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Abstract

In this paper, we employ the generalized exp(−ψ(ξ))-expansion approach to derive analytical solutions for three
specific cases of the generalized seventh-order KdV equation: the seventh-order Sawada-Kotera-Ito equation, the

seventh-order Lax equation, and the seventh-order Kaup-Kupershmidt equation. These equations hold significant

importance in the nonlinear sciences. By utilizing this approach, we obtain a variety of new exact traveling wave
solutions for the aforementioned nonlinear models. Moreover, we showcase 2D, 3D, contour plots, and density

plots to acquire comprehensive representations, using cutting-edge scientific instruments. Our results confirm the

effectiveness and practicality of the proposed method in solving the aforementioned problems, as well as other
nonlinear evolution equations encountered in the domains of engineering and mathematical physics.

Keywords. Generalized exp(−ψ(ξ))-expansion method, gsKdV equation, Nonlinear evolution equation, Traveling wave solution, Bright soliton

solution.
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1. Introduction

Nonlinear evolution equations (NLEEs) are extensively used for describing the evolution of nonlinear wave phenom-
ena in various applied scientific fields, particularly in shallow water theory. To comprehend the physical mechanisms
governed by NLEEs, it is crucial to explore exact traveling wave solutions.

Traveling wave solutions play a significant role in understanding the qualitative properties of diverse phenomena
and processes in applied sciences and engineering. They enable researchers to design experiments and create suitable
natural conditions for studying these phenomena.

Consequently, the search for exact solutions has become a fundamental and important task in studying nonlinear
physical phenomena. Several techniques have been proposed by mathematicians and physicists [1, 4, 6, 7, 9, 10, 12, 14–
24, 26], among others.

Each method has its own advantages and disadvantages, and there is no standardized and universally effective
method capable of solving all types of NLEEs. Therefore, whenever an improvement is made to any of these methods,
new solutions can be obtained.

Recently, the generalized exp(−ψ(ξ))-expansion (GEE) method [2, 5, 8, 13] has been introduced to study NLEEs
that model physical problems. This method was initially proposed by Hafez and Lu [8] considering the auxiliary
equation

ψ′(ξ) = p exp(−ψ(ξ)) + q exp(ψ(ξ)) + r.

The primary objective of this work is to utilize the GEE method to obtain new exact solutions, including bright
soliton solutions, dark solitary wave solutions, and multiple dark solitary wave solutions for specific cases of the
generalized seventh-order KdV (gsKdV) equation.
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This equation reads

ϕt + aϕ3ϕx + bϕ3x + cϕϕxϕ2x + dϕ2ϕ3x + eϕ2xϕ3x + fϕxϕ4x + gϕϕ5x + ϕ7x = 0, (1.1)

where a, b, c, d, e, f , and g are non-zero arbitrary parameters.
In this equation, ϕ(x, t) represents the unknown function dependent on the spatial variable x and the temporal

variable t. The subscripts denote partial derivatives with respect to the corresponding variable.
The gsKdV equation finds applications in various fields, where it helps to understand wave propagation phenomena

and their interactions in complex systems.
The specific cases of Eq. (1.1) considered in this work are:

1. Seventh-order Sawada-Kotera-Ito (sSKI) equation:

(a, b, c, d, e, f, g) = (252, 63, 378, 126, 63, 42, 21).

2. Seventh-order Lax (sLax) equation:

(a, b, c, d, e, f, g) = (140, 70, 280, 70, 70, 42, 14).

3. Seventh-order Kaup-Kupershmidt (sKK) equation:

(a, b, c, d, e, f, g) = (2016, 630, 2268, 504, 252, 147, 42).

Indeed, various analytical and numerical techniques have been proposed to solve these equations [4, 6, 7, 18, 20, 23].
In recent years, researchers have also explored new techniques to study these equations. For example: Zada et al. [25]
applied the optimal auxiliary function method to approximate solutions for the sLax and sSKI equations, Aljahdaly
et al. [3] discovered stable and analytical solutions for specific applications of the gsKdV equation using a modified
auxiliary equation of the direct algebraic method, Kumar and Saxena [11] employed a new iterative method to obtain
analytical solutions for various forms of the gsKdV equation. These studies highlight the continuous efforts to develop
novel approaches for solving the gsKdV equation and its specific cases.

