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Abstract

This paper investigates the existence of multiple positive solutions for a class of singular two-point boundary value

problems defined on time scales. Utilizing Hölder’s inequality together with Krasnoselskii’s fixed point theorem
in the context of a Banach space, we establish new sufficient conditions that guarantee the existence of countably

infinite positive solutions. To demonstrate the practical applicability of our theoretical findings, we provide a

concrete example that illustrates the effectiveness of the proposed approach.
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1. Introduction

The study of dynamic systems often necessitates a framework that can encompass both continuous and discrete
behaviors. Traditional approaches rely on separate methodologies – differential equations for continuous systems and
difference equations for discrete ones. This research delves into the theory of time scales, a powerful tool that unifies
these analyses. Introduced by Stefan Hilger in 1988, time scales provide a versatile platform for modeling hybrid
systems by treating time as a non-empty, closed subset of the real numbers. This flexibility allows us to capture the
complexities of phenomena that exhibit characteristics of both continuous and discrete change. The theory of time
scales has significantly advanced our understanding of boundary value problems (BVPs) [21]. Over the past decade,
researchers have employed a diverse arsenal of mathematical techniques to investigate the existence and properties of
solutions to these problems. These techniques include fixed-point theorems, upper and lower solution methods, degree
theory, and variational methods [2–4, 10, 23, 24].

This unified framework transcends theoretical benefits, offering a powerful tool for modeling real-world phenomena
across disciplines. Its strength lies in its ability to capture systems exhibiting both continuous and discrete dynamics,
a common feature in fields like neural networks, heat transfer, and epidemiology [16, 20]. For instance, models for
insect population dynamics or disease propagation necessitate a hybrid approach to accurately represent the interplay
between continuous changes (e.g., population growth) and discrete events (e.g., birth events, transmission). The
foundational aspects of this approach have been extensively documented in the literature[6, 7].

The study of heat transfer in porous structures is important for many research and engineering applications,
including fluidized bed junctions, compact heat exchangers, chemical catalytic reactors, and high-temperature gas-
cooled reactors. These applications require powerful mathematical models that can represent the complex behavior
in porous structures. In response to these difficulties, Leibenson [14] put forward the fundamental equation:(

ϕp(w
′(z))

)′
= g
(
z, w(z), w′(z)

)
,
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where ϕp(w) = |w|p−2w, p > 1, is the p-Laplacian operator and inverse expressed as ϕq(z) = |z|q−2z and p, q satisfies
1
p +

1
q = 1. This model has been widely used in fields as diverse as filtration in porous media, hemodynamics, rheology,

and materials science, demonstrating its importance in modeling viscoplasticity and other difficult phenomena. One of
the key challenges in modeling these systems is the need for mathematical representations that capture the nonlinear
and often singular behaviors within porous media. The p-Laplacian operator has been widely used in this context
for modeling non-linear diffusion, yet it has limitations in handling certain singularities and boundary conditions,
particularly in complex geometries. This work aims to extend and refine these models to better account for these
complexities.

To address the limitations of the p-Laplacian operator, we introduce the Increasing Homeomorphism and Positive
Homomorphism Operator (IHPHO), which extends the p-Laplacian for specific values of p > 1. Unlike the standard
p-Laplacian, the IHPHO operator provides a more flexible framework for modeling highly nonlinear and singular
behavior in porous structures, offering a broader range of applications. Liang and Zhang[15] previously used the
IHPHO operator to study the existence of multiple optimal solutions for a nonlinear BVP,(

ϕ(w∆(z))
)∇

+ a(z)g
(
w(z)

)
= 0, z ∈ [0,T]T

w(0) =

m−2∑
i=1

aiw(ξi), w
∆(T) = 0.

A mapping ϕ : R → R is referred to as an increasing homeomorphism and a positive homomorphism if it satisfies the
following conditions:

(1) For all x, y ∈ R, if x ≤ y, then ϕ(x) ≤ ϕ(y) (monotonicity).
(2) Function ϕ is a continuous bijection and its inverse ϕ−1 is also continuous (homeomorphism).
(3) For all x, y ∈ [0,∞), the multiplicative property holds: ϕ(xy) = ϕ(x)ϕ(y).

Furthermore, condition (3) can be replaced by the following stronger condition:

(4) ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ R.

Remark 1.1. If conditions (1), (2), and (4) are fulfilled, then ϕ is homogeneous and corresponds to a p-Laplacian type
operator. In this case, ϕ can be expressed as

ϕ(x) = |x|p−2x, for some p > 1.

Dogan [9] studied the multiple solutions by using fixed-point index theory to the BVP,(
ϕp(w

∆(z))
)∇

+ω(z)g
(
z, w(z)

)
= 0, z ∈ [0,T]T

w(0) =

m−2∑
i=1

aiw(ξi), ϕp(w
∆(T)) =

m−2∑
i=1

biϕp(w
∆(ξi)).

