Research Paper C M
Computational Methods for Differential Equations

http://cmde.tabrizu.ac.ir
Vol. *, No. *, * pp. 1-16

DOI:10.22034/cmde.2025.67655.3234

Application of tanh—coth method for combined and double combined sinh—cosh—Gordon equa-
tions arising chemical reactions to water surface gravity waves

Elvir Akhmetshin!-2-*, Ilyos Abdullayev®, Samariddin Makhmudov%°, Kamila Dakhkilgova 6, Irina Korotaeva’, and
Galina Yanovskaya”

!Department of Economics, Mamun University, Khiva, Uzbekistan.

2Faculty of Economics, RUDN University, Moscow, Russia.

3Department of Business and Management, Urgench State University, Urgench, Uzbekistan.

4Department of Finance and Tourism, Termez University of Economics and Service, Termez, Uzbekistan.

5Department of Finance, Alfraganus University, Tashkent, Uzbekistan.

SDepartment of programming and infocommunication technologies, Kadyrov Chechen State University, Grozny, Russia.

"Department I-11 Foreign language for acrospace specialties, Moscow Aviation Institute, Moscow, Russia.

Abstract - N

An application of the generalized tanh—coth method to search for exact solutions of nonlinear partial differential
equations is analyzed. This method is used for the combined and the double combined sinh-cosh-Gordon equations.
The generalized tanh—coth method was used to construct periodic wave and solitary wave solutions of nonlinear
evolution equations. This method is developed for searching exact travelling wave solutions of nonlinear partial
differential equations. It is shown that the generalized tanh—coth method, with the help of symbolic computation,
provides a straightforward and powerful mathematical tool for solving nonlinear problems.
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1. INTRODUCTION

In the recent decade, the study of nonlinear partial differential equations in modelling physical phenomena has
become an important tool. Nonlinear phenomena play a fundamental role in applied mathematics and physics. Also,
the investigation of the travelling wave solutions plays an important role in nonlinear sciences. A variety of powerful
methods has been presented, such as the inverse scattering transform [1], Hirota’s bilinear method [22], the sine-
cosine method [47], the homotopy perturbation method [10], the homotopy analysis method [11, 12], variational
iteration method [13, 21], tanh-function method [16], Backlund transformation [35], Exp-function method [14, 15,
26, 27, 30, 31], tanh-coth method [8, 29, 40], (%)—expansion method [5, 7, 17], Laplace Adomian decomposition
method [28], Differential transform method [6] and so on. Although mathematically challenging, fluid dynamics
is a fascinating topic with numerous unresolved issues that can be addressed through numerical simulations and
experimental methods such as computational fluid dynamics and particle image velocimetry [18, 20, 32, 33, 42]. So
the study of NLPDESs, especially the study of the exact solution of NLPDESs, shows very important theoretical and
application value [3, 9, 34, 38, 39, 44]. Here, we use of an effective method for constructing a range of exact solutions for
the following nonlinear partial differential equations that in this article we developed solutions as well. The standard
tanh method is well-known analytical method which first presented by Malfliet’s [23] and developed in [23, 24]. In this
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article we explain method which is called the generalized tanh—coth method is presented to look for travelling wave
solutions of nonlinear evolution equations. The sinh-Gordon equation

Ut — Ugy + sinhu = 0, (1.1)
appears in integrable quantum field theory, kink dynamics, and fluid dynamics [19, 37, 41, 48-50]. The sinh-Gordon
equation is completely integrable because it possesses similarity reductions to third Painlevé equation [48]. The
sine-Gordon and the double sine-Gordon, the sinh—Gordon, and the double sinh—Gordon equations given by

