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Abstract

In this paper, we find the necessary and sufficient conditions under which a left-invariant Randers metric is a
Ricci-quadratic metric. Then, by using the Ha-Bumlee’s classification of left invariant Riemannian metrics and

our characterization of Ricci-quadratic left-invariant Randers metrics, we give the classification of left-invariant
Ricci-quadratic Randers metrics on three dimensional Lie groups. As an application, we find an interesting Ricci-

quadratic Randers metric on SU(2) which is a generalized Berwald metric while it is not Berwaldian. Also, we

prove that it is a generalized Douglas-Weyl metric which is neither Douglasian nor Weyl metric.
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1. Introduction

The notion of Riemann curvature R = R(x, y) is a basic concept in the Riemannian-Finsler geometry which was
introduced by Riemann in 1854 for Riemannian manifolds and was extended by Berwald in 1926 for Finsler manifolds.
The Riemannian curvature of every Riemannian metric is quadratic in y, while this fact does not hold for general
Finsler metrics. Therefore, the concept of R-quadratic Finsler metrics was born, namely, a Finsler metric is called
R-quadratic if its Riemannian curvature is quadratic in y. In other words, a Finsler metric is R-quadratic if and only if
the h-curvature of the Berwald connection depends on position only in the sense of Bácsó-Matsumoto [2]. But in fact,
it was Shen who chose such a name for these metrics. The class of R-quadratic Finsler metrics contains the classes of
Berwald metrics and R-flat metrics as special cases [17–19].

As defined in Riemann geometry, in Finsler geometry, the Ricci curvature Ric(x, y) is obtained by taking the trace
of Riemann curvature, namely, Ric(x, y) = trace(R(x, y)). A Finsler metric is called Ricci-quadratic if its Ricci
curvature Ric(x, y) is quadratic in y. By definition, every R-quadratic metric is Ricci-quadratic [9]. It is remarkable
that Shen proved that every closed R-quadratic metric is a Landsberg metric [19]. It is interesting to ask if the same
position holds for the Ricci-quadratic Finsler metric. Then, a natural question in Finsler setting arises as follows:

Conjecture. Dose a Ricci-quadratic Finsler metric on a closed manifold reduce to a Berwald metric?

In Finsler geometry, to get the answer to such a problem, people usually first research the class of Randers metrics
because such metrics are the simplest non-Riemannian Finsler metrics and also they are computable [6]. Recently, Bao
and Robles investigated the Ricci curvature of Randers metrics and obtained the necessary and sufficient conditions for
a Randers metric to be Einstein [5, 16]. In [24], Tayebi-Najafi proved that a homogeneous (α, β)-metric on a manifold
M is an R-quadratic metric if and only if it is a Berwald metric. In [13], Li and Shen studied Randers metrics with
quadratic Riemann and Ricci curvatures. They found the equations that characterize Ricci-quadratic Randers metrics.
In [12], Hu-Deng proved that a homogeneous Randers metric is Ricci-quadratic if and only if it is a Berwald metric.
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Suppose that G is a Lie group with a left-invariant Randers metric F defined by the underlying left-invariant
Riemannian metric α and the left-invariant vector field U . Among the Finsler spaces, Lie groups equipped with
left-invariant metrics are very important spaces because of interpolation between algebraic and geometric properties
of Lie groups. S. Deng has achieved very important results on these spaces [8]. He introduced homogeneous Finsler
spaces for the first time in [7]. Homogeneous spaces, including Lie groups as a special case, have many applications in
physics. In [28], Zhang and Huang classified Lie groups of scalar Randers type. Therefore, it is natural to study and
characterize the left-invariant Ricci-quadratic Randers metrics on Lie groups . In this paper, we can characterize the
left-invariant Ricci-quadratic Randers metrics.

Theorem 1.1. Let G be a Lie group equipped with a left-invariant Randers metric F defined by the underlying left-
invariant Riemannian metric α =

√
αp(v, v) and the left-invariant vector field U , i.e., F (p, v) =

√
αp(v, v)+αp(U, v).

Then, the Randers metric F is a Ricci-quadratic metric if and only if for any left-invariant vector fields X, Y , and Z
the following holds

⟨[U,X], Y ⟩+ ⟨X, [U, Y ]⟩ − ⟨[U,X], U⟩⟨U, Y ⟩ − ⟨[U, Y ], U⟩⟨U,X⟩ = 0, (1.1)

tr
(
∇̂dβ(Fℓ,−)

)
= (n− 1)α

(
U, [U, (ad∗(Fℓ))(U)]

)
, (1.2)

where ℓ is the unit tangent vector in the direction of y ∈ TxM , β(p, v) := αp(U, v) and ∇̂dβ := sij|kdx
j ⊗ dxk ⊗ ∂/∂xi

is the horizontal covariant derivative of dβ with respect to α.

In [10], Ha-Bumlee studied 3-dimensional Lie algebras and classified the Left-invariant Riemannian metrics on
simply connected 3-dimensional Lie groups. Let us consider {x, y, z} as a basis for a 3-dimensional Lie algebra. Then,
it is isometric isomorphic to one of the presented Lie algebras endowed with the given inner product in Table 1 (for
more details see Table 1). In this paper, using Ha-Bumlee’s classification, we classify Left-invariant Ricci-quadratic
Randers metrics as follows.