In light of recent developments, we examine a dynamic BVP characterized by iterations and subject to two-point
boundary conditions, along with the influence of multiple singularities. By employing Krasnoselskii’s fixed-point
theorem within the context of Banach spaces, we establish the existence of a countable set of positive solutions to
BVP:

ϕ(w∆
2

ι̇ (z)) + ε(z)ℏι̇
(
wι̇+1(z)

)
= 0, 1 ≤ ι̇ ≤ m, z ∈ (0, 1)T

wι̇+1(z) = w1(z), z ∈ (0, 1)T,

}
(1.1)

wι̇(0)− w∆ι̇ (0) = 0, 1 ≤ ι̇ ≤ m,

wι̇(1) + w∆ι̇ (1) = 0, 1 ≤ ι̇ ≤ m,

}
(1.2)

where m ∈ N, ε(z) =
∏n

i=1 εi(z) and εi(z) ∈ Lpi

∆ ([0, 1]T) where pi ≥ 1 and for each ι̇ = 1, 2, · · · ,m, εi(z) exhibits a
singularity within

(
0, 1

2

)
T . This provides new insights into the behavior of nonlinear systems with singularities, offering

potential advancements in both theoretical and applied mathematics. Our model employs a nonlinear IHPHO acting
on the second-order delta derivative, which significantly generalizes the dynamic structure. This is in contrast to the



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-15 3

referenced works, where the differential systems involve standard second-order delta or nabla derivatives without such
operator complexity. Secondly, our boundary conditions are dynamic and coupled two-point conditions which link
both the function and its delta derivative at the endpoints in a symmetric and nontrivial manner. In contrast, the
problems in the earlier works [13, 18] involve either Dirichlet-type conditions or linear expressions involving function
values only, without incorporating derivative terms.

One specific application of these equations can be found in heat transfer in porous media, where temperature
evolution may not be continuous due to sudden changes in environmental conditions or operational modes. For
instance, consider a thermal system in a porous structure subject to periodic heating and cooling, where the process
occurs in both continuous phases (when heat flows steadily through the medium) and discrete phases (when heat is
applied in pulses or intervals).

• The time scale T could represent both discrete heating intervals (e.g., every 10 minutes when heat is applied)
and continuous cooling during non-heating periods. The time scale framework allows for the modeling of these
processes as a unified approach, combining discrete and continuous behavior.

• The function ε(z) represents the spatially varying thermal conductivity of the porous material, which could
change depending on its position within the system (e.g., different layers of the material may conduct heat
differently).

• The function ℏι̇
(
wι̇+1(z)

)
can represent an external heat source, which is applied intermittently, corresponding

to each heating cycle. This term reflects how the temperature profile is updated at each interval as the system
responds to the applied heat.

• The iterative term wι̇(z) indicates the step-by-step evolution of the temperature. Each iteration ι̇ represents
the temperature profile at a specific time step, with each new profile wι̇+1(z) depending on the previous one.
This iterative process models how the heat accumulates and spreads through the medium over successive
heating and cooling cycles.

We assume the following conditions hold throughout the paper:

(H1) The function ℏι̇ : [0,+∞) → [0,+∞) is assumed to be continuous.
(H2) We consider a sequence {zj}∞r=1 such that 0 < zj+1 < zj < 1

2 and limr→∞ zj = z∗ < 1
2 . Moreover, as t

approaches zj, εi(z) approaches +∞ for i = 1, 2, . . . , n. Additionally, there exist constants δi > 0 such that
ϕ−1(εi(z)) > δi, and εi(z) does not vanish identically on any subinterval of [0, 1]T.

2. Preliminaries

In this section, we present fundamental definitions and lemmas that will be beneficial for our subsequent discussions.
Please see [5, 6, 12, 19, 22] for additional information. A time scale T is characterized as a closed, non-empty subset
of the real numbers R. For any z < supT and r > inf T, we can define the forward jump operator σ and the backward
jump operator ρ as follows:

σ(z) = inf{τ ∈ T | τ > z}, ρ(z) = sup{τ ∈ T | τ < z}

for each z ∈ T. If σ(z) > z, we refer to z as right scattered; if σ(z) = z, it is described as right dense. In the same
vein, if ρ(z) < z, we call z left scattered, while if ρ(z) = z, it is identified as left dense.

A function f is considered left-dense continuous if it is continuous at every left-dense point within T and has
right-sided limits at each right-dense point in T.

Let’s take u : T → R and z ∈ T. The delta-derivative of u(z), denoted u∆(z), is defined as a number (if it exists)
possessing the following property: for every ϵ > 0, there exists a neighborhood U surrounding z such that for all s ∈ U :

|u(σ(z))− u(y)− u∆(z)(σ(z)− y)| ≤ ϵ|σ(z)− y|.

In a similar manner, the nabla-derivative of u(z), represented as u∇(z), is defined as a number (when it exists) that
satisfies this condition: for every ϵ > 0, there exists a neighborhood U around z such that for all y ∈ U :

|u(ρ(z))− u(y)− u∇(t)(ρ(z)− y)| ≤ ϵ|σ(z)− y|.

Lastly, we will briefly revisit some notations and an overarching existence theorem.
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Definition 2.1. [8] Let µ∆ and µ∇ represent the ∆-measure and ∇-measure, respectively, on the time scale T. A set
A ⊂ T qualifies as measurable, denoted by µ(A), if it satisfies µ∆(A) = µ∇(A). This common value is recognized as
the Lebesgue measure of A. Consider a statement P concerning an element z ∈ T:

(i) If a subset Γ1 ⊂ A exists such that µ∆(Γ1) = 0 and P holds true on A \ Γ1, we say that P holds ∆-almost
everywhere (a.e.) on A.