The remainder of this paper is organized as follows: Section 2 presents the GEE method, detailing the algorithm
used to obtain analytical solutions. In section 3, we implement this method to solve the sSKI, sLax, and sKK
equations, deriving various classes of exact solutions based on different parameter settings. Section 4 provides graphical
representations (2D, 3D, contour, and density plots) of representative wave solutions to demonstrate the behavior of
the solutions. Finally, section 5 concludes the study, emphasizing the effectiveness and novelty of the GEE approach
in addressing complex nonlinear wave equations.

2. Algorithm of the GEE method

Let’s consider the NLEE as follows:

M (ϕ, ϕt, ϕx, ϕxx, ϕxt, ϕxxx, ...) = 0, (2.1)

where M is a polynomial and ϕ(x, t) is the unknown function.
The GEE method can be carried out using the following steps:

Step 1. Assume a traveling wave solution of the form ϕ(x, t) = Φ(ξ), where ξ = x±ϖt. By substituting this ansatz
into Eq. (2.1), we can convert the NLEE into an ordinary differential equation (ODE) for Φ = Φ(ξ):

N (Φ,Φ′, Φ′′, Φ′′′, .......) = 0, (2.2)

where N is a function of Φ and its derivatives.

Step 2. In this step, we seek the analytical solutions of Eq. (2.2) in the form:

Φ(ξ) =
m∑
i=0

ηi(exp(−ψ(ξ)))i, ηm ̸= 0, (2.3)

where ηi’s are constants to be determined, and ψ = ψ(ξ) satisfies the following ODE:

ψ′(ξ) = p exp(−ψ(ξ)) + q exp(ψ(ξ)) + r. (2.4)



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-19 3

It is worth mentioning that the ODE given by Eq. (2.4) has three general solution types, which depend on the
constant values of p, q, and r.

Type 1: For p = 1,

ψ(ξ) =



ln

−
√
Θ tanh

(√
Θ
2 (ξ + k)

)
− r

2q

 ,

or

ln

−
√
Θ coth

(√
Θ
2 (ξ + k)

)
− r

2q

 ,

Θ > 0, q ̸= 0,

ln

√
−Θ tan

(√
−Θ
2 (ξ + k)

)
− r

2q

 ,

or

ln

√
−Θ cot

(√
−Θ
2 (ξ + k)

)
− r

2q

 ,

Θ < 0, q ̸= 0,

ln
(

exp(r(ξ+k))−1
r

)
, q = 0, r ̸= 0,

ln
(
− 2r(ξ+k)+4

r2(ξ+k)

)
, Θ = 0, qr ̸= 0,

where Θ = r2 − 4q.

Type 2: For r = 0,

ψ(ξ) =



ln
(√

p
q tan

(√
pq(ξ + k)

))
, p > 0, q > 0,

ln
(
−
√

p
q cot

(√
pq(ξ + k)

))
, p < 0, q < 0,

ln
(√

−p
q tanh (

√
−pq(ξ + k))

)
, p > 0, q < 0,

ln
(
−
√
−p
q coth (

√
−pq(ξ + k))

)
, p < 0, q > 0.

Type 3: For q = 0 and r = 0,

ψ(ξ) = ln (p(ξ + k)) .

For all types, k is the integrating constant.

Step 3. The value of m can be obtained by balancing the higher-order derivative term with the highest-order
nonlinearity term given in Eq. (2.2).

Step 4. Substituting Eq. (2.3) into Eq. (2.2) and using Eq. (2.4), we obtain an algebraic system of equations for
ηi, p, q, r, and ϖ. By solving this system, we can find the exact solutions of the NLEEs.

3. Applications of the method

In this part, we will use the GEE method to solve three well-known nonlinear partial differential equations in shallow
water. These equations include the sSKI equation, the sLax equation, and the sKK equation. All of these equations
are special forms of the gsKdV equation, which is commonly used to describe physical phenomena in fluid mechanics.
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3.1. The sSKI equation. Consider the sSKI equation that has the form

ϕt + 252ϕ3ϕx + 63ϕ3x + 378ϕϕxϕ2x + 126ϕ2ϕ3x + 63ϕ2xϕ3x + 42ϕxϕ4x + 21ϕϕ5x + ϕ7x = 0. (3.1)

Using ϕ(x, t) = Φ(ξ) and ξ = x−ϖt reduces this equation to a nonlinear ODE

−ϖΦ′ + 252Φ3Φ′ + 63 (Φ′)
3
+ 378ΦΦ′Φ′′ + 126Φ2Φ′′′ + 63Φ′′Φ′′′ + 42Φ′Φ(4) + 21ΦΦ(5) + Φ(7) = 0. (3.2)

By homogeneous balance we get m = 2. The solution of (3.2) can be described as

Φ(ξ) =
2∑
i=0

ηi(exp(−ψ(ξ)))i, η2 ̸= 0, (3.3)

where ψ(ξ) satisfies the ODE (2.4), ηi’s are unknown constants that need to be identified.