Theorem 1.2. A simply connected 3-dimensional Lie group G admits a Ricci-quadratic Randers metric F (p, v) =√
αp(v, v) + αp(U, v), where α denotes the left invariant Riemannian metric induced by the inner product given in

each case in the Table 1, if and only if G is isomorphism isometric with one of the following

(i) The 3-dimensional Euclidean space R3;
(ii) The Heisenberg group Nil;

(iii) The solvable Lie group Ẽ0(2);
(iv) The simple Lie group SU(2);
(v) The non-unimodular Lie group Gc, where 0 < µ ≤ |c| and v > 0;
(vi) The non-unimodular Lie group Gc, where 0 < µ ≤ 1, v > 0 and c = 1.

In final section, we consider the Riemannian and non-Riemannian curvature properties of the Randers metric
F (p, v) =

√
αp(v, v) + αp(z, v) defined on SU(2), where it is the special case (iv) of Theorem 1.2. More precisely,

in Proposition 5.1, we prove that: (i) F is not a Landsberg metric nor weakly Landsberg metric nor stretch metric;
(ii) F is a generalized Douglas-Weyl metric which is not Douglasian nor Weyl metric; (iii) F is a generalized Berwald
metric which is not Berwaldian; (iv) F is not projectively flat; (v) F satisfies S = 0; (vi) F is Ricci-quadratic but not
R-quadratic.

2. Preliminaries

Let (M,F ) be a Finsler manifold. The following quadratic form gy : TxM ×TxM → R is called fundamental tensor

gy(u, v) =
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, one can defineCy : TxM×TxM×TxM → R
by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

, u, v, w ∈ TxM.
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The family C := {Cy}y∈TM0
is called the Cartan torsion.

For y ∈ TxM0, define Iy : TxM → R by

Iy(u) :=
n∑

i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0
is called the mean Cartan torsion. By definition,

Iy(y) = 0 and Iλy = λ−1Iy, λ > 0. Therefore, Iy(u) := Ii(y)u
i, where Ii := gjkCijk.

For a vector y ∈ TxM0, define the Matsumoto torsion My : TxM × TxM × TxM → R by

My(u, v, w) := Cy(u, v, w)−
1

n+1

{
Iy(u)hy(v, w) + Iy(v)hy(u,w) + Iy(w)hy(u, v)

}
, (2.1)

where hy(u, v) := gy(u, v)−F−2(y)gy(y, u)gy(y, v) is the angular metric. A Finsler metric F is said to be C-reducible
if My = 0. In [14], Matsumoto and Hōjō proved the following.

Lemma 2.1. A Finsler metric F on a manifold of dimension n ≥ 3 is a Randers metric or Kropina metric if and
only if My = 0 for all y ∈ TM0.

Let c = c(t) be a C∞ curve and U(t) = U i(t) ∂
∂xi |c(t) be a vector field along c. Define the covariant derivative of

U(t) along c by

DċU(t) :=

{
dU i

dt
(t) + U j(t)

∂Gi

∂yj
(
c(t), ċ(t)

)} ∂

∂xi

∣∣∣
c(t)

.

U(t) is said to be linearly parallel if DċU(t) = 0.
For a vector y ∈ TxM , define

Ly(u, v, w) :=
d

dt

[
Cσ̇(t)

(
U(t), V (t),W (t)

)]
|t=0,

where σ = σ(t) is the geodesic with σ(0) = x, σ̇(0) = y, and U(t), V (t),W (t) are linearly parallel vector fields along σ
with U(0) = u, V (0) = v,W (0) = w. F is called a Landsberg metric if L = 0.

For y ∈ TxM , define the mean Landsberg curvature Jy : TxM → R by Jy(u) := Ji(y)u
i, where

Jy(u) :=
d

dt

[
Iσ̇(t)

(
U(t)

)]
t=0

,

Here, y ∈ TxM , σ = σ(t) is the geodesic with σ(0) = x, σ̇(0) = y and U(t), V (t),W (t) are linearly parallel vector
fields along σ with U(0) = u, V (0) = v,W (0) = w. A Finsler metric F is called a weakly Landsberg metric if Jy = 0.

For a Finsler manifold (M,F ), a global vector field G is induced by F on TM0, which in a standard coordinate
(xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi ∂

∂yi
,

where Gi = Gi(x, y) are local functions on TM given by

Gi :=
1

4
gil
{ ∂2[F 2]

∂xk∂yl
yk − ∂[F 2]

∂xl

}
, y ∈ TxM.

G is called the associated spray to (M,F ). A Finsler metric is called a Douglas metric if

Gi =
1

2
Γi
jk(x)y

jyk + P (x, y)yi,

where Γi
jk = Γi

jk(x) is a scalar function on M and P = P (x, y) is a homogeneous function of degree one with respect
to y on TM0. If P = 0, then F is called a Berwald metric.
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For a Finsler metric F on an n-dimensional manifoldM , the Busemann-Hausdorff volume form dVF = σF (x)dx
1 · · · dxn

is defined by

σF (x) :=
Vol
(
Bn(1)

)
Vol
{
(yi) ∈ Rn

∣∣ F (yi ∂
∂xi |x

)
< 1
} .

For y = yi∂/∂xi|x ∈ TxM , the S-curvature is defined by

S(y) :=
∂Gi

∂yi
(x, y)− yi

∂

∂xi

[
lnσF (x)

]
. (2.2)

For a vector y ∈ TxM0, the Riemann curvature is a family of linear transformation Ry : TxM → TxM which is
defined by Ry(u) := Ri

k(y)u
k∂/∂xi, where

Ri
k = 2

∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
. (2.3)

The family R := {Ry}y∈TM0
is called the Riemann curvature. Let us put

Ri
j kl :=

1

3

{ ∂2Ri
k

∂yj∂yl
− ∂2Ri

l

∂yj∂yk

}
. (2.4)

Then

Ri
k = Ri

j kly
jyl. (2.5)

Therefore Ri
k is quadratic in y ∈ TxM if and only if Ri

j kl are functions of position alone.