(ii) If a subset Γ2 ⊂ A can be found with µ∇(Γ2) = 0 such that P is valid on A \ Γ2, we claim that P holds
∇-almost everywhere (a.e.) on A.

Lemma 2.2. [1] Let {ti}i∈I , I ⊂ N, is the set of all right-scattered points of T and E ⊂ T be a ∆-measurable set. If
u : T → R is ∆-integrable on E, then∫

E

u(s)∆s =

∫
E

u(s)ds+
∑
i∈IE

(σ(ti)− ti) · f(ti) + r(u,E),

where

r(u,E) =

{
µM (E) · f(M), if M ∈ T,
0, if M /∈ T,

IE := {i ∈ I : ti ∈ E}.

Lemma 2.3. For any y(z) ∈ C([0, 1]T), the boundary value problem,

− ϕ(w∆
2

1 (z)) = y(z), z ∈ (0, 1)T, (2.1)

w1(0) = w∆1 (0), w1(1) = −w∆1 (1) (2.2)

has a unique solution

w1(z) =

∫ 1

0

Q(z, y)y(y)∆y, (2.3)

where

Q(z, y) =
1

3

{
(2− σ(y))(1 + z), if z ≤ y,

(2− z)(1 + σ(y)), if σ(y) ≤ z,
(2.4)

Proof. Suppose w1 is a solution of (2.1), then

w1(z) = −
∫ z

0

∫ y

0

ϕ−1(y(y1))∆y1∆y+Bz+ C

= −
∫ z

0

(z− σ(y))ϕ−1(y(y))∆y+Bz+ C,

where B = w∆1 (0) and C = w1(0). By the conditions (2.2), we get

B = C =
1

3

∫ 1

0

(2− σ(y))ϕ−1(y(y))∆y.

So, we have

w1(z) =

∫ z

0

(z− σ(y))ϕ−1(y(y))∆y+
1

3

∫ 1

0

(2− σ(y))(1 + z)ϕ−1(y(y))∆y

=

∫ 1

0

Q(z, y)ϕ−1(y(y))∆y.

This completes the proof. □

Lemma 2.4. Suppose (H1)-(H2) hold. For γ ∈ (0, 1
2 )T, let ℵ(γ) =

γ+ 1

2
. Then Q(z, y) have the following properties:

(i) 0 ≤ Q(z, y) ≤ Q(σ(y), y) for all z, y ∈ [0, 1]T,
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(ii) ℵ(γ)Q(y, y) ≤ Q(z, y) for all z ∈ [γ, 1− γ]T and y ∈ [0, 1]T.

Proof. (i) is evident. To prove (ii), let z ∈ [γ, 1− γ]T and z ≤ y. Then

Q(z, y)

Q(σ(y), y)
=

1 + z

1 + σ(y)
≥ 1 + γ

2
= ℵ(γ).

For σ(y) ≤ z,

Q(z, y)

Q(y, y)
=

2− z

2− σ(y)
≥ γ+ 1

2
= ℵ(γ).

This completes the proof. □

It can be observed that an m-tuple (w1(z), w2(z), w3(z), . . . , wm(z)) constitutes a solution to the BVP (1.1)–(1.2)
when

wι̇(z) =

∫ 1

0

Q(z, y)ϕ−1
(
ε(y)ℏι̇(wι̇+1(y))

)
∆y, z ∈ (0, 1)T, 1 ≤ ι̇ ≤ m,

wι̇+1(z) = w1(z), z ∈ (0, 1)T,

i.e.,

w1(z) =

∫ 1

0

Q(z, y1)ϕ
−1

[
ε(y1)ℏ1

(∫ 1

0

Q(y1, y2)ϕ
−1
[
ε(y2)ℏ2

(∫ 1

0

Q(y2, y3) · · ·

× ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
[
ε(ym)ℏm(w1(ym))

]
∆ym

)
· · ·∆y3

)
∆y2

)]
∆y1.

Definition 2.5. [11] A cone C in a Banach space A is a subset with the following properties:

• Positivity: For any element z ∈ C and any non-negative scalar γ ≥ 0, the product γz also belongs to C.
• Non-negativity: The cone does not contain any negative multiples of its elements other than zero, meaning

C ∩ (−C) = {0}. This ensures that C and its reflection about the origin only intersect at the zero vector.

Cones are essential in fixed-point theory as they introduce a structure that restricts solutions to a positive or ”non-
negative” region within the space.

Definition 2.6. [11] An operator F on a Banach space A is said to be completely continuous if:

• It is continuous, meaning small changes in input yield small changes in output.
• It maps bounded subsets of A to relatively compact subsets. In other words, the image of any bounded
set under F has a compact closure, which implies that every sequence within this image has a convergent
subsequence.

Let Y be the Banach space Crd((0, 1)T,R) with the norm ∥w∥ = max
z∈(0,1)T

|w(z)|. For γ ∈
(
0, 1

2

)
T , we define the cone

Lγ ⊂ Y as

Lγ =

{
w ∈ Y : w(z) ≥ 0 and min

z∈[γ, 1−γ]T
w(z) ≥ ℵ(γ)∥w(z)∥

}
,

For any w1 ∈ Lγ, define an operator 0 : Lγ → Y by

(0w1)(z) =

∫ 1

0

Q(z, y1)ϕ
−1

[
ε(y1)ℏ1

(∫ 1

0

Q(y1, y2)ϕ
−1
[
ε(y2)ℏ2

(∫ 1

0

Q(y2, y3) · · ·

× ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
[
ε(ym)ℏm(w1(ym))

]
∆ym

)
· · ·∆y3

)
∆y2

)]
∆y1.