Uy — Kuygy + 2asinu = 0,

Ugt — Kuygy + 2asinu + 23 sin 2u = 0,

Ut — Kuygy + 2asinhu = 0
and

Uyt — kuyy + 2asinhu + 28 sinh 2u = 0, (1.5)

respectively, were investigated by using the standard tanh method [23-25, 45, 46]. The (2+1)-dimensional Date-Jimbo-
Kashiwara-Miwa (DJKM) equation was investigated using the unified method, the modified Kudryashov scheme and
the extended modified auxiliary equation mapping technique [43]. A mixed problem with time derivative in the
boundary conditions for the second order inhomogeneous parabolic equation with complex coefficients was considered
[2]. Authors of [36] presented the analytical and numerical solutions to the nonlinear fractional biological population
equation with the fractional derivative Atangana Baleanu using the Kamal Adomian decomposition method. The
principles of optimal design of mechanical drives of lifting units were investigated a significant impact on the optimiza-
tion criterion [4]. In this article, we used the generalized tanh—coth method to investigate investigate the combined
sinh—cosh-Gordon equation and the double combined sinh—cosh-Gordon equation ([48]) given by

Uty — Kuygy + asinhu + Scoshu =0 (1.6)
and
Utt — Kuygy + asinhu + a coshu 4 S sinh 2u + 8 cosh 2u = 0, (1.7)

respectively. Our aim of this article is to obtain analytical solutions of nonlinear the combined and the double combined
sinh-cosh-Gordon equations, and to determine the accuracy of the generalized tanh-coth method in solving these kind
of problems. The article is organized as follows: In section 2, first we briefly give the steps of the method and apply
the method to solve the nonlinear partial differential equations. In sections 3 and 4 we examine the combined and
the double combined sinh-cosh-Gordon equations respectively. Also a conclusion is given in section 5. Finally some
references are given at the end of this article.

2.. BASIC IDEA OF GENERALIZED TANH—COTH METHOD

We now describe the generalized tanh—coth method for the given partial differential equations. We give the detailed
description of method which to use this method, we take following steps:

Step 1. For a given NLPDE with independent variables X = (x,y, z,t) and dependent variable u, we consider a general
form of nonlinear equation:

P(u, ug, Ux, Uy, Uy, Uy, Uyy, Ugy, Uy, Ugh, Uy Uy, Ugge.) = 0, (2.1)
which can be converted to on ODE
Qu, —cu’, ', v, v, u”,...) =0, (2.2)
which transformation £ = x + y — ct is wave variable. Also, c is constant to be determined later.
Step 2. We introduce the Riccati equation as following
' =1+ pd + qP?, O = P(¢), E=x+y—ct, (2.3)

(=)=
E)NE
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leads to the change of derivatives

d d
T (r+p® +qP*) — T (2.4)
42 9 d 9 d?
d—g:(r—l-p(l)—i—q(l)) (p+2q¢)£+(r+p¢+qq> )d<I>2 ; (2.5)
a3 _ 2 252 2 d,
df{g_(r—i—p@—l—q@) (64°®* + 6pg® + 2rq +p*) —=
243 2 2 d? 22 &
+ (6¢*®> + 9pg®* + 3(p +27"Q)‘I’+37’P)@ (T+p‘l’+qq’) 153 (26)

which admits the use of a finite series of functions of the form:

= zm: a®* + zm:bkq)_k, (2.7)
k=0 k=1

where ax(k =0,2,...,m),bk(k =1,2,...,m),p,r and q are constants to be determined later. But, the positive integer
m can be determined by considering the homogeneous balance between the highest order derivatives and nonlinear
terms appearing in Eq. (2.2). If m is not an integer, then a transformation formula should be used to overcome this
difficulty. For aforementioned method, expansion (2.7) reduces to the standard tanh method [23] for by = 0,1 <k < m.

Step 3. Substituting Eqgs. (2.3)-(2.6) into Eq. (2.2) with the value of m obtained in Step 2. Collecting the coefficients
of ®%(k = 0, 1,2, ...), then setting each coefficient to zero, we can get a set of over-determined partial differential equa-
tions for ag,a;(i=1,2,...,m),b;(i=1,2,...,m) p,q and r with the aid of symbolic computation Maple 13.

Step 4. Solving the algebraic equations in Step 3, then substituting ag, a1, by, ..., am, bm, ¢ in Eq. (2.7).