Let (M,F ) be an n-dimensional Finsler manifold. Put

Ric :=

n∑
i=1

gij
(
Ry(bi), bj

)
,

where {bi} is a basis for TxM . Ric is a well-defined scalar function on TM0. We call Ric the Ricci curvature. In a
local coordinate system,

Ric = gijRij = Rm
m.

3. Proof of Theorem 1.1

Let G be a smooth n-dimensional connected Lie group endowed with a Riemannian metric α = aijdx
i ⊗ dxj . We

denote the inverse of (aij) by (aij). It is well-known that the Riemannian metric α induces the musical bijection
between 1-forms and vector fields on G, which is denoted by ♭ : TpG −→ T ∗

pG and given by v −→ αp(v,−). The

inverse of ♭ is denoted by ♯ : T ∗
pG −→ TpG. Suppose that β = bidx

i is a 1-form on G, in which we have used Einstein’s

convention for summation. Then β♯ = bi∂/∂xi, where bi = aijbj . Consider β such that ∥β∥α :=
√

aijbibj < 1. In this
case, one can define a Randers metric F on G which is defined as follows

F (p, v) = α(p, v) + β(p, v), ∀p ∈ M , ∀v ∈ TpM .

where we have

α(p, v) =
√
aijvivj , β(p, v) = (β♯)♭(v) = αp(β

♯, v),

Put

rij :=
1

2
(bi|j + bj|i) , sij :=

1

2
(bi|j − bj|i),

ri := bmrim, si := bmsim, ri0 := rijy
j , si0 := sijy

j , r0 := rjy
j , s0 := sjy

j .

where “|” denotes the covariant derivative with respect to the Levi-Civita connection of α. We define the following
two 1-forms

s̃ = sidx
i, r̃ = ridx

i.
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Then for every vector field X on G, we have

s̃(X) = dβ(X,β♯) = X · β(β♯)− β♯.β(X)− β([X,β♯])

= X.α(β♯, β♯)− β♯.α(β♯, X)− α([X,β♯], β♯). (3.1)

r(X,Y ) = rijX
iY j = (£β♯α)(X,Y ) = β♯.α(X,Y )− α([β♯, X], Y )− α(X, [β♯, Y ]), (3.2)

where £β♯ denotes the Lie derivative along β♯.
Moreover, for every vector field X on G, we have

r̃(X) = (£β♯α)(X,β♯) = β♯.α(X,β♯)− α([β♯, X], β♯). (3.3)

Hence

r̃(X) + s̃(X) = X · α(β♯, β♯). (3.4)

It follows from (3.4), the norm of β with respect to α is constant if and only if ri + si = 0.
A vector field X on a Lie group G is said to be left-invariant if it is invariant under every left translation of G.

Similarly, a Riemannian metric α on G is called left-invariant if every left translation of G is an isometry of α. Suppose
that X and β♯ are left-invariant vector fields, and α is left-invariant Riemannian metric. Then, it is well known that
α(β♯, β♯) and α(β♯, X) are constant functions. Thus, from (3.1) and (3.3), we have

s̃(X) = −α([X,β♯], β♯), r̃(X) = α([X,β♯], β♯). (3.5)

Let us define

tij := simsmj , tj := bitij = smsmj .

In [13], Li-Shen characterized Ricci-quadratic Randers metrics and proved the following.

Theorem 3.1. ([13]) Let F = α+β be a Randers metric on an n-dimensional manifold M . Then F is Ricci-quadratic
if and only if the following hold

e00 = 2c(α2 − β2), (3.6)

sk0|k = (n− 1)A0, (3.7)

where c = c(x) is a scalar function on M , ck := cxk , A0 := Aky
k and Ak := 2csk + c2bk + tk + 1/2ck. In this case

Ric = Ric− 2t00 − tkkα
2 + (n− 1)Ψ0, (3.8)

where Ψ0 := Ψky
k and Ψk := 3c2yk − c2βbk + 2βck − c0bk + s0sk + 2s0|k − sk|0 − 6csk0.

Let G be a connected Lie group, g = TeG its Lie algebra identified with the tangent space at the identity element.
Suppose ⟨ , ⟩ is an inner product on g and α is the left Riemannian metric induced by ⟨ , ⟩ on G, i.e.,

αp(u, v) =
〈
(Lp−1)∗p(u), (Lp−1)∗p(v)

〉
.

Suppose U is a non-zero vector in g and β♯ is the left-invariant vector field induced by U on G, i.e.,

β♯(p) = (Lp)∗e
(U).

It is easy to see that on the Lie algebra g the relation (3.5) becomes

s̃(X) = ⟨[U,X], U⟩, r(X,Y ) = −⟨[U,X], Y ⟩ − ⟨X, [U, Y ]⟩, ∀X,Y ∈ g.