By substituting (3.3) into (3.2) and using (2.4), and then setting the coefficients of (exp(−ψ(ξ)))i equal to zero,
we obtain an algebraic system of equations. For the sake of simplicity, this system is overlooked. Solving this system
yields the following solution sets:

Set 1.

ϖ =− 4

3
(r2 − 4pq)3,

η0 =− 1

3
(r2 + 8pq), η1 = −4pr, η2 = −4p2.

Set 2.

ϖ =(r2 − 4pq)3 + 21(2pq + η0)(r
2 − 4pq)2 + 126(r2 + 2η0)(2pq + η0)

2,

η0 =η0, η1 = −2pr, η2 = −2p2.

According to set 1 and set 2, the solutions of the sSKI equation result in the following form:

For Set 1 :

Case 1.1. When p = 1, q ̸= 0, Θ = r2 − 4q > 0,

ϕ1(x, t) = −1

3
(r2 + 8q) +

8qr
√
Θ tanh

(√
Θ
2 ζ

)
+ r

− 16q2(√
Θ tanh

(√
Θ
2 ζ

)
+ r

)2 , (3.4)

or

ϕ2(x, t) = −1

3
(r2 + 8q) +

8qr
√
Θ coth

(√
Θ
2 ζ

)
+ r

− 16q2(√
Θ coth

(√
Θ
2 ζ

)
+ r

)2 , (3.5)

where ζ = x+ 4
3 (r

2 − 4q)3t+ k.

Case 1.2. When p = 1, q ̸= 0, Θ = r2 − 4q < 0,

ϕ3(x, t) = −1

3
(r2 + 8q)− 8qr

√
−Θ tan

(√
−Θ
2 ζ

)
− r

− 16q2(√
−Θ tan

(√
−Θ
2 ζ

)
− r

)2 , (3.6)

or

ϕ4(x, t) = −1

3
(r2 + 8q)− 8qr

√
−Θ cot

(√
−Θ
2 ζ

)
− r

− 16q2(√
−Θ cot

(√
−Θ
2 ζ

)
− r

)2 , (3.7)

where ζ = x+ 4
3 (r

2 − 4q)3t+ k.
Case 1.3. When p = 1, q = 0, r ̸= 0,

ϕ5(x, t) = −1

3
r2 −

4r2 exp(r(x+ 4
3r

6t+ k))(
exp(r(x+ 4

3r
6t+ k))− 1

)2 . (3.8)
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(a) −10 ≤ x ≤ 10, 0.001 ≤ t ≤ 0.001. (b) −250 ≤ x ≤ −150, t = 1, t = 1.1, t =

1.2.

(c) −10 ≤ x ≤ 10, 0.001 ≤ t ≤ 0.001. (d) −10 ≤ x ≤ 10, 0.001 ≤ t ≤ 0.001.

Figure 1. Wave profile of ϕ1 for p = 1, q = 1, r = 3, and k = 1.

Case 1.4. When p = 1, q ̸= 0, r ̸= 0, r2 − 4q = 0,

ϕ6(x, t) = −r2 + 2r3(x+ k)

r(x+ k) + 2
− r4(x+ k)2

(r(x+ k) + 2)2
. (3.9)

Case 1.5. When r = 0, p > 0, q > 0,

ϕ7(x, t) = −8

3
pq − 4pq

tan2
(√
pq(x− 256

3 p3q3t+ k)
) . (3.10)

Case 1.6. When r = 0, p < 0, q < 0,

ϕ8(x, t) = −8

3
pq − 4pq

cot2
(√
pq(x− 256

3 p3q3t+ k)
) . (3.11)
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(a) −50 ≤ x ≤ 20,−200 ≤ t ≤ 200. (b) −8 ≤ x ≤ 8, t = 1, t = 2, t = 3.

(c) −50 ≤ x ≤ 20,−500 ≤ t ≤ 500. (d) −50 ≤ x ≤ 20,−500 ≤ t ≤ 500.

Figure 2. Wave profile of ϕ7 for p = 2, q = 2, r = 0, and k = 1.