Lemma 2.7. Let (H1) and (H2) be assumed to hold. For every γ ∈
(
0, 1

2

)
T ,0(Lγ) ⊆ Lγ, and the mapping 0 : Lγ →

Lγ is completely continuous.
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Proof. It is evident Q(z, y) ≥ 0 for all z, y ∈ (0, 1)T from Lemma 2.4. So, (0w1)(z) ≥ 0. Let w1 ∈ Lγ. Then

∥0w1∥ = max
z∈(0,1)T

∫ 1

0

Q(z, y1)ϕ
−1

[
ε(y1)ℏ1

(∫ 1

0

Q(y1, y2)ϕ
−1
[
ε(y2)ℏ2

(∫ 1

0

Q(y2, y3) · · ·

× ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
[
ε(ym)ℏm(w1(ym))

]
∆ym

)
· · ·∆y3

)
∆y2

)]
∆y1

≤
∫ 1

0

Q(σ(y1), y1)ϕ
−1

[
ε(y1)ℏ1

(∫ 1

0

Q(y1, y2)ϕ
−1
[
ε(y2)ℏ2

(∫ 1

0

Q(y2, y3) · · ·

× ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
[
ε(ym)ℏm(w1(ym))

]
∆ym

)
· · ·∆y3

)
∆y2

)]
∆y1.

From Lemma 2.4, we can deduce that

min
z∈[γ,1−γ]T

{
(0w1)(z)

}
≥ ℵ(γ)

∫ 1

0

Q(σ(y1), y1)ϕ
−1

[
ε(y1)ℏ1

(∫ 1

0

Q(y1, y2)ϕ
−1
[
ε(y2)ℏ2 · · ·

× ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
[
ε(ym)ℏm(w1(ym))

]
∆ym

)
· · ·∆y3

)
∆y2

)]
∆y1.

From the inequalities above, it follows that

min
z∈[γ,1−γ]T

{
(0w1)(z)

}
≥ ℵ(γ)∥0w1∥.

Thus, we conclude 0w1 ∈ Lγ, implying 0(Lγ) ⊆ Lγ. Moreover, utilizing standard techniques and the Arzelà-Ascoli
theorem, one can easily show that 0 is completely continuous. This affirms the conclusion. □

3. Main Results

We will employ the following theorems to prove the existence of countable set of positive solutions for the iterative
system defined by BVP (1)-(2).

Theorem 3.1 (Krasnoselskii Fixed Point Theorem on a Cone). [11] Let A be a real Banach space, and let C ⊂ A be a
cone in A. Suppose V1 and V2 are bounded open subsets of A with 0 ∈ V1 ⊂ V1 ⊂ V2. Assume there exists an operator

F : C ∩ (V2 \ V1) → C

that is completely continuous.
The theorem states that if the following two conditions hold:

• Condition 1: For each z ∈ C ∩ ∂V1, we have

∥F (z)∥ ≥ ∥z∥.
• Condition 2: For each z ∈ C ∩ ∂V2, we have

∥F (z)∥ ≤ ∥z∥.
Then, there exists a point z ∈ C ∩ (V2 \ V1) such that

F (z) = z.

Theorem 3.2. [7, 17] Let u be a function in Lp
∇(J) for p > 1, and let v be in Lq

∆(J) with q > 1, satisfying the relation
1
p + 1

q = 1. Then the product uv belongs to L1
∆(J), and the following inequality holds:

∥uv∥L1
∆
≤ ∥u∥Lp

∆
∥v∥Lq

∆
,

where

∥u∥Lp
∆
:=


[∫

J

|u(s)|p∆s

] 1
p

, if p ∈ R,

inf {M ∈ R | |u| ≤ M ∆-almost everywhere on J} , if p = ∞.
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Here, J = [a, b)T.

Theorem 3.3. (Hölder’s Inequality [5]) Let θi belong to Lpi

∆ (J) with pi > 1 for i = 1, 2, . . . , n, and suppose that∑n
i=1

1
pi

= 1. Then the product
∏n

i=1 θi is an element of L1
∆(J), and the following inequality is valid:∥∥∥∥∥

n∏
i=1

θi

∥∥∥∥∥
1

≤
n∏

i=1

∥θi∥pi .

Moreover, if u ∈ L1
∆(J) and v ∈ L∞

∆ (J), then their product uv is in L1
∆(J), and the inequality holds:

∥uv∥1 ≤ ∥u∥1∥v∥∞.

Three cases for εi ∈ Lpi

∆ (0, 1)T are as follows:

n∑
i=1

1

pi
< 1,

n∑
i=1

1

pi
= 1,

n∑
i=1

1

pi
> 1.

Firstly, we seek countably many positive solutions for the case
n∑

i=1

1

pi
< 1.

Theorem 3.4. Assume (H1)–(H3) hold and the sequence {γj}∞r=1 satisfies zj+1 < γj < zj. Let {χ
j
}∞r=1 and {λj}∞r=1

be such that

χ
j+1

< ℵ(γj)λj < λj < κλj < χ
j
, r ∈ N,

where

κ = max

{[
ℵ(γ1)

n∏
i=1

δi

∫ 1−γ1

γ1

Q(y, y)∆y

]−1

, 1

}
.