The relation (3.6) is equivalent to this fact that for all X,Y ∈ g the following holds〈
[U,X], Y

〉
+
〈
X, [U, Y ]

〉
−
〈
[U,X], U

〉〈
U, Y

〉
−
〈
[U, Y ], U

〉〈
U,X

〉
= −2c

(〈
X,Y

〉
−
〈
U,X

〉〈
U, Y

〉)
. (3.9)

By Ming’s paper [27], we have c = 0. Hence, for all X,Y ∈ g the following holds〈
[U,X], Y

〉
+
〈
X, [U, Y ]

〉
−
〈
[U,X], U

〉
⟨U, Y ⟩ −

〈
[U, Y ], U

〉
⟨U,X⟩ = 0. (3.10)

Now, we are ready to characterize Ricci-quadratic left-invariant Randers metrics.
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Proof of Theorem 1.1: Suppose that “|” denotes the covariant derivative with respect to the Levi-Civita connec-
tion of α. Let us express sij|k in the index-free form. It is easy to see that sij|k are the components of the following

∇dβ(X,Y, Z) (3.11)

where X, Y , and Z are arbitrary vector fields on G. It is easy to see that ∇dβ is left-invariant [11]. On the other
hand, we have

∇dβ(X,Y, Z) := (∇Xdβ)(Y, Z) = X.dβ(Y, Z)− dβ(∇XY, Z)− dβ(Y,∇XZ). (3.12)

Now, suppose that X, Y , and Z are left-invariant vector fields. Thus, we have

X.dβ(Y, Z) = 0.

From β♯ = U , it follows

dβ(∇XY,Z) = (∇XY ).α(U,Z)− Z.α(U,∇XY )− α(U, [∇XY,Z])

= −α(U, [∇XY,Z]). (3.13)

Similarly,

dβ(Y,∇XZ) = Y.α(U,∇XZ)− (∇XZ).α(U, Y )− α(U, [Y,∇XZ])

= −α(U, [Y,∇XZ]). (3.14)

Therefore, one can see that for any left-invariant vector fields X, Y , and Z the following holds

∇dβ(X,Y, Z) = α
(
U, [∇XY, Z] + [Y,∇XZ])

)
. (3.15)

We need to express sk0|k in the index-free form.

We know that

dβ = sijdx
i ∧ dxj ,

and we set d̂β = sijdx
j ⊗ ∂/∂xi. Then we have

α(d̂β(X), Y ) = dβ(X,Y ), ∀X,Y ∈ XL(G).

By definition, we get

dβ(X,Y ) = X.β(Y )− Y.β(X)− β([X,Y ]).

We know that X and Y are left invariant vector fields, so β(Y )and β(X) are constant functions. In this case, we
obtain

Y.β(X) = X.β(Y ) = 0

which implies that

dβ(X,Y ) = −β([X,Y ])

= −α(U, [X,Y ]). (3.16)

On the other hand, the following holds

α(d̂β(X), Y ) = dβ(X,Y ). (3.17)

By (3.16) and (3.17), we have

α(d̂β(X), Y ) = −α(U, [X,Y ])

= −α(U, ad(X)Y )

= −α((adX)∗(U), Y ).
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Since Y is arbitrary vector field, so we get

d̂β(X) = −ad∗(X)(U). (3.18)

Now, we express tij = simsmj in the index-free form.

T (X,Y ) := dβ(X, d̂β(Y ))

= α
(
d̂β(X), d̂β(Y )

)
= α

(
− ad∗(X)(U),−ad∗(Y )(U)

)
= α

(
U, ad(X)(ad∗(Y )(U)

)
,

and also we say tj = bitij in the index-free form

t̂(X) = T (β♯, X),

= dβ(β♯, d̂β(X))

= α
(
U, ad(U)(ad∗(X))(U)

)
= α

(
U, [U, (ad∗(X))(U)]

)
.

By Ming’s paper, a homogeneous Finsler space has isotropic S-curvature if and only if it has vanishing S-curvature
[27]. Hence, we have

Ak = tk.

Therefore, we have

A0 = α
(
U,
[
U, (ad∗(Fℓ))(U)

])
. (3.19)

Then, we obtain

α(∇̂dβ(X,Y ), Z) = ∇dβ(X,Y, Z),

and by (3.15) we get

∇dβ(X,Y, Z) = α
(
U, [∇XY, Z] + [Y,∇XZ]

)
,

Thus, one can deduce that

α
(
∇̂dβ(X,Y ), Z

)
= α

(
U, [∇XY,Z] + [Y,∇XZ]

)
. (3.20)

On the other hand, for every left invariant vector fields such as X,Z, the vector field ∇XZ is also left invariant. It is
easy to see that

∇XZ =
1

2

(
[X,Z]− (adX)∗Z − (adZ)∗X

)
. (3.21)

By (3.21), we can rewritten (3.20) as follows:

α(∇̂dβ(X,Y ), Z) = α
((

ad(∇XY )
)∗
(U), Z

)
+

1

2

{
α
((

adY ◦ adX
)∗
(U), Z

)
− α

((
adX ◦ (adY )∗

)
(U), Z

)
+ α

((
ad
(
(adY )∗(U)

))∗
(X), Z

)}
. (3.22)
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Since Z is an arbitrary left invariant vector field and additionally, then we have

ad(∇XY )∗(U) =
1

2

{
ad([X,Y ])∗(U)− ad(ad(X)∗Y )∗(U)− ad(ad(Y )∗X)∗(U)

}
.

and

∇̂dβ(X,Y ) =
1

2

{
ad([X,Y ])∗(U)− ad(ad(X)∗Y )∗(U)− ad(ad(Y )∗X)∗(U)

}
+

1

2

{(
adY ◦ adX

)∗
(U)−

(
adX ◦ (adY )∗

)
(U) +

(
ad
(
(adY )∗(U)

))∗
(X)

}
. (3.23)

Then sk0|k is the trace of ∇̂dβ(Fℓ,−), i.e.,

sk0|k = tr
(
∇̂dβ(Fℓ,−)

)
, (3.24)

which gives us (1.2). □
As a consequence of Theorem 1.1, one can get the following.