Case 1.7. When r = 0, p > 0, q < 0,

ϕ9(x, t) = −8

3
pq +

4pq

tanh2
(√

−pq(x− 256
3 p3q3t+ k)

) . (3.12)

Case 1.8. When r = 0, p < 0, q > 0,

ϕ10(x, t) = −8

3
pq +

4pq

coth2
(√

−pq(x− 256
3 p3q3t+ k)

) . (3.13)

Case 1.9. When r = 0, q = 0,

ϕ11(x, t) = − 4

(x+ k)2
. (3.14)

For Set 2 :
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(a) −2 ≤ x ≤ 0.3,−0.001 ≤ t ≤ 0.001. (b) −10 ≤ x ≤ 3, t = 10−6, t = 5 · 10−4, t =

10−3.

(c) −2 ≤ x ≤ 0.3,−0.001 ≤ t ≤ 0.001. (d) −2 ≤ x ≤ 0.3,−0.001 ≤ t ≤ 0.001.

Figure 3. Wave profile of ϕ10 for p = −2, q = 2, r = 0, and k = 1.

Case 2.1. When p = 1, q ̸= 0, Θ = r2 − 4q > 0,

ϕ12(x, t) = η0 +
4qr

√
Θ tanh

(√
Θ
2 ζ

)
+ r

− 8q2(√
Θ tanh

(√
Θ
2 ζ

)
+ r

)2 , (3.15)

or

ϕ13(x, t) = η0 +
4qr

√
Θ coth

(√
Θ
2 ζ

)
+ r

− 8q2(√
Θ coth

(√
Θ
2 ζ

)
+ r

)2 , (3.16)

where ζ = x−ϖt+ k, ϖ = Θ3 + 21(2q + η0)Θ
2 + 126(r2 + 2η0)(2q + η0)

2.
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(a) −10 ≤ x ≤ 10,−10−7 ≤ t ≤ 10−7. (b) −10 ≤ x ≤ 10, t = 5 · 10−4, t = 2 ·
10−4, t = 5 · 10−6.

(c) −10 ≤ x ≤ 10,−10−7 ≤ t ≤ 10−7. (d) −10 ≤ x ≤ 10,−10−7 ≤ t ≤ 10−7.

Figure 4. Wave profile of ϕ13 for p = 1, q = 1, r = 3, η0 = 1, and k = 1.

Case 2.2. When p = 1, q ̸= 0, Θ = r2 − 4q < 0,

ϕ14(x, t) = η0 −
4qr

√
−Θ tan

(√
−Θ
2 ζ

)
− r

− 8q2(√
−Θ tan

(√
−Θ
2 ζ

)
− r

)2 , (3.17)

or

ϕ15(x, t) = η0 −
4qr

√
−Θ cot

(√
−Θ
2 ζ

)
− r

− 8q2(√
−Θ cot

(√
−Θ
2 ζ

)
− r

)2 , (3.18)

where ζ = x−ϖt+ k, ϖ = Θ3 + 21(2q + η0)Θ
2 + 126(r2 + 2η0)(2q + η0)

2.
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(a) −10 ≤ x ≤ 5,−5 ≤ t ≤ 5. (b) −10 ≤ x ≤ 5, t = 1, t = 1.5, t = 2.

(c) −10 ≤ x ≤ 10,−4.5 ≤ t ≤ 4.5. (d) −10 ≤ x ≤ 10,−4.5 ≤ t ≤ 4.5.

Figure 5. Wave profile of ϕ15 for p = 1, q = 2, r = 1, η0 = 1, and k = 1.

Case 2.3. When p = 1, q = 0, r ̸= 0,

ϕ16(x, t) = η0 −
2r2 exp(rζ)

(exp(rζ)− 1)
2 , (3.19)

where ζ = x−
(
r6 + 21η0r

4 + 126η0
2(r2 + 2η0)

)
t+ k.

Case 2.4. When p = 1, q ̸= 0, r ̸= 0, r2 − 4q = 0,

ϕ17(x, t) = η0 +
r3ζ

rζ + 2
− r4ζ2

2(rζ + 2)2
, (3.20)

where ζ = x− 63
2 (r2 + 2η0)

3t+ k.
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Case 2.5. When r = 0, p > 0, q > 0,

ϕ18(x, t) = η0 −
2pq

tan2
(√
pqζ

) , (3.21)

where ζ = x−ϖt+ k, ϖ = −64p3q3 + 336p2q2(2pq + η0) + 252η0(2pq + η0)
2.