We will consider the following special solutions of the Riccati equation (2.3):

Case 1: For each p,r and q # 0, Eq. (2.3) has the following solutions

o(¢) = ;(I; tan ( QAS ) A = p? — 4qr, E=x+y—ct, (2.8)
or
- A A
@(5)££tah<ﬁ+0>, A =p° —4qr E=x+y—ct (2.9)
or
- vV-=A Vv-A
@(5):2—57 % cot( 5 gJrC), A=p?—dqr, E=x+y—ct, (2.10)
or
- A A
@(5)225—?; th<\/;f >, A=p?—dqr, E=x+y—ct, (2.11)

where C is constant.
Case 2: For p=r=1 and q =0 Eq. (2.3) has the following solution

d(€) =et — 1, E=x+y—ct. (2.12)
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Case 3: For r = %,p =0and q= f% Eq. (2.3) has the following solutions

O(¢) = —itan <£21) , or ®() =tanh (g) , =x+y—ct, (2.13)

9(&) = icot (5 —coth (8), e=xty-

=icot 5 ) or ®(€) = coth 5 ) E=x+y—ct, (2.14)

O(¢) = —itan(i€) £isec(if), or P(&) =tanh(&) £isech(§), &=x+y — ct, (2.15)
but, we know

tanh <§) = coth(&) — csch(§), coth (g) = coth(&) + csch(§). (2.16)
Case 4: Forr=1,p=1 and q = —1 Eq. (2.3) has the following solutions

(&) = % + ? tanh (?5) , or ®(¢&) = % - ?itan (?i{) ) (2.17)

o(&) = % + ? coth (?{) , or &(&) = % + ?icot <\231£> . (2.18)

3. THE COMBINED SINH-COSH-GORDON EQUATION

In this section we employ the combined sine—cosine-Gordon equation as follows

Uty — Kuygy + asinhu + Scoshu = 0. (3.1)
Using the wave variable as follow £ = x — ct, is carried to an ODE
(¢ —k)u” + asinhu + Bcoshu = 0. (3.2)
We use the Painlevé property
v=e", (3.3)
or equivalently
u=Inv, (3.4)
where we have
Vl
u=—, (3.5)
v

(Y
v vz )7

The transformation (3.3) also gives

-1 —1
sinhu=~ " , coshu:V—'_V , (3.6)
2 2
that also gives
—1

u = arccosh [V +2V } . (3.7)
Substituting these transformations namely (3.5) and (3.6) into Eq. (3.2) we obtain

2(c? —k)(vw' — (vV))?) + (a + B)v* — (e — B)v = 0. (3.8)

(=)=
E)NE
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In order to determine value of m, we balance vv” with v? in Eq. (3.8), and by using Eq. (2.7) we obtain m = 2. We

can suppose that the solution of Eq. (3.1) is of the form

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

by b
(5) —a0+al@+32@2+6+322.
Substituting Eq. (3.9) into Eq. (3.8) and by using the well-known Maple software, we obtain the system of following
results
4(c? — k)qr 4(c? — k)qp 4(c? — k)q?
a0:_77 a’lz_i’ 32:_77
a+p a+p a+f
b1:0, ngO, a:B,
or
4(c? — k)qr 4(c? — k)pr 4(c? — k)r?
ag=————7>—, bi=- ; ba= ;
a+p a+0 a+p
a1 =0, as =0, a =0,
or
(> —k)p® 4(c® —k)gp A(c? — k)g?
ag — y 1= , a2 = — )
a+p a+ B a+p
B2 _ a2
by = by = =1/k
1 07 2 07 C + A )
or
N (c? — k)p? _ A4(c? —Kk)pr A —K)r?
0= arp ™ atp =’ ™ B
2_ o2
31:0, 32:0, c= k‘i’ﬁT,

where p, q,r, and c are arbitrary constants. Substituting Eqgs. (3.10)—(3.13) into expression Eq. (3.9) along with using

Eq. (3.7) and using before Section we obtain

2(c? — k)q 5 a+p 1
u(§) = arccos { oz (r+p +q ) S — K1 p® £ 02
1+ 16(C — ) q2 @/2
= arccosh [ — (c(zatjc)i ; ,
a+p @
and
u(¢) = arccosh A=l (rhpd+qd?)  a+tp o2
N a+f ®2 8(c2 —k)r \r+ p® + qd2
— arccosh |——2 + 162‘;;;{))2 —0% + 0t
N 8(c?2 —k)r O’ P2 ’
and

a+p 1
2(c> = k) (p+2q0)

[_ a+p 1+ (a+§)) (b +249)"

u(§) = arccosh (p + 2q®)° —

= arccosh
2(c? — k) (p +2q®)*

(3.14)

(3.15)

(3.16)
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and

u(¢) = arccosh [—

= arccosh

)

)

(2 — k) (2r + p<1>>2 B 2(32+_/3k)

2(a+ p)
(k)

2 2
at+p '+ gz (2r+p2)

- 2(c2 — k)

(2r® + p®2?)?

