonotic potential, as shown 

in Figure 2 and Figure 3. These results further 

validate the model’s effectiveness as a reliable 

scoring tool for predicting the zoonotic potential of 

unknown viruses based on key biological features. 

 
Fig. 2. Final Model Testing: Confusion Matrix Representation 

 

https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/save_model.py
https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/save_model.py
https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/save_model.py
https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/predict_zoonotic_risk.py
https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/predict_zoonotic_risk.py
https://github.com/varunibhardwaj/Supplementary_Code_Zoonotic_Prediction/blob/main/predict_zoonotic_risk.py
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Fig. 3. Classification accuracy of the final model on the testing dataset 

 

Feature Importance Analysis 

To understand the contribution of each biological 

feature in predicting zoonotic potential, the feature 

importance derived from the logistic regression 

model was analyzed. The absolute values of the 

model coefficients were used to assess the influence 

of each feature. 

As illustrated in Figure 4, the most influential 

feature was RMSD (Codon usage), suggesting that 

codon adaptation plays a significant role in the 

ability of a virus to jump into humans. This was 

followed by the AbsCO Score (Folding success), 

RNA energy (RNA stability), and Delta G (Protein 

stability). These results highlight the biological 

relevance of each feature in modelling host 

adaptability and support the robustness of the 

selected predictors. The features were chosen based 

on their mechanistic importance: Delta G reflects 

protein stability within the host environment; RNA 

energy represents the structural stability of viral 

RNA, influencing replication and translation; 

AbsCO Score indicates the efficiency of viral 

protein folding; and RMSD captures codon 

adaptation to the host’s translational machinery. 
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Fig. 4. Feature importance based on logistic regression coefficients 

 

Conclusion 

The development of reliable tools to predict viral 

spillover events and mitigate future pandemics has 

become necessary due to the growing threat of 

zoonotic diseases. This study developed and 

evaluated a machine learning based model to 

predict viruses that may jump onto humans as hosts, 

using key biological features such as protein 

stability, RNA energy, protein folding success and 

codon conformity. By addressing significant 

challenges like data normalization, class imbalance 

through SMOTE, and hyperparameter optimization, 

the model achieved an optimal balance of 

sensitivity, specificity, and accuracy. Final testing 

on a separate dataset of 14 real-world viruses 

yielded a prediction accuracy of 78.57%, 

underscoring the model’s reliability in identifying 

zoonotic threats. These findings underscore the 

model’s potential to serve as an important scoring 

function in viral risk assessments, contributing to 

the early identification of viruses with pandemic 

potential. Moreover, the model has the potential to 

be part of global health surveillance systems, thus 

supporting efforts to mitigate pandemic risks. 

Future studies should focus on refining the model 

by incorporating a broader range of viral features 

and expanding the training dataset, which could 

improve its generalizability and accuracy.  
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