Assume that ℏι̇ satisfies

(C1) ℏι̇(w) ≤ ϕ
(
L1χj

)
∀ z ∈ (0, 1)T, 0 ≤ w ≤ χ

j
,

where

L1 <

[
∥Q∥Lq

∆

n∏
i=1

∥∥ϕ−1(εi)
∥∥
L

pi
∆

]−1

,

(C2) ℏι̇(w) ≥ κλj ∀ z ∈ [γj, 1− γj]T, ℵ(γj)λj ≤ w ≤ λj.

The iterative boundary value problem (1.1)-(1.2) then has a countable set of solutions {(w[r]
1 ,w

[r]
2 , . . . ,w

[r]
m )}∞r=1 such

that w
[r]
ι̇ (z) ≥ 0 on (0, 1)T for ι̇ = 1, 2, . . . ,m and r ∈ N.

Proof. Let M1,r = {w ∈ Y : ∥w∥ < χr}, M2,r = {w ∈ Y : ∥w∥ < λj} be open subsets of the space Y. Consider the
sequence {γj}∞r=1 given in the hypothesis, where it is noted that

z∗ < zj+1 < γj < zj <
1

2

for all integers r ∈ N. For each natural number r, define the cone Lγj
by

Lγj
=
{
w ∈ Y : w(z) ≥ 0, min

z∈[γj, 1−γj]T
w(z) ≥ ℵ(γj)∥w(z)∥

}
.
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Let w1 ∈ Lγj
∩ ∂M1,r. Then, w1(y) ≤ χ

j
= ∥w1∥ for all y ∈ (0, 1)T. By (C1) and for ym−1 ∈ (0, 1)T, we have∫ 1

0

Q(ym−1, ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym ≤

∫ 1

0

Q(σ(ym), ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym

≤ L1χj

∫ 1

0

Q(σ(ym), ym)ϕ−1

(
n∏

i=1

εi(ym)

)
∆ym

≤ L1χj

∫ 1

0

Q(σ(ym), ym)
n∏

i=1

ϕ−1(εi(ym))∆ym.

We can find a value q greater than 1 such that

1

q
+

n∑
i=1

1

pi
= 1.

Consequently, it follows that∫ 1

0

Q(ym−1, ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym ≤ L1χj

∥∥Q∥∥
Lq

∆

∥∥∥∥∥
n∏

i=1

ϕ−1(εi)

∥∥∥∥∥
L

pi
∆

≤ L1χj
∥Q∥Lq

∆

n∏
i=1

∥∥ϕ−1(εi)
∥∥
L

pi
∆

≤ χ
j
.

In a comparable way, for ym−2 ∈ (0, 1)T, we conclude∫ 1

0

Q(ym−2, ym−1)ϕ
−1

(
ε(ym−1)ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym

))
∆ym−1

≤
∫ 1

0

Q(ym−2, ym−1)ϕ
−1
(
ε(ym−1)ℏm−1(χj

)
)
∆ym−1

≤
∫ 1

0

Q(σ(ym−1), ym−1)ϕ
−1
(
ε(ym−1)ℏm−1(χj

)
)
∆ym−1

≤ L1χj

∫ 1

0

Q(σ(ym−1), ym−1)ϕ
−1

( n∏
i=1

εi(ym−1)

)
∆ym−1

≤ L1χj

∫ 1

0

Q(σ(ym−1), ym−1)

n∏
i=1

ϕ−1(εi(ym−1))∆ym−1

≤ L1χj
∥Q∥Lq

∆

n∏
i=1

∥∥ϕ−1(εi)
∥∥
L

pi
∆

≤ χ
j
.

Proceeding further with the bootstrapping technique, we obtain

(0w1)(z) =

∫ 1

0

Q(z, y1)ϕ
−1

[
ε(y1)ℏ1

(∫ 1

0

Q(y1, y2)ϕ
−1
[
ε(y2)ℏ2

(∫ 1

0

Q(y2, y3) · · ·

×ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
[
ε(ym)ℏm(w1(ym))

]
∆ym

)
· · ·∆y3

)
∆y2

)]
∆y1

≤χ
j
.

Since χ
j
= ∥w1∥ for w1 ∈ Lγj

∩ ∂M1,r, we get

∥0w1∥ ≤ ∥w1∥. (3.1)
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Let z ∈ [γj, 1− γj]T. Then,

λj = ∥w1∥ ≥ w1(z) ≥ min
z∈[γj,1−γj]T

w1(z) ≥ ℵ(γj) ∥w1∥ ≥ ℵ(γj)λj.

By (C2) and for ym−1 ∈ [γj, 1− γj]T, we have∫ 1

0

Q(ym−1, ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym ≥

∫ 1−γj

γj

Q(ym−1, ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym

≥ ℵ(γj)κλj

∫ 1−γj

γj

Q(σ(ym), ym)ϕ−1(ε(ym))∆ym

≥ ℵ(γj)κλj

∫ 1−γj

γj

Q(σ(ym), ym)
n∏

i=1

ϕ−1(εi(ym)
)
∆ym

≥ ℵ(γ1)κλj

n∏
i=1

δi

∫ 1−γ1

γ1

Q(σ(ym), ym)∆ym

≥ λj.