(

2r + p®

By the manipulation as explained in the previous Section, we have

(I) The first set for Eq.

(3.14)

By using case 1 we have

u; (x,t) = arccosh

and

us(x,t) = arccosh
and

us(x,t) = arccosh
and

uy(x,t) = arccosh

1+ S sect [V 2 (x —ct) + C}

o+

(a+p)? 2

2A2KA o2 [—‘/;T(x —ct) + C}

[1 4 A% ocht A (x — ct) +C}

o+

2

ASWA goch? [ L (x —ct) + C}

1+ (C2_§32A2 csct [ Vo2 (x — ct) 4 C]

2

a? 2

@ csc? [V_A(xfct)—i—C]

14 (EPA% oy [—‘/—Z(x —ct) + C}

w csch? |:\/TZ(X —ct) + C}

)]

and by using case 3 and ® = coth() + csch(€), before Section we have

us(x,t) = arccosh

16(c?~k)%q>

[ 1+ T csch?(x — ct)[coth(x — ct) #+ csch(x — ct)]?

8(c2—k)q
a+p3

and by using case 3 and ® = tanh({) + isech(&), we get

ug(x,t) = arccosh

16(c® —k)?q>

csch(x — ct)[coth(x — ct) & csch(x — ct)]

[ 14 e sech?(x — ct)[sech(x — ct) £ itanh(x — ct)]?

8(c2—k)q
a+p

and by using case 3 and ® = tanh(g) or & = coth(g), we obtain

ur7(x,t) = arccosh

ug(x,t) = arccosh

B 2 2 2
1+ A sech![B5)]

4(c2—=k)q
a+p

sech?| (X_2Ct) ]

B 2 2 2
L+ HEE s[5

4(c2—k x—ct
(a+ﬁ)q CSChQ[( . )]

sech(x — ct)[sech(x — ct) & itanh(x — ct)]

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



CMDE Vol. *, No. *, * pp. 1-16

and by using case 3 and ® = fitan(%) or & = icoth(%), we have
2_k)%q? i(x—ct)q ]
t o e sec! [05Y)]
ug(x,t) = arccos 4(00:1{)01 Ty ;
i 2_k)2q? i(x—ct)q ]
L+ o ootz
ujo(x,t) = arccosh | — 30 1a o) ,
csc?| ]
a+p8 2 ]
and by using case 4 we have
r 2 1322
14 299 sech! [ (x — ct)]

uy1(x,t) = arccosh

10(e?—k)q sech2[§(x —ct)] ’

L a+pB
1+ 25((2%;;))2'3‘ secﬂ@i(x — ct)]
u2(x,t) = arccosh | — 100 i) ,

and

(142

o sec?[2i(x — ct)]

25(c?~k)’q? csch?[%2 (x — ct)]

(a+8)? 2

u3(x,t) = arccosh 5

1+
ui4(x,t) = arccosh | —

7(;2_1()01 csch2[§(x — ct)]

+B8

25(c®—k)?q?
(a+B)?

S

csct[L2i(x — ct)]

(IT) The second set for Eq. (3.