Corollary 3.2. Suppose that G is a 3-dimensional Lie group equipped with a left-invariant Randers metric F defined
by the underlying left-invariant Riemannian metric α and the left-invariant vector field U , i.e., F (p, v) =

√
αp(v, v)+

αp(U, v). Then, F is a Ricci-quadratic metric if and only if for any left-invariant vector fields X, Y , and Z the
following hold〈

[U,X], Y
〉
+
〈
X, [U, Y ]

〉
+
〈
[U,X], U

〉
⟨U, Y ⟩+

〈
[U, Y ], U

〉
⟨U,X⟩ = 0, (3.25)

tr
(
∇̂dβ(Fℓ,−)

)
= 0. (3.26)

For the abelian Lie groups, we have dβ = 0. Clearly (1.1) and (1.2) hold. So, one can conclude the following result.

Corollary 3.3. Any left invariant Randers metric on an abelian Lie group is Ricci-quadratic.

Remark 3.4. As an observation if U ∈ [g, g]⊥ and ad(U) is skew-adjoint with respect to α, then (1.1) and (1.2) hold.

Therefore, in this case F (p, v) =
√
αp(v, v)+αp(U, v) is Ricci-quadratic. This observation verifies Theorem 1.1 in [19].

A Randers metric F (p, v) =
√
αp(v, v) + αp(U, v) on Lie group G is said Z-Randers metric if U belongs to the

center of Lie algebra g. By this definition, we get the following result.

Corollary 3.5. Any Z-Randers metric F (p, v) =
√

αp(v, v)+αp(U, v) is Ricci-quadratic if and only if tr(∇̂dβ(Fℓ,−)) =
0 holds.

In [25], Tóth and Kovács considered the class of left invariant Randers metrics on the 3-dimensional Heisenberg
group. They gave a complete description of the Chern connection defined by a left invariant Randers metric on the 3
dimensional Heisenberg group. Here, we prove the following.

Proposition 3.6. Consider the Heisenberg group Nil with the basis {x, y, z} and the following Lie bracket

[x, y] = z, [x, z] = 0, [y, z] = 0. (3.27)

Then the Z-Randers metric F (p, v) =
√
αp(v, v) + αp(U, v) with U = z is Ricci-quadratic. In this case, the following

holds

Ric = Ric.

Proof. According to Corollary 3.5, Z-Randers metric F is Ricci-quadratic if and only if

tr
(
∇̂dβ(Fℓ,−)

)
= 0.
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We know that Fℓ is a tangent vector and at the identity element of G, i.e., e it is a linear combination of {x, y, z}.
Suppose that Fℓ = ax + by + cz, for some real constants a, b, c. By linearity of ∇̂dβ(Fℓ,−) in its first argument, we
have

∇̂dβ(Fℓ,−) = a∇̂dβ(x,−) + b∇̂dβ(y,−) + c∇̂dβ(z,−),

Thus, it is sufficient to consider ∇̂dβ(x,−), ∇̂dβ(y,−) and ∇̂dβ(z,−). Using (3.27), we easily obtain the ad and ad∗

operators for the Heisenberg group Nil as follows

ad(x) =

0 0 0
0 0 0
0 1 0

 , ad(x)∗ =

0 0 0
0 0 1
0 0 0

 , ad(y) =

 0 0 0
0 0 0
−1 0 0

 , ad(y)∗ =

0 0 −1
0 0 0
0 0 0

 (3.28)

and

ad(z) = ad(z)∗ = 0. (3.29)

By using (3.28) and (3.29), we have:

∇̂dβ(x, x) = 0, ∇̂dβ(x, y) = 0, ∇̂dβ(x, z) =
x

2
,

and consequently

∇̂dβ(x,−) =

0 0 1
2

0 0 0
0 0 0

 ,

which implies that

tr
(
∇̂dβ(x,−)

)
= 0. (3.30)

Similarly,

∇̂dβ(y,−) =

0 0 0
0 0 0
0 −1

2 0

 , ∇̂dβ(z,−) =

0 0 0
0 0 0
0 0 0

 ,

and consequently

tr
(
∇̂dβ(y,−)

)
= 0, tr

(
∇̂dβ(z,−)

)
= 0. (3.31)

Therefore tr
(
∇̂dβ(Fℓ,−)

)
= 0. This completes the proof. □

Corollary 3.7. The Heisenberg group Nil with the Z-Randers metric F (p, v) =
√
αp(v, v) +αp(U, v) with U = z and

α given in Table 1 is not an Einsteinian manifold.

Proof. According to Proposition 3.6, The Heisenberg group Nil has Z-Randers metric F and by (3.8), we have
Ric = Ric. By [15] there are directions U and V such that r(U) > 0 and r(V ) < 0. Thus F is not an Einstein
metric. □

4. Proof of Theorem 1.2

Case (i) is obvious and case (ii) is proved in Proposition 3.6. Then, we prove the statement for simple Lie group
SU(2) and the non-unimodular Lie group Gc, where 0 < µ ≤ |c| and v > 0. The other cases are similar to the
mentioned two cases. For this aim, we have to show that (3.25) and (3.26) hold.