Case 2.6. When r = 0, p < 0, q < 0,

ϕ19(x, t) = η0 −
2pq

cot2
(√
pqζ

) , (3.22)

where ζ = x−ϖt+ k, ϖ = −64p3q3 + 336p2q2(2pq + η0) + 252η0(2pq + η0)
2.

Case 2.7. When r = 0, p > 0, q < 0,

ϕ20(x, t) = η0 +
2pq

tanh2 (
√
−pqζ)

, (3.23)

where ζ = x−ϖt+ k, ϖ = −64p3q3 + 336p2q2(2pq + η0) + 252η0(2pq + η0)
2.

Case 2.8. When r = 0, p < 0, q > 0,

ϕ21(x, t) = η0 +
2pq

coth2 (
√
−pqζ)

, (3.24)

where ζ = x−ϖt+ k, ϖ = −64p3q3 + 336p2q2(2pq + η0) + 252η0(2pq + η0)
2.

Case 2.9. When r = 0, q = 0,

ϕ22(x, t) = η0 −
2

(x− 252α3
0t+ k)2

. (3.25)

3.2. The sLax equation. Let’s consider the sLax equation

ϕt + 140ϕ3ϕx + 70ϕ3x + 280ϕϕxϕ2x + 70ϕ2ϕ3x + 70ϕ2xϕ3x + 42ϕxϕ4x + 14ϕϕ5x + ϕ7x = 0. (3.26)

Using ϕ(x, t) = Φ(ξ) and ξ = x−ϖt reduces this equation to a nonlinear ODE

−ϖΦ′ + 140Φ3Φ′ + 70 (Φ′)
3
+ 280ΦΦ′Φ′′ + 70Φ2Φ′′′ + 70Φ′′Φ′′′ + 42Φ′Φ(4) + 14ΦΦ(5) + Φ(7) = 0. (3.27)

The balancing rule in (3.27) gives m = 2, then the general solution is given by

Φ(ξ) =

2∑
i=0

ηi(exp(−ψ(ξ)))i, η2 ̸= 0. (3.28)

Substituting (3.28) into (3.27) and using (2.4) we get a system of algebraic equations. If we solve the conserving
system, we get the following solution sets:

Set 3.

ϖ = ±1

5
(21I

√
5± 5)(r2 − 4pq)3,

η0 = ±I
√
5

10
(r2 − 4pq)− 1

2
(r2 + 8pq),

η1 = −6pr, η2 = −6p2.

Set 4.

ϖ = (r2 − 4pq)3 + 14(2pq + η0)(r
2 − 4pq)2

+ 70(r2 + 2η0)(2pq + η0)
2,

η0 = η0, η1 = −2pr, η2 = −2p2.

According to set 3 and set 4, the solutions of the sLax equation result in the following form:
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For Set 3.

Case 3.1. When p = 1, q ̸= 0, Θ = r2 − 4q > 0,

ϕ23,24(x, t) = η0 +
12qr

√
Θ tanh

(√
Θ
2 ζ

)
+ r

− 24q2(√
Θ tanh

(√
Θ
2 ζ

)
+ r

)2 , (3.29)

or

ϕ25,26(x, t) = η0 +
12qr

√
Θ coth

(√
Θ
2 ζ

)
+ r

− 24q2(√
Θ coth

(√
Θ
2 ζ

)
+ r

)2 , (3.30)

where η0 = ± I
√
5

10 Θ − 1
2 (r

2 + 8q), ζ = x∓ (215 I
√
5± 1)(r2 − 4q)3t+ k.

Case 3.2. When p = 1, q ̸= 0, Θ = r2 − 4q < 0,

ϕ27,28(x, t) = η0 −
12qr

√
−Θ tan

(√
−Θ
2 ζ

)
− r

− 24q2(√
−Θ tan

(√
−Θ
2 ζ

)
− r

)2 , (3.31)

or

ϕ29,30(x, t) = η0 −
12qr

√
−Θ cot

(√
−Θ
2 ζ

)
− r

− 24q2(√
−Θ cot

(√
−Θ
2 ζ

)
− r

)2 , (3.32)

where η0 = ± I
√
5

10 Θ − 1
2 (r

2 + 8q), ζ = x∓ (215 I
√
5± 1)(r2 − 4q)3t+ k.