By using case 1 we have

710(21_;)01 CSCQ[ﬁi(X — ct)]

2

15)

c2—k)2r2A? V=A —
gy S sect (Y4 C) 4 g

(o)

Lp) Srpseat (Y554 C) + | £ + 45 tann (VB 4 C”4

tan (@ + C)}2

q(e
uy5(x,t) = arccosh {
2 N V& -
( ) sec2<T§_~_C) {Ti"’
2(a 7 S€C
uy6(x, t) = arccosh [2(1(20‘ L C(ath) 2
T e () g+ o (1)
and
2_1)2:2A2 —
ae+8) T o (“?5 +C
u7(x,t) = arccosh [2(02 A

a(

atp)  Srlmresant (YR 4C) + |2+ YE coth (4 C)}4

Z(atp)z ¢

u;g(x,t) = arccosh {—

2(c2 — k)rA cesch2 (@ + C) {2% + \é—qx coth (@ + C)} 2

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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and by using case 2 and ® = e¢ — 1, before Section we have
i 16(c>—k)? X—C X—C
u1g(x,t) = arccosh ath (Ewﬂ)?) S ek (3.36)
x,t) = — .
1914 8(cZ — k) X —ct (gx—ct — 1)2 J

and by using case 3 and ® = coth(€) £ csch(€), before Section we have

[ a+p %csch2 (x — ct) + [coth(x — ct) & csch(x — ct)]?
ugg(x,t) = arccosh |— : , (3.37)
8(c?2 —k)r csch(x — ct)[coth(x — ct) £ csch(x — ct)]

and by using case 3 and ® = tanh(¢) + isech(§), we obtain

16(2 I o o2 (x — ct) + [sech(x — ct) + itanh(x — ct)]?

at+p (a+p)?
£) = h : 3.38
a1 (3, t) = arceos |8(c? —k)r sech(x — ct)[sech(x — ct) £ itanh(x — ct)]3 (3:38)
and by using case 3 and ¢ = tanh(%) or & = coth(%)7 we get
B 4(02—k)2r2 471x—ct 471x—ct
o+ ﬁ 7288(311 [T} + tanh [T]
t) = h|— & 3.39
uzs(x, t) = arccos 4(c?2 = k)r sechQ[X_T“]tanhQ[x_TCt] ! ( )
r 4(02—k)2r2 4rx—ct 4rx—ct
a+ B F—=5r"—csch[E%] 4 coth?[X52]
£) — arccosh f 2 2 3.40
23 (¥, £) = arccos 4(c?2 — k)r csch?[ X5 coth?[*5%] ’ (3:40)
and by using case 4 before Section we have
2_1)2,2 4
a+B 725(((;+;))2 sech? [TS(X - ct)} + (% + % tanh [%(x - ct)D
ug4(x,t) = arccosh |— 0l — & 5 , (3.41)
L 10(e® =T sech? [\/Tg(x - ct)} (% + Y5 tanh [@(X - ct)D
2_12,2 4
a+f *—252‘;4_/3))2 csch [%(X - ct)} + (% + % coth [?(X — ct)D
ug5(x,t) = arccosh 10/ — & 5 , (3.42)
[10(c? —K)r csch? {%(X - ct)} (% + % coth [%(X - ct)D
25(c? —k)2r? i i i 4
a+ B =argr sec! [%(x — ct)} + (% — Y tan [75()( — ct)D
ugg(x, t) = arccosh {— 0@ Tk 5 ) (3.43)
L 10(e® = sec? [@(X - ct)} (% — Yl tan {%(x - ct)D
. : : 4
a+ B 725522;5)?2 esc? [%(x - ct)} + (% + 2 cot [%(x - ct)D
ug27(x,t) = arccosh 10/ — & 5 (3.44)
(c* —k)r csc? {@(X - ct)} (% + @ cot [%(X - ct)D
(ITI) The third set for Eq. (3.16)
By using case 1 we have
1+ 572 tan? [V;A <x— k + V“2A+B2t> +C}
(a+5)
ugs(x, t) = arccosh — , (3.45)
_ 2132
f-a tan2[V;A <x k4 YOt t>+c}
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@rp HE tanh‘*{ f( k+ Y 2+ﬁ2t)+c}
ugg(x,t) = arccosh | — — ) (3.46)
_ 02132
p-a tanh? {\/23 (x k4 YO re t) + C}
: 1+ 822 cot |58 (x k + V“2+52t)+0]
_ (a+ B)
uzo(x, t) = arccosh ) (3.47)
B2 —a cot2{ ( k+wt)+ }
@+ 5) 1+ 522 coth? [VE <x k+ Y 2+52t>+c
us1 (x,t) = arccosh | — (3.48)
| 2V - coth? [ <X k+ ¥ 2+ﬁ2 t> + C]
(IV) The fourth set for Eq. (3.17)
By using case 1 we have
—p | VER o (VB N Ve N Ve ' ’
us2(€) = arccosh (e +B)A (2q AT tan( 2 T C)) + (‘HB)AE ( 20 T : tan( 2+ C)) (3.49)
p? —a? (%wg?tan(?uc)) (%Jr—‘/z?tan(—*/?uc))z
4 2
[ (a+B)A (%-ﬁ-@tanh(@—i—(j)) +£ﬁ(%+%tanh(@+0))
us3 (&) = arccosh | — —— 5 5 , (3.50)
L 2VP - (2q+pftanh(i§i+(])) (%—&-%tanh(@—k(]))
4 2
- VIR o (VB oo (A 4 pV=E o (VBE
) anccoat | (8 (it Y oot (584 €) )+ Gl (5 + S cot (5% + C))
34(&) = arccos = = 5 5 , (3.51)
B -a (£ + 2B cot (Y +C)) (£ + Y52 cot (Y€ + C))
A VA : —a A VA VA ?
(a+ B)A (%-ﬁ-%co‘ch(%-ﬁ-(})) +(aﬁw(2ﬁq+%coth<%+0)>
uss(§) = arccosh -3 o A = Tae 5 T Tae 5 . (3.52)
L (Tq—k%coth(T—i-C)) (%—Fﬁcoth(T—I—C))