For the simple Lie group SU(2) the (3.25) holds if µ = λ and for (3.26) we have:

ad(x) =

0 0 0
0 0 −1
0 1 0

 , ad(x)∗ =

0 0 0
0 0 1
0 −1 0

 , ad(y) =

 0 0 1
0 0 0
−1 0 0

 , ad(y)∗ =

0 0 −1
0 0 0
1 0 0

 , (4.1)
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and

ad(z) =

0 −1 0
1 0 0
0 0 0

 , ad(z)∗ =

 0 1 0
−1 0 0
0 0 0

 . (4.2)

By (4.1) and (4.2) we get

∇̂dβ(x, x) = −z, ∇̂dβ(x, y) = 0, ∇̂dβ(x, z) =
x

2
,

so

∇̂dβ(x,−) =

 0 0 1
2

0 0 0
−1 0 0

 ,

which implies that

tr
(
∇̂dβ(x,−)

)
= 0. (4.3)

Similarly,

∇̂dβ(y,−) =

0 0 0
0 0 1

2
0 −3

2 0

 , ∇̂dβ(z,−) =

0 0 0
0 0 0
0 0 0

 ,

and

tr
(
∇̂dβ(y,−)

)
= 0, tr

(
∇̂dβ(z,−)

)
= 0. (4.4)

Therefore tr
(
∇̂dβ(Fℓ,−)

)
= 0, which means (3.26) also holds.

For non-unimodular Lie group Gc, where 0 < µ ≤ |c| and v > 0, the (3.25) holds if µ = c and for (3.26), we have:

ad(x) =

0 0 0
0 0 −1
0 0 0

 , ad(x)∗ =

0 0 0
0 0 0
0 −1 0

 , ad(y) =

0 0 c
0 0 −2
0 0 0

 , ad(y)∗ =

0 0 0
0 0 0
c −2 0

 , (4.5)

and

ad(z) =

0 −c 0
1 2 0
0 0 0

 , ad(z)∗ =

 0 1 0
−c 2 0
0 0 0

 . (4.6)

By (4.1) and (4.2), we have

∇̂dβ(x, x) = 0, ∇̂dβ(x, y) = 0, ∇̂dβ(x, z) = 0.

So

∇̂dβ(x,−) =

0 0 0
0 0 0
0 0 0

 ,

which implies that tr
(
∇̂dβ(x,−)

)
= 0. Similarly,

∇̂dβ(y,−) = ∇̂dβ(z,−) =

0 0 0
0 0 0
0 0 0

 .

Thus, tr
(
∇̂dβ(y,−)

)
= 0 and tr

(
∇̂dβ(z,−)

)
= 0. Therefore tr

(
∇̂dβ(Fℓ,−)

)
= 0, and (3.26) also holds for this

case. □
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5. Applications of the Classification Theorem 1.2

The well-known Wallach Theorem in Riemannian geometry explains that the 3-sphere group SU(2), consisting of
2× 2 unitary matrices of determinant 1, is the only simply connected Lie group which admits a left invariant metric
of strictly positive sectional curvature. This motivates us to consider the Riemannian and non-Riemannian curvature
properties of the Randers metric F (p, v) =

√
αp(v, v) + αp(z, v) defined on SU(2), where it is the special case (iv) of

Theorem 1.2.

5.1. In [19], Shen showed that every R-quadratic Finsler metric on a closed manifold is a Landsberg metric. In other
words, on a compact Finsler manifolds, we have the following{

Berwald metrics
}
⊆
{
R-quadratic metrics

}
⊆
{
Landsberg metrics

}
.

On the other hand, the class of Ricci-quadratic Finsler metrics are a natural extension of the class of R-quadratic
Finsler metrics. Then, on arbitrary Finsler manifolds, the following holds{

Berwald metrics
}
⊆
{
R-quadratic metrics

}
⊆
{
Ricci-quadratic metrics

}
.

It is natural to ask if every Ricci-quadratic Finsler metric on a closed manifold is Landsbergian? We have an
example that shows this theorem is no longer true for Ricci-quadratic Finsler metrics. For this aim, let us consider
the simple Lie group SU(2) equipped with the following Randers metric

F (p, v) =
√

αp(v, v) + αp(z, v), (5.1)

where α is the Reimaninan metric introduced in Table 1. By Theorem 1.2, F is a Ricci-quadratic metric. On the
other hand, the related 1-form αp(z, .) is not parallel with respect to α which shows that F is not Berwaldian nor
Landsbergian. On the other hand, by Lemma 2.1, every Randers metric is C-reducible

Cy(u, v, w) =
1

n+1

{
Iy(u)hy(v, w) + Iy(v)hy(u,w) + Iy(w)hy(u, v)

}
, (5.2)

By taking horizontal derivation of (5.2), we get

Ly(u, v, w) =
1

n+1

{
Jy(u)hy(v, w) + Jy(v)hy(u,w) + Jy(w)hy(u, v)

}
, (5.3)

According to (5.3), a Randers metric is Lansberg metric L = 0 if and only if it is a weakly Landsberg metric J = 0.
Thus, the Randers metric (5.1) is not a weakly Landsberg metric.

5.2. As a meaningful extension of Landsberg curvature, Berwald introduced the non-Riemannian quantity called the
stretch curvature. He showed that a Finsler metric has vanishing stretch curvature if and only if the length of an
arbitrary vector is unchanged under the parallel displacement along an infinitesimal parallelogram. A Finsler metric
with vanishing stretch curvature is called stretch metric. For y ∈ TxM0, define Σy : TxM × TxM × TxM × TxM → R
by Σy(q, u, v, w) := Σ ijkl(y)q

iujvkwl, where Σijkl := Lijk||l − Lijl||k. The family Σ := {Σy}y∈TM0 is called the
stretch curvature. F is called a stretch metric if Σ = 0. It is proved that every R-quadratic metric is a stretch metric,
namely, Σ = 0 (see [24]). In [24], Tayebi-Najafi showed that every homogeneous (α, β)-metric of stretch-type is a
Berwald metric. Since the Finsler metric (5.1) is not Berwaldian then it is not a stretch metric.