Case 3.3. When p = 1, q = 0, r ̸= 0,

ϕ31,32(x, t) =
−5± I

√
5

10
r2 − 6r2 exp(rζ)

(exp(rζ)− 1)
2 , (3.33)

where ζ = x∓ (215 I
√
5± 1)r6t+ k.

Case 3.4. When p = 1, q ̸= 0, r ̸= 0, r2 − 4q = 0,

ϕ33(x, t) = −3

2
r2 +

3r3(x+ k)

r(x+ k) + 2
− 3r4(x+ k)2

2(r(x+ k) + 2)2
. (3.34)

Case 3.5. When r = 0, p > 0, q > 0,

ϕ34,35(x, t) =
−20∓ 2I

√
5

5
pq − 6pq

tan2
(√
pqζ

) , (3.35)

where ζ = x± 64
5 (21I

√
5± 5)p3q3t+ k.

Case 3.6. When r = 0, p < 0, q < 0,

ϕ36,37(x, t) =
−20∓ 2I

√
5

5
pq − 6pq

cot2
(√
pqζ

) , (3.36)

where ζ = x± 64
5 (21I

√
5± 5)p3q3t+ k.

Case 3.7. When r = 0, p > 0, q < 0,

ϕ38,39(x, t) =
−20∓ 2I

√
5

5
pq +

6pq

tanh2 (
√
−pqζ)

, (3.37)

where ζ = x± 64
5 (21I

√
5± 5)p3q3t+ k.

Case 3.8. When r = 0, p < 0, q > 0,

ϕ40,41(x, t) =
−20∓ 2I

√
5

5
pq +

6pq

coth2 (
√
−pqζ)

, (3.38)
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(a) −10 ≤ x ≤ 10,−5 · 10−4 ≤ t ≤ 5 · 10−4. (b) −10 ≤ x ≤ 10, t = 10−4, t = 5 · 10−4, t =

10−3.

(c) −10 ≤ x ≤ 10,−5 · 10−4 ≤ t ≤ 5 · 10−4. (d) −10 ≤ x ≤ 10,−5 · 10−4 ≤ t ≤ 5 · 10−4.

Figure 6. Wave profile of ϕ43 for p = 1, q = 1, r = 3, η0 = 1, and k = 1.

where ζ = x± 64
5 (21I

√
5± 5)p3q3t+ k.

Case 3.9. When r = 0, q = 0,

ϕ42(x, t) = − 6

(x+ k)2
. (3.39)

For Set 4.

Case 4.1. When p = 1, q ̸= 0, Θ = r2 − 4q > 0,

ϕ43(x, t) = η0 +
4qr

√
Θ tanh

(√
Θ
2 ζ

)
+ r

− 8q2(√
Θ tanh

(√
Θ
2 ζ

)
+ r

)2 , (3.40)
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or

ϕ44(x, t) = η0 +
4qr

√
Θ coth

(√
Θ
2 ζ

)
+ r

− 8q2(√
Θ coth

(√
Θ
2 ζ

)
+ r

)2 , (3.41)

where ζ = x−ϖt+ k, ϖ = Θ3 + 14(2q + η0)Θ
2 + 70(r2 + 2η0)(2pq + η0)

2.

Case 4.2. When p = 1, q ̸= 0, Θ = r2 − 4q < 0,

ϕ45(x, t) = η0 −
4qr

√
−Θ tan

(√
−Θ
2 ζ

)
− r

− 8q2(√
−Θ tan

(√
−Θ
2 ζ

)
− r

)2 , (3.42)

or

ϕ46(x, t) = η0 −
4qr

√
−Θ cot

(√
−Θ
2 ζ

)
− r

− 8q2(√
−Θ cot

(√
−Θ
2 ζ

)
− r

)2 , (3.43)

where ζ = x−ϖt+ k, ϖ = Θ3 + 14(2q + η0)Θ
2 + 70(r2 + 2η0)(2pq + η0)

2.

Case 4.3. When p = 1, q = 0, r ̸= 0,

ϕ47(x, t) = η0 −
2r2 exp(rζ)

(exp(rζ)− 1)
2 , (3.44)

where ζ = x−
(
r6 + 14η0r

4 + 70η20(r
2 + 2η0)

)
t+ k.

Case 4.4. When p = 1, q ̸= 0, r ̸= 0, r2 − 4q = 0,

ϕ48(x, t) = η0 +
r3ζ

rζ + 2
− r4ζ2

2(rζ + 2)2
, (3.45)

where ζ = x− 35
2 (r2 + 2η0)

3t+ k.