which are the exact solutions of the combined sinh—cosh-Gordon equation. We obtain solitary wave and periodic wave
solution for the combined sinh—cosh-Gordon equation. Can be seen that the solutions developed by aforementioned
method and also, results are the same, with comparing results [48].

4. THE DOUBLE COMBINED SINH-COSH-GORDON EQUATION

In this section we study the double combined sinh—cosh—Gordon equation with the generalized tanh—coth method
as the following

Uty — Kuygy + asinhu + a coshu + B sinh 2u + 8 cosh 2u = 0. (4.1)
Using the wave variable as follow & = x — ct, is carried to an ODE

(¢ —k)u” + asinhu + a coshu + Bsinh 2u 4 3 cosh 2u = 0. (4.2)
We use the Painlevé property

v=e" (4.3)

(&)
ENE
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or equivalently

u=lnv, (4.4)
where we have
u = v (4.5)
= .

" 1\2
o = (V_ &) )
v v
The transformation (4.3) also gives

v—vl V-‘rV_l

sinhu = 5 coshu = 5 (4.6)
that also gives
~1
u = arccosh [V +2V } . (4.7

Substituting these transformations namely (4.5) and (4.6) into Eq. (4.2) we obtain
2(c? — k) (v — (v/)?) 4+ 26v* + 2av® = 0. (4.8)
Balancing vv” with v* in Eq. (4.8), and by using Eq. (2.7) we obtain m = 1. The solutions of Eq. (4.1) is of the form

v(§) —ao+a1¢>+% (4.9)

Substituting Eq. (4.9) into Eq. (4.8) and by using the well-known software Maple, we obtain the system of following
results
2qr

a Oé q
S - 2 b1 =0, 4.10
0= B Atp/A MEEE VR ! (10
2 2 _
e 2 quip\/ﬁ)’ A=p g
B A(VA +p)
or
« 2qr a T
ag = - ————, =0, by =+— —, 4.11
T B A+p/A . TR VA )
2 _
_a? 2(p? 2qripr)7 A=p? g,
B A(VA +p)
or
e aq ar a?
— a=-29 by =21 c=/k— —| 4.12
T B T B YT OB Bp? (412

where p, q,r, and c are arbitrary constants. Substituting Eqgs. (4.10)—(4.12) into expression Eq. (4.9) along with using
Eq. (4.7) and using before Section we obtain

/X 1+ [p; [\Fipicb}
u(§) = arccosh , (4.13)
i 2ar \Fﬂ:p +&
and
B BVA (VA £)*®? + [290 + (VA £ p))?
u(§) = avceosh | 2or (VA £ p)®[2q® + (VA £ p)] ’ (4.14)