5.3. In [3], Bácsó-M. Matsumoto proved that a Randers metric F = α + β is a Douglas metric if and only if β is a
closed 1-form. On the other hand, for the Randers metric (5.1) on SU(2), we have〈

[x, y], z
〉
= ⟨z, z⟩ ̸= 0.

This shows that the related 1-form of Randers metric F (p, v) =
√
αp(v, v) + αp(z, v) defined on SU(2) is not closed.

Thus F is not a Douglas metric.
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Table 1. Euclidean 3-dimensional Lie algebras.

Cases algebra structure Associated simply connected Lie group Left invariant Riemannian metric

Case 1
[x, y] = 0
[x, z] = 0
[y, z] = 0

R3

(
1 0 0

0 1 0

0 0 1

)

Case 2
[x, y] = z
[x, z] = 0
[y, z] = 0

The Heisenberg group Nil

(
γ 0 0

0 γ 0

0 0 γ

)
γ > 0

Case 3
[x, y] = 0
[x, z] = −x
[y, z] = y

The solvable Lie group Sol

(
1 0 0

0 1 0

0 0 υ

)
υ > 0

Case 4
[x, y] = 0
[x, z] = −x
[y, z] = y

The solvable Lie group Sol

(
1 1 0

1 κ 0

0 0 υ

)
κ > 1
υ > 0

Case 5
[x, y] = 0
[x, z] = y
[y, z] = −x

The solvable Lie group Ẽ0(2)

(
1 0 0

0 κ 0

0 0 υ

)
0 < κ ≤ 1
υ > 0

Case 6
[x, y] = 2z
[x, z] = −2y
[y, z] = −2x

The simple Lie group ˜PSL(2,R)

(
γ 0 0

0 κ 0

0 0 υ

)
κ ≥ υ > 0
γ > 0

Case 7
[x, y] = z
[x, z] = −y
[y, z] = x

The simple Lie group SU(2)

(
γ 0 0

0 κ 0

0 0 υ

)
γ ≥ κ ≥ υ
υ > 0

Case 8
[x, y] = 0
[x, z] = −x
[y, z] = −y

The non-unimodular Lie group GI

(
1 0 0

0 1 0

0 0 υ

)
υ > 0

Case 9
[x, y] = 0
[x, z] = −y
[y, z] = cx − 2y

The non-unimodular Lie group Gc

(
1 0 0

0 κ 0

0 0 υ

)
0 < κ ≤ |c|
υ > 0

Case 10
[x, y] = 0
[x, z] = −y
[y, z] = cx − 2y

The non-unimodular Lie group Gc

(
1 0 0

0 κ 0

0 0 υ

)
κ > 0
υ > 0
c = 0

Case 11
[x, y] = 0
[x, z] = −y
[y, z] = cx − 2y

The non-unimodular Lie group Gc

(
1 1

2
0

1
2

1 0

0 0 υ

)
υ > 0
c = 0

Case 12
[x, y] = 0
[x, z] = −y
[y, z] = cx − 2y

The non-unimodular Lie group Gc

(
1 0 0

0 κ 0

0 0 υ

)
0 < κ ≤ 1
c = 1
υ > 0

Case 13
[x, y] = 0
[x, z] = −y
[y, z] = cx − 2y

The non-unimodular Lie group Gc

(
1 γ 0

γ 1 0

0 0 υ

)
0 < κ ≤ 1
c = 1
υ > 0
0 < γ < 1

Case 14
[x, y] = 0
[x, z] = −y
[y, z] = cx − 2y

The non-unimodular Lie group Gc

(
1 1 0

1 κ 0

0 0 υ

)
0 < κ ≤ c
c > 0
υ > 0

Case 15
[x, y] = 0
[x, z] = −y
[y, z] = cx − 2y

The non-unimodular Lie group Gc

(
1 κ 0

κ 1 0

0 0 υ

)
0 < κ ≤ 1
υ > 0
γπ =

√
1 − c

5.4. Let F = F (x, y) be a Finsler metric on an open subset U ⊂ Rn. Then, F is said to be projectively flat if its
geodesics are straight line segment in U [21]. In [4], it is proved that a Randers metric F = α+ β is projectively flat
if and only if α is locally projectively flat (or constant sectional curvature) and β is closed. However, as we prove in
above, the 1-form of (5.1) is not closed. Then, the Randers metric (5.1) is not projectively flat.
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5.5. Now, we consider if the Randers metric (5.1) is of scalar flag curvature or not. Suppose that F is of scalar flag
curvature K = K(x, y). Since F has vanishing S-curvature S = 0 and dim(M) = 3, then by Akbar-Zadeh theorem we
get K = K(x). This is equal to following

Ri
j = K(x)F 2hi

j , (5.4)

where hi
j := δij−F−2yjy

i denotes the angular metric. If K = 0, then F is locally Minkowskian which is a contradiction.
Suppose that K ̸= 0. Taking the trace of (5.4) yields

Ric = 2K(x)F 2. (5.5)

On the other hand, F is Ricci-quadratic. Then the Ricci curvature of F can be written as follows

Ric = fij(x)y
iyj . (5.6)

Comparing (5.5) and (5.6) gives us

F =

√
1

2K(x)
fij(x)yiyj . (5.7)

(5.7) implies that F is Riemannian while it is impossible. Therefore, F is not of scalar flag curvature [28].