Proceeding further with the bootstrapping technique, we obtain

(0w1)(z) =

∫ 1

0

Q(z, y1)ϕ
−1

[
ε(y1)ℏ1

(∫ 1

0

Q(y1, y2)ϕ
−1
[
ε(y2)ℏ2

(∫ 1

0

Q(y2, y3) · · ·

×ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
[
ε(ym)ℏm(w1(ym))

]
∆ym

)
· · ·∆y3

)
∆y2

)]
∆y1

≥ λj.

Thus, if w1 ∈ Lγj
∩ ∂L2,r, then

∥0w1∥ ≥ ∥w1∥. (3.2)

It is clear that 0 ∈ M2,k ⊂ M2,k ⊂ M1,k. From equations (3.4) and (3.2), Theorem 3.1 implies that the mapping 0

possesses a fixed point w
[r]
1 ∈ Lγj

∩
(
M1,r\M2,r

)
such that w

[r]
1 (z) ≥ 0 for (0, 1)T, r ∈ N. Subsequently, by defining

wm+1 = w1, we derive countably many positive solutions {(w[r]1 , w
[r]
2 , . . . , w

[r]
m )}∞r=1 of (1.1)-(1.2) obtained as

wι̇(z) =

∫ 1

0

Q(z, y)ϕ−1
(
ε(y)ℏι̇(wι̇+1(y))

)
∆y, z ∈ (0, 1)T, ι̇ = m,m− 1, · · ·, 1.

The proof is completed. □

For the condition
n∑

i=1

1

pi
= 1, the following theorem can be stated.

Theorem 3.5. Assume that conditions (H1) through (H3) are satisfied. Let {γj}∞r=1 represent a sequence where γj

lies in the interval (zj+1, zj). Furthermore, let the sequences {χ
j
}∞j=1 and {λj}∞j=1 be defined as

χ
j+1

< ℵ(γj)λj < λj < κλj < χ
j
, r ∈ N,

where

κ = max

{[
ℵ(γ1)

n∏
i=1

δi

∫ 1−γ1

γ1

Q(y, y)∆y

]−1

, 1

}
.

Assume that ℏι̇ satisfies (C2) and
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(C3) ℏj(w) ≤ ϕ(L2χj
) ∀ z ∈ (0, 1)T, 0 ≤ w ≤ χ

j
, where

L2 < min


[
∥Q∥L∞

∆

n∏
i=1

∥∥ϕ−1(εi)
∥∥
L

pi
∆

]−1

, κ

 .

The iterative boundary value problem (1.1)-(1.2) possesses a countable collection of solutions {(w[r]
1 ,w

[r]
2 , . . . ,w

[r]
m )}∞r=1

with w
[r]
ι̇ (z) ≥ 0 for (0, 1)T, where ι̇ = 1, 2, . . . ,m and r ∈ N.

Proof. For a given r, let M1,r be defined as outlined in the demonstration of Theorem 3.4 and consider w1 ∈ Lγj
∩∂M2,r.

Again
w1(y) ≤ χ

j
= ∥w1∥,

for all y ∈ (0, 1)T. By (C3) and for ym−1 ∈ (0, 1)T, we have∫ 1

0

Q(ym−1, ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym ≤

∫ 1

0

Q(σ(ym), ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym

≤ L2χj

∫ 1

0

Q(σ(ym), ym)ϕ−1

(
n∏

i=1

εi(ym)

)
∆ym

≤ L2χj

∫ 1

0

Q(σ(ym), ym)
n∏

i=1

ϕ−1(εi(ym))∆ym

≤ L2χj

∥∥Q∥∥
L∞

∆

∥∥∥∥∥
n∏

i=1

ϕ−1(εi)

∥∥∥∥∥
L

pi
∆

≤ L2χj
∥Q∥L∞

∆

n∏
i=1

∥∥ϕ−1(εi)
∥∥
L

pi
∆

≤ χ
j
.

By a comparable reasoning, for ym−2 ∈ [0, 1]T, it can be derived that∫ 1

0

Q(ym−2, ym−1)ϕ
−1

(
ε(ym−1)ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym

))
∆ym−1

≤
∫ 1

0

Q(ym−2, ym−1)ϕ
−1
(
ε(ym−1)ℏm−1(χj

)
)
∆ym−1

≤
∫ 1

0

Q(σ(ym−1), ym−1)ϕ
−1
(
ε(ym−1)ℏm−1(χj

)
)
∆ym−1

≤ L2χj

∫ 1

0

Q(σ(ym−1), ym−1)ϕ
−1

( n∏
i=1

εi(ym−1)

)
∆ym−1

≤ L2χj

∫ 1

0

Q(σ(ym−1), ym−1)
n∏

i=1

ϕ−1(εi(ym−1))∆ym−1

≤ L2χj
∥Q∥L∞

∆

n∏
i=1

∥∥ϕ−1(εi)
∥∥
L

pi
∆

≤ χ
j

Proceeding further with the bootstrapping technique, we obtain

(0w1)(z) =

∫ 1

0

Q(z, y1)ϕ
−1

[
ε(y1)ℏ1

(∫ 1

0

Q(y1, y2)ϕ
−1
[
ε(y2)ℏ2

(∫ 1

0

Q(y2, y3) · · ·

×ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
[
ε(ym)ℏm(w1(ym))

]
∆ym

)
· · ·∆y3

)
∆y2

)]
∆y1

≤χ
j
.
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Given that χ
j
= ∥w1∥ for w1 ∈ Lγj

∩ ∂M1,r, so

∥0w1∥ ≤ ∥w1∥. (3.3)

Next, define M2,r = {w1 ∈ Y : ∥w1∥ < λj}. Let w1 ∈ Lγj
∩ ∂M2,r and let y ∈ [γj, 1 − γj]T. The reasoning that leads to

(3.2) can be applied here as well. Therefore, the theorem is established. □

Finally, consider the scenario where
n∑

i=1

1

pi
> 1.