(=)=
E)NE
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and

252 1 o> H2
« T+P<I’+qq’2 B p® 153 p-® +f32‘1>
h - | - = | ——— | |= h|—m ———~ | 4.1
u(§) = arccos [ 3 ( b 5 Tt @2 arccos 2ap ; (4.15)

By the manipulation as explained in the previous Section, we have
(I) The first set for Eq. (4.13)
By using case 1 we obtain

V=A V=A¢
Bfl—l—ﬁzA [\Fip:FZqi tan( —|—C>]
u;(€) = arccosh 5 W} , (4.16)
ar V= V=
i WipZFqu tan( +C)
and
r2 VA
5\ﬁ 1+ ¢ B2A [fipth:p ‘g;tanh< YAg +C)}
us(€) = arccosh S \F N , (4.17)
I fip F 2q F tanh ( + C)
and
2 \/7 \/Zg -
. Bf 1+ BQA |:\/7:‘:p:F2q:F 2q COth(7+C):|
us(&) = arccosh 5 75 Tae , (4.18)
ar
L \Fip:’:2q:':700th( +C) J
and
2 =y NN )
\F 1+62A [Wip:F2q:F 2q £ cot (—2‘£+C)_
uy (&) = arccosh o — , (4.19)
i T TR F COt( 3 +C)
— v _ a2 2(p*—2qr£pVA)
where £ = x \/k % AC/ALp) t.
By using case 2 and ® = e — 1, before Section we have
[ 14 LoV
BVA ﬂQA \Fi
us(x,t) = arccosh (4.20)

VA

202 ’
2ar qi I ex_,/k_Tt 1
p

and by using case 3 and ® = coth(&) £ csch(&), before Section we have

[BVE 1+ i [AL + coth (x— k= 57t) & oseh (x— k- 50)| (4.21)
| 2ar \Fi ;l:coth( Mt) + csch (Xf \/@t) 7 |

and by using case 3 and ® = tanh({) + isech(&), we get

ug(x,t) = arccosh

2
14+ 9 [ 29 j:tanh(xf,/kf—>j:1sech( k — )}
ur(x,t) = arccosh 2\/; 5 S VALD = 7 , (4.22)
fi itanh( k—ﬁt)i sech( k—?t)

and by using case 3 and ® = tanh(%) or & = coth(%), we have

5\ﬁ 1+ 2k L/%qipj:tanh B (x— k—%t)”

e O DI

ug(x,t) = arccosh (4.23)
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1+ %5 + coth k — 2t
ug(x,t) = arccosh 2\/; B 5 [\/»i [ ( - d )H , (4.24)
\Fi :l:coth{ ( k — ‘Et)}
and by using case 3 and ® = —itan(g) or d = icoth(%)7 we obtain
T2 |29 ripan (i(x—,/k— 2t
uio(x,t) = arccosh Q\F ra [\/Zip {2 ( ° >H] ) (4.25)
ar : i a?
L \/Zip:Fltan [5 (X— k—?t)}
14+ % +icot |1 k — 2t
uy1(x,t) = arccosh QXF B 5 [\Fi [2 ( i )”] (4.26)
ar a?
- ik oot [§ (= k=5
and by using case 4 we have
syE 1t 8 o [\Fip + (§+25tanh [25 (x— ke 2 t)]ﬂ
u2(x,t) = arccosh 5 , (4.27)
| r \/Eqip + (é + 2 tanh {25 x—1/k— (\fﬂ)a?t)}) ]
P e )
uy3(x,t) = arccosh o — , (4.28)
Ir i 1) a2
L \/Eqip (;—%tan{él(x—\/k (f5tl)a? +) t>]> |
v 3 [ s[4 (- i) )
u4(x,t) = arccosh 5 , (4.29)
ar 2 f+1 a?
L \/Z(itp (%—i—fcoth{;’ x — [k — (votbe? t)}) ]
B\F 1+5 ﬂgA |:%/Z:tp + (é + Y21 cot [251 (x— \/k— (f+1)a2 )})}
uy5(x, t) = arccosh 3 (4.30)
ar i . V5+1)a?
L \/%Z:pi(é-i-;(lot[\égl(x—\/k (Yot1)o? +) t)}) |
(IT) The second set for Eq. (4.14)
By using case 1 we have
2
© B2 (VA £p)? (55 + 58 n (5%)) +[(-p+v=Btan (55)) & (VA4 p)] (431)
U1ig = arccos .
2or (VA £p) (Tp-l-“/?tan(‘/jg)) [( p++v—Atan (?g))i(\/zzl:p)]
2
o h{ﬁf (VA £p)? (£ + %2 tanh (¥2£)) "+ [(—p - VAtanh (¥25)) & (VA £ p)] .
u17(§) = arccos 4.32
2or (VA £p) (2—;’ ‘éqxtanh @)) [( p— \Ftanh( )) :I:(\/Z:tp)}
2 2
© h{ﬁf (VA £ p)? (2q+§coth(%)> +[( ﬂcoth(@)) (\/Zip)] (433)
u1s(§) = arccos 4.33
2ar (VA £p) - qu coth (A)> [( p — VA coth (@)) :I:(\/Z:I:p)]