5.6. Suppose that G is a Lie group equipped with a left-invariant Randers metric F defined by the underlying left-
invariant Riemannian metric α and the left-invariant vector field U , i.e., F (x, y) =

√
αx(y, y) + αx(U, y). In [1],

Atashafrouz-Najafi proved that F is a generalized Douglas-Weyl metric if and only if for any left-invariant vector
fields X, Y , and Z the following holds

α
(
U, [∇XY, Z] + [Y,∇XZ]

)
=

1

n− 1

{
α(X,Y )

n∑
i=1

{
α
(
U, [∇XiXi, Z] + [Xi,∇XiZ]

)}}
− 1

n− 1

{
α(X,Z)

n∑
i=1

{
α
(
U, [∇XiXi, Y ] + [Xi,∇XiY ]

)}}
, (5.8)

where {X1, ..., Xn} is an orthonormal basis of the Lie algebra g = TeG. They showed that the Randers metric

F (p, v) =
√
αp(v, v) + αp(z, v) defined on SU(2) satisfies (5.8) and then it is a generalized Douglas-Weyl metric.

5.7. A Finsler metric F on a manifold M is called a generalized Berwald metric if there exists a covariant derivative ∇
on M such that the parallel translations induced by ∇ preserve the Finsler function F (see [22] and [26]). In this case,
F is called a generalized Berwald metric on M and (M,F ) is called a generalized Berwald manifold. If the covariant
derivative ∇ is also torsion-free, then F reduces to a Berwald metric. Therefore, the class of Berwald metrics belongs
to the class of generalized Berwald metrics. Now, let X and β♯ be a left-invariant vector fields and α be a left-invariant
Riemannian metric on a Lie group G. It is easy to see that α(β♯, β♯) and α(β♯, X) are constant functions. By (3.1)
and (3.3), we get

s̃(X) = −α([X,β♯], β♯), r̃(X) = α([X,β♯], β♯). (5.9)

Hence, we obtain

ri + si = 0. (5.10)

In [26], Vincze proved that a Randers metric F = α+β is a generalized Berwald metric if and only if dual vector field
β♯ is of constant Riemannian length, namely, it satisfies (5.10). Consequently, the left-invariant Randers metric (5.1)
is a generalized Berwald metric.
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5.8. Let F = α+ β be a Randers metric on an n-dimensional manifold M , where α =
√
aij(x)yiyj and β = bi(x)y

i.

Then, we have dVF = e(n+1)ρ(x)dVα, where ρ := ln
√
1− b2. The S-curvature of F is given by

S = (n+ 1)
{e00
2F

− (s0 + ρ0)
}
,

where ρ0 = ρxiyi, eij := rij + bisj + bjsi and e00 = eijy
iyj . In [20], Shen proved that a Randers metric has vanishing

S-curvature S = 0 if and only if the following hold eij = 0. In [23], Tayebi-Eslami proved that a generalized Berwald
(α, β)-metric F = αϕ(s), s = β/α, on an n-dimensional manifold M with ϕ′(0) ̸= 0 satisfies S = 0 if and only
if β is a Killing form with constant length, namely, rij = 0 and si = 0. Then, the left-invariant Randers metric

F (p, v) =
√
αp(v, v) + αp(z, v) defined on SU(2) satisfies S = 0.

Here, we give another simple argument to show that F has vanishing S-curvature. Since F is Ricci-quadratic then
it satisfies (3.6). It is proved that a Randers metric has isotropic S-curvature S = (n+ 1)cF if and only if the 1-form
β satisfies (3.6), where c = c(x) is a scalar function on M (see [6]). On the other hand, in [27] it is proved that every
homogeneous Randers metric of isotropic S-curvature has vanishing S-curvature S = 0.

Summarizing the above explanations, we conclude the following.

Proposition 5.1. The left invariant Randers metric F (p, v) =
√

αp(v, v) + αp(z, v) in (5.1) defined on SU(2) has
the following curvature properties:

(1) F is not a Landsberg metric nor weakly Landsberg metric nor stretch metric;
(2) F is a generalized Douglas-Weyl metric which is not Douglasian nor Weyl metric;
(3) F is a generalized Berwald metric which is not Berwaldian;
(4) F is not projectively flat;
(5) F satisfies S = 0;
(6) F is Ricci-quadratic but not R-quadratic.

6. Conclusion

In this paper, we have established the necessary and sufficient conditions for a left-invariant Randers metric to be
Ricci-quadratic. By combining these conditions with Ha-Bumlee’s classification of left-invariant Riemannian metrics,
we have provided a complete classification of left-invariant Ricci-quadratic Randers metrics on three-dimensional Lie
groups. As an application, we discovered a particularly interesting Ricci-quadratic Randers metric on SU(2)SU(2).
This metric exhibits notable properties: it is a generalized Berwald metric but not Berwaldian, and it is a generalized
Douglas-Weyl metric that is neither Douglasian nor a Weyl metric. These findings highlight the rich geometric structure
of left-invariant Randers metrics and contribute to a deeper understanding of their curvature properties. Our results
open up potential avenues for further research, particularly in exploring higher-dimensional cases or investigating other
special Finsler metrics with similar curvature characteristics. The interplay between Ricci-quadratic conditions and
left-invariant structures provides a promising direction for future studies in Finsler geometry and its applications.
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