Case 4.5. When r = 0, p > 0, q > 0,

ϕ49(x, t) = η0 −
2pq

tan2
(√
pqζ

) , (3.46)

where ζ = x−ϖt+ k, ϖ = −64p3q3 + 224p2q2(2pq + η0) + 140η0(2pq + η0)
2.

Case 4.6. When r = 0, p < 0, q < 0,

ϕ50(x, t) = η0 −
2pq

cot2
(√
pqζ

) , (3.47)

where ζ = x−ϖt+ k, ϖ = −64p3q3 + 224p2q2(2pq + η0) + 140η0(2pq + η0)
2.

Case 4.7. When r = 0, p > 0, q < 0,

ϕ51(x, t) = η0 +
2pq

tanh2 (
√
−pqζ)

, (3.48)

where ζ = x−ϖt+ k, ϖ = −64p3q3 + 224p2q2(2pq + η0) + 140η0(2pq + η0)
2.

Case 4.8. When r = 0, p < 0, q > 0,

ϕ52(x, t) = η0 +
2pq

coth2 (
√
−pqζ)

, (3.49)

where ζ = x−ϖt+ k, ϖ = −64p3q3 + 224p2q2(2pq + η0) + 140η0(2pq + η0)
2.

Case 4.9. When r = 0, q = 0,

ϕ53(x, t) = η0 −
2

(x− 140η30t+ k)2
. (3.50)
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(a) −30 ≤ x ≤ 30, 0 ≤ t ≤ 5 · 10−5. (b) −10 ≤ x ≤ 20, t = 0.005, t = 0.01, t =

0.02.

(c) −30 ≤ x ≤ 30, 0 ≤ t ≤ 5 · 10−5. (d) −30 ≤ x ≤ 30, 0 ≤ t ≤ 5 · 10−5.

Figure 7. Wave profile of ϕ47 for p = 1, q = 2, r = 1, η0 = 1, and k = 1.

3.3. The sKK equation. Consider the sKK equation that has the form

ϕt + 2016ϕ3ϕx + 630ϕ3x + 2268ϕϕxϕ2x + 504ϕ2ϕ3x + 252ϕ2xϕ3x + 147ϕxϕ4x + 42ϕϕ5x + ϕ7x = 0. (3.51)

Using ϕ(x, t) = Φ(ξ) and ξ = x−ϖt reduces this equation to a nonlinear ODE

−ϖΦ′ + 2016Φ3Φ′ + 630 (Φ′)
3
+ 2268ΦΦ′Φ′′ + 504Φ2Φ′′′ + 252Φ′′Φ′′′ + 147Φ′Φ(4) + 42ΦΦ(5) + Φ(7) = 0. (3.52)

The balancing rule in (3.52) gives m = 2, then the general solution is given by

Φ(ξ) =
2∑
i=0

ηi(exp(−ψ(ξ)))i, η2 ̸= 0. (3.53)

Substituting (3.53) into (3.52) and using (2.4) we get a system of algebraic equations that can be solved to find the
solution:



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-19 15

Set 5.

ϖ =− 1

48
(r2 − 4pq)3,

η0 =− 1

24
(r2 + 8pq), η1 = −1

2
pr, η2 = −1

2
p2.

Depending on set 5, the solutions of the sKK equation result in the following form:

Case 5.1. When p = 1, q ̸= 0, Θ = r2 − 4q > 0,

ϕ54(x, t) = − 1

24
(r2 + 8q) +

qr
√
Θ tanh

(√
Θ
2 ζ

)
+ r

− 2q2(√
Θ tanh

(√
Θ
2 ζ

)
+ r

)2 , (3.54)

or

ϕ55(x, t) = − 1

24
(r2 + 8q) +

qr
√
Θ coth

(√
Θ
2 ζ

)
+ r

− 2q2(√
Θ coth

(√
Θ
2 ζ

)
+ r

)2 , (3.55)

where ζ = x+ 1
48 (r

2 − 4q)3t+ k.

Case 5.2. When p = 1, q ̸= 0, Θ = r2 − 4q < 0,

ϕ56(x, t) = − 1

24
(r2 + 8q)− qr

√
−Θ tan

(√
−Θ
2 ζ

)
− r

− 2q2(√
−Θ tan

(√
−Θ
2 ζ

)
− r

)2 , (3.56)

or

ϕ57(x, t) = − 1

24
(r2 + 8q)− qr

√
−Θ cot

(√
−Θ
2 ζ

)
− r

− 2q2(√
−Θ cot

(√
−Θ
2 ζ

)
− r

)2 , (3.57)

where ζ = x+ 1
48 (r

2 − 4q)3t+ k.