Theorem 3.6. Assume that conditions (H1) through (H3) are satisfied. Let {γj}∞r=1 denote a sequence such that
γj ∈ (zj+1, zj). Furthermore, let the sequences {χ

j
}∞r=1 and {λj}∞r=1 be defined such that

χ
j+1 < ℵ(γj)λj < λj < κλj < χ

j
, r ∈ N,

where

κ = max

{[
ℵ(γ1)

n∏
i=1

δi

∫ 1−γ1

γ1

Q(y, y)∆y

]−1

, 1

}
.

Assume that ℏι̇ satisfies (C2) and

(C4) ℏj(w) ≤ ϕ(L3χj
) ∀ z ∈ (0, 1)T, 0 ≤ w ≤ χ

j
,

where

L3 < min


[
∥Q∥L∞

∆

n∏
i=1

∥∥ϕ−1(εi)
∥∥
L1

∆

]−1

, κ

 .

The BVP (1.1)-(1.2) yields a countably infinite collection of solutions {(w[r]
1 ,w

[r]
2 , . . . ,w

[r]
m )}∞r=1 such that w

[r]
ι̇ (z) ≥ 0

on (0, 1)T for ι̇ = 1, 2, . . . ,m and r ∈ N.

Proof. For a given r, define M1,r as stated in the proof of Theorem 3.4, and consider w1 ∈ Lγj
∩ ∂M2,r. Again

w1(y) ≤ χ
j
= ∥w1∥,

for all y ∈ (0, 1)T. By (C3) and for ym−1 ∈ (0, 1)T, we have∫ 1

0

Q(ym−1, ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym ≤

∫ 1

0

Q(σ(ym), ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym

≤ L3χj

∫ 1

0

Q(σ(ym), ym)ϕ−1

(
n∏

i=1

εi(ym)

)
∆ym

≤ L3χj

∫ 1

0

Q(σ(ym), ym)
n∏

i=1

ϕ−1(εi(ym))∆ym

≤ L3χj

∥∥Q∥∥
L∞

∆

∥∥∥∥∥
n∏

i=1

ϕ−1(εi)

∥∥∥∥∥
L1

∆

≤ L3χj
∥Q∥L∞

∆

n∏
i=1

∥∥ϕ−1(εi)
∥∥
L1

∆

≤ χ
j
.
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By a comparable reasoning, for ym−2 ∈ [0, 1]T, it can be derived that∫ 1

0

Q(ym−2, ym−1)ϕ
−1

(
ε(ym−1)ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
(
ε(ym)ℏm(w1(ym))

)
∆ym

))
∆ym−1

≤
∫ 1

0

Q(ym−2, ym−1)ϕ
−1
(
ε(ym−1)ℏm−1(χj

)
)
∆ym−1

≤
∫ 1

0

Q(σ(ym−1), ym−1)ϕ
−1
(
ε(ym−1)ℏm−1(χj

)
)
∆ym−1

≤ L3χj

∫ 1

0

Q(σ(ym−1), ym−1)ϕ
−1

( n∏
i=1

εi(ym−1)

)
∆ym−1

≤ L3χj

∫ 1

0

Q(σ(ym−1), ym−1)
n∏

i=1

ϕ−1(εi(ym−1))∆ym−1

≤ L3χj
∥Q∥L∞

∆

n∏
i=1

∥∥ϕ−1(εi)
∥∥
L1

∆

≤ χ
j

Proceeding further with the bootstrapping technique, we obtain

(0w1)(z) =

∫ 1

0

Q(z, y1)ϕ
−1

[
ε(y1)ℏ1

(∫ 1

0

Q(y1, y2)ϕ
−1
[
ε(y2)ℏ2

(∫ 1

0

Q(y2, y3) · · ·

×ℏm−1

(∫ 1

0

Q(ym−1, ym)ϕ−1
[
ε(ym)ℏm(w1(ym))

]
∆ym

)
· · ·∆y3

)
∆y2

)]
∆y1

≤χ
j
.

Given that χ
j
= ∥w1∥ for w1 ∈ Lγj

∩ ∂M1,r, so

∥0w1∥ ≤ ∥w1∥. (3.4)

Next, let us define M2,r = {w1 ∈ Y : ∥w1∥ < λj}. Consider w1 ∈ Lγj
∩ ∂M2,r and let y ∈ [γj, 1 − γj]T. The reasoning

that leads to (3.2) can be applied in this situation as well. Therefore, the theorem is concluded. □

4. Examples

In order to validate the theoretical findings, we present an example of a boundary value problem on the interval
T = [0, 1].