(=)
BEE
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u19(§) = arccosh {

q

where C = 0 and £ is given above by

BVA (VA £p)? (%—&- ‘/fcot (‘/?5
o (Vaew (2

2q

§=X—\/ _oﬁ 2(p2—2q1rip\/g)t
AWVA£p)

(ITI) The third set for Eq. (4.15)

B

By using case 1 we have

_ 2 (=
2q8 P (7§+

V;A tan
q

455

+
e (F)) [0 VB () £ /B 5)

i 2]
2q

2q

2
+ v7Atam[vfA (x

- 2 VA VA a?

(2 + 42 tanh 42 (x -

2

ug0(x,t) = arccosh | apA
uz1 (x, t) = arccosh | apA
u22(x,t) = arccosh jgi p? (
u23(x, t) = arccosh :— jgi ?

] + Z;2A2csch4 [TA
k — %t)}) csch? [@ (x k — %t)]
2
k—s5t)]) + ofreset [52 (x— /i

ug4(x,t) = arccosh | ——

By using case 4 we have

uz2s(x,t) = arccosh [—

ug6(x,t) = arccosh [—

B

2

u27(x,t) = arccosh [

8 5 ﬁt)])2+§gg2 sech? [75 (x— k—%t)}
V5a (1 + %tanh [75 (X —4/k— %t)]) sech? [ﬁ (xf - %Qt)]

3 (% — T5tan 751 (X— k — O‘Tft)])2 + ?ggz sect [@1 (X— vk — %zt)}
NG (% — T5tanh [751 (x —\/k— %Qt) )5602 [751 x—4/k— O‘Tft)] 7
B T ) T )

@ (% + écoth [75 (x — 4 /k = %t)}) csch? [‘ég (X k %t)} 7
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(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(&)
ENE
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2
8 (% + @icot [%1 (X —4/k— %t)D + fzgz csc? [él (X —4/k— (’Tft)}

_\/Ea (%Jr%icot[@i(xf kf%t)])cs@[%i(xf kf%t)] ’

u2s(x,t) = arccosh [ (4.44)

which are the exact solutions of the double combined sinh—cosh-Gordon equation. We obtain solitary wave and
periodic wave solution for the double combined sinh—cosh-Gordon equation. Can be seen that solutions formally
developed for aforementioned method also, the results are the same, with comparing results [48].

5. CONCLUSION

In this article, we obtained exact solutions for the combined and the double combined sinh-cosh-Gordon equations
by using the generalized tanh-coth method. Generalized tanh-coth method is a useful method for finding travelling
wave solutions of nonlinear evolution equations. This method has been successfully applied to obtain some new soli-
tary wave and periodic wave solutions to the combined and the double combined sinh-cosh-Gordon equations. The
generalized tanh-coth method is more powerful in searching for exact solutions of NLPDEs. Some of these results are
in agreement with the results reported in the literature. Comparing our results and Wazwaz’s [48] results then it can
be seen that the results are same. Also, new results are formally developed in this article considerably. It can be
concluded that the this method is a very powerful and efficient technique in finding exact solutions for wide classes of
problems.
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