Case 5.3. When p = 1, q = 0, r ̸= 0,

ϕ58(x, t) = − 1

24
r2 −

r2 exp(r(x+ 1
48r

6t+ k))

2
(
exp(r(x+ 1

48r
6t+ k))− 1

)2 . (3.58)

Case 5.4. When p = 1, q ̸= 0, r ̸= 0, r2 − 4q = 0,

ϕ59(x, t) = −1

8
r2 +

r3(x+ k)

4r(x+ k) + 8
− r4(x+ k)2

8(r(x+ k) + 2)2
. (3.59)

Case 5.5. When r = 0, p > 0, q > 0,

ϕ60(x, t) = −1

3
pq − pq

2 tan2
(√
pq(x− 4

3p
3q3t+ k)

) . (3.60)

Case 5.6. When r = 0, p < 0, q < 0,

ϕ61(x, t) = −1

3
pq − pq

2 cot2
(√
pq(x− 4

3p
3q3t+ k)

) . (3.61)

Case 5.7. When r = 0, p > 0, q < 0,

ϕ62(x, t) = −1

3
pq +

pq

2 tanh2
(√

−pq(x− 4
3p

3q3t+ k)
) . (3.62)

Case 5.8. When r = 0, p < 0, q > 0,

ϕ63(x, t) = −1

3
pq +

pq

2 coth2
(√

−pq(x− 4
3p

3q3t+ k)
) . (3.63)
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(a) −10 ≤ x ≤ 10,−5 ≤ t ≤ 5. (b) −20 ≤ x ≤ 10, t = 1, t = 2, t = 3.

(c) −10 ≤ x ≤ 10,−5 ≤ t ≤ 5. (d) −10 ≤ x ≤ 10,−5 ≤ t ≤ 5.

Figure 8. Wave profile of ϕ54 for p = 1, q = 1, r = 3, and k = 1.

Case 5.9. When r = 0, q = 0,

ϕ64(x, t) = − 1

2(x+ k)2
. (3.64)

4. Illustrative Graphics

In this section, we present graphical representations in 2D, 3D, contour plots, and density plots, showcasing three
distinct types of traveling wave solutions relevant to solitary wave theory. The Figures 1, 3, 6, and 8 correspond to
the bright soliton solution associated with ϕ1, ϕ10, ϕ43, and ϕ54, respectively. These figures depict fixed parameter
values as specified in their captions. Additionally, Figures 2, 5, and 9 illustrate multiple dark solitary wave solutions
corresponding to ϕ7, ϕ15, and ϕ61, respectively, with fixed parameters. Figures 4 and 7 display the dark solitary wave
solution linked to ϕ13 and ϕ47, respectively, with parameters indicated in the figure captions.
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(a) −40 ≤ x ≤ 40,−5 · 10−6 ≤ t ≤ 5 · 10−6. (b) −10 ≤ x ≤ 10, t = 0.01, t = 0.05, t = 0.1.

(c) −70 ≤ x ≤ 70,−5 · 10−6 ≤ t ≤ 5 · 10−6. (d) −70 ≤ x ≤ 70,−5 · 10−6 ≤ t ≤ 5 · 10−6.

Figure 9. Wave profile of ϕ61 for p = −2, q = −2, r = 0, and k = 1.

5. Conclusions

This article investigates novel traveling wave solutions for three specific instances of the gsKdV equation: the sSKI
equation, the sLax equation, and the sKK equation. Employing the GEE method, we successfully identify bright
soliton solutions, dark solitary wave solutions, and multiple dark solitary wave solutions. Significantly, the GEE
method has not previously unveiled innovative solutions for the gsKdV problem. Hence, the exact solutions obtained
in this study can be regarded as novel. These solutions, expressed in terms of hyperbolic, trigonometric, exponential,
and rational functions, are visually represented through 2D, 3D, contour plots, and density plots illustrations generated
using Maple computational tools within specific finite domains.

Ultimately, our proposed method demonstrates efficiency, reliability, and potency in delivering numerous consistent
solutions for NLEEs encountered across various disciplines such as applied mathematics, mathematical physics, and
engineering.
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