Example 4.1.{
ϕ
(
w∆

2

ι̇ (z)
)
+ ε(z)ℏι̇(wι̇+1(z)) = 0, ι̇ = 1, 2,

w3(z) = w1(z),
(4.1)

{
wι̇(0)− w′ι̇(0) = 0,

wι̇(1) + w′ι̇(1) = 0,
(4.2)

where ϕ(z) = z3

1+z2
, if z ≤ 0 and ϕ(z) = z2, otherwise, and let

ε(z) = ε1(z) =
1

|z− 1
4 |

1
2

,
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

ℏ1(w) = ℏ2(w) = 21
20 × 10−4, w ∈ (10−4,+∞),

44×10−(4r+3)− 21
20×10−4r

10−(4r+3)−10−4r (w− 10−4r) + 21
20 × 10−8r, w ∈

[
10−(4r+3), 10−4r

]
,

44× 10−(4r+3), w ∈
(

21
20 × 10−(4r+3), 10−(4r+3)

)
,

44×10−(4r+3)− 21
20×10−8r

21
20×10−(4r+3)−10−(4r+4) (w− 10−(4r+4)) + 21

20 × 10−8r, w ∈
(
10−(4r+4), 21

20 × 10−(4r+3)

]
,

0, w = 0,

Let

zj =
16

33
−

r∑
k=1

1

2(k + 1)4
, γj =

1

2
(zj + zj+1), r = 1, 2, 3, · · · ,

then

γ1 =
12845

28512
, zj+1 < γj < zj, γj >

1

2
.

Therefore,

ℵ(γj) =
γj + 1

2
>

1

2
, r = 1, 2, 3, · · · .

It is clear that

z1 =
479

1056
<

1

2
.

Since
∞∑
x=1

1

x4
=

π4

90
and

∞∑
x=1

1

x2
=

π2

6
, it follows that

z∗ = lim
r→∞

zj =
16

33
−

∞∑
k=1

1

2(r + 1)4
=

65

66
− π4

180
= 0.4436868677,

ϕ−1(ε1) ∈ Lp[0, 1] for all 0 < p < 2, and δ1 =
1√
3
,

ℵ(γ1) =
γ1 + 1

2
= 0.7252560326.∫ 1−γ1

γ1

Q(σ(y), y)∆y =

∫ 1− 12845
28512

12845
28512

(2− σ(y))(1 + σ(y))

3
dy

=

∫ 1− 12845
28512

12845
28512

(1− y)(2 + y)

3
dy

=0.05481140313.

Thus, we get

κ = max

{[
ℵ(γ1)

n∏
i=1

δi

∫ 1−γ1

γ1

Q(σ(y), y)∇y

]−1

, 1

}
= max

{
1

0.02295100154
, 1

}
= 43.57108330.

Next, let 0 < a < 1 be fixed. Then ε1 ∈ L1+a[0, 1] and

n∏
i=1

∥∥ϕ−1(εi)
∥∥
1+a

=

[
1

3− a

(
3

3−a
4 + 1

)
2

1+a
2

] 1
1+a

.
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and also ∥Q∥∞ = 5
9 . So, for 0 < a < 1, we have

1.089000601 ≤

[
∥Q∥∞

n∏
i=1

∥∥ϕ−1(εi)
∥∥
L

pi
∆

]−1

≤ 1.164314195.

Taking L1 = 27
25 . In addition if we take

χ
j
= 10−4r, λj = 10−(4r+3),

then

χ
j+1 = 10−(4r+4) <

1

2
× 10−(4r+3) < ℵ(γj)λj

< λj = 10−(4r+3) < χ
j
= 10−4r,

κλj = 43.57108330×10−(4r+3) < 27
25×10−4r = L1χj

, r = 1, 2, 3, · · · , and ℏ1, ℏ2 satisfies the following growth conditions:

ℏ1(w) = ℏ2(w) ≤L1χj
=

27

25
× 10−4r, w ∈

[
0, 10−4r

]
ℏ1(w) = ℏ2(w) ≥κλj = 43.57108330× 10−(4r+3), w ∈

[
27

25
× 10−(4r+3), 10−(4r+3)

]
.

Thus, all the requirements of Theorem 3.4 are met. Consequently, according to Theorem 3.4, the iterative boundary

value problem (1.1) possesses countably many solutions {(w[r]1 , w
[r]
2 )}∞r=1 such that w

[r]
ι̇ (z) ≥ 0 on [0, 1], where ι̇ = 1, 2

and r ∈ N.

5. Conclusion and Future Work

This paper presents a dynamic model for heat transfer in porous media using the Increasing Homeomorphic and
Positive Homomorphism Operator (IHPHO) on time scales. The proposed model captures both continuous and discrete
thermal processes, providing a unified approach for temperature evolution in systems like thermal storage and cyclic
heat exchangers. The iterative process efficiently describes how heat accumulates and spreads over successive cycles,
making the model applicable to real-world engineering problems. Future research could focus on:

• Developing numerical methods for solving the model and simulating real-world applications.
• Extending the framework to handle nonlinear heat sources and more complex thermal behaviors.
• Exploring the model’s application in optimizing energy systems and heat exchanger designs.

This work sets the foundation for more advanced modeling of heat transfer in porous structures and opens avenues
for further improvements and practical applications.
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