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Abstract

Universum, representing a third category distinct from the two primary classes in classification tasks, facilitates
the incorporation of prior knowledge into the learning process. Extensive studies have confirmed its effectiveness

in improving both supervised and semi-supervised classification models. Recently, Universum data has been

introduced into parametric ν-support vector regression (UPar-ν-SVR) to enhance generalization performance. In
this paper, we present a Newton-based method for solving UPar-ν-SVR, with the objective of further improving

its efficiency and accuracy. Our approach reformulates the problem into an unconstrained convex optimization
framework and employs a generalized Newton’s method for its solution. To assess the effectiveness of our proposed

method, we conduct comprehensive experiments on multiple UCI benchmark data sets. The experimental results

indicate that our algorithm outperforms existing techniques, providing superior generalization capabilities and
computational efficiency.
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1. Introduction

Supervised learning, a key domain within machine learning, offers robust methods for classifying data sets, enabling
solutions to a variety of practical issues encountered in the real world. These applications span diverse areas such as
pinpointing signal origins, diagnosing cardiovascular conditions, categorizing images, detecting lung and colon cancers,
analyzing textual data, and enhancing agricultural practices, among others [1, 3, 7, 15, 17, 29, 48].

The versatility of supervised learning has garnered considerable interest from the research community. Among its
prominent techniques, the support vector machine (SVM) stands out, initially developed by Vapnik and Chervonenkis
[46] in 1974. Designed originally for tasks involving classification and regression, SVM has become a cornerstone for
classification challenges. It solves these issues by defining a convex quadratic programming problem, aiming to create
two parallel hyperplanes that maximize the distance between classes. Subsequent research ushered in classifiers utilizing
non-parallel hyperplanes, capturing considerable interest from the academic community. In 2007, Khemchandani and
Chandra [18] presented a binary classification method relying on non-parallel hyperplanes named twin support vector
machine (TSVM). TSVM’s share a core idea: they build two non-parallel hyperplanes, each aligned nearer to its
associated class while ensuring the greatest possible distance from the opposing class. Although TSVM’s optimization
structure resembles SVM’s, it tackles two compact quadratic programming problems (QPPs). As a result, TSVM
outperforms traditional SVM by delivering a learning pace nearly four times quicker [18]. Thanks to its reduced
computational demands, TSVM has emerged as a widely adopted machine learning strategy for classification purposes.

Numerous researchers have investigated diverse modifications of TSVM across supervised, semi-supervised, and
unsupervised learning frameworks, as well as their real-world uses [6, 19, 30, 38, 42, 51]. As an illustration, Shao et
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al. [38] presented the twin bounded support vector machine (TBSVM), a refined version of TSVM, by embedding
regularization elements into its objective functions. This adjustment broadened TSVM’s applicability and elevated
its classification accuracy. In a similar vein, Peng [31] put forward the ν-twin support vector machine (ν-TSVM),
incorporating two extra parameters to adjust the equilibrium between support vectors and margin discrepancies. Ad-
ditionally, Peng [32] proposed the twin parametric-margin support vector machine (TPMSVM), designed to construct
two non-parallel hyperplanes that define the parametric-margin boundary for classification purposes.

Advancing these innovations, Tanveer et al. [41] introduced the large-scale pinball twin support vector machine
(LPTWSVM), tailoring it for handling expansive data sets and conducting a thorough evaluation of different TSVM
approaches. Moosaei et al. [24] reimagined TSVM as a linear programming challenge by weaving L1 and L∞ norms
into its objective functions, and they proposed the generalized Newton’s method (GTWSVM) to adeptly tackle the
unconstrained optimization task. While TSVM enjoys widespread acclaim for binary classification and has attracted
considerable interest, it struggles to derive kernel-based models directly using primal formulations and duality prin-
ciples. Nevertheless, TSVM and its derivatives come with certain shortcomings. For example, TSVM demands the
calculation of matrix inverses before model training, rendering it less effective when handling vast data sets. Deter-
mining these inverses through traditional techniques can prove highly challenging or even unfeasible in such scenarios.
Moreover, a further drawback shared by classical SVM, TSVM, and their advanced iterations is their presumption of
consistent noise throughout the data set. Yet, in practical contexts like activity recognition, noise levels frequently
vary depending on feature characteristics, as highlighted by Tanveer et al. [40]. Additionally, SVM frameworks and
their practical uses have been explored to refine TSVM approaches, particularly in addressing regression challenges,
which find relevance across multiple domains [2, 52].

Support vector regression (SVR), a derivative of the SVM, efficiently tackles regression challenges. SVM approaches
binary classification by casting it as a convex optimization task, as outlined by Vapnik [45]. These tasks seek to identify
a dividing hyperplane that optimizes the margin while maintaining precise class separation. In SVM, support vectors
define the ideal hyperplanes. The method’s ability to deliver sparse solutions and strong generalization makes it
exceptionally well-suited for regression applications. To adapt SVM into SVR, an ϵ-insensitive zone, known as the
ϵ-tube, is established around the function. This approach reformulates the optimization problem as finding a tube
that best aligns with the continuous-valued function, ensuring a trade-off between model complexity and predictive
accuracy. A notable theoretical leap in SVR was achieved by Jianlin et al. [16], who introduced a clear geometric
perspective for SVR, illustrating how SVR and SVM could be linked by reinterpreting SVR as a classification issue.
Other advanced techniques in data classification include the parametric ν-support vector machine (Par-ν-SVM) and
parametric ν-support vector regression (Par-ν-SVR) [12]. In contrast to traditional ν-SVM and SVM, which utilize
parallel hyperplanes, Par-ν-SVM differentiates classes by maximizing the margin between two non-parallel hyperplanes.
Par-ν-SVR, a robust approach for both classification and regression, effectively overcomes the challenges associated
with non-parallel methods, such as solving dual optimization problems and computing matrix inverses before training.
Furthermore, this method addresses the issue of uniform noise in data sets by integrating an an-isotropic noise structure,
enhancing its adaptability to complex data distributions. This method leads to a quadratic programming problem,
providing a framework for jointly learning margin determination and function approximation. In recent research,
Ketabchi et al. [17] explored the Par-ν-SVR approach for classification tasks and proposed an innovative solution to
its primal problem. They restructured the Par-ν-SVR model into an unconstrained convex optimization problem and
employed an enhanced version of Newton’s method for its solution. The integration of Universum data in supervised
and semi-supervised learning has garnered significant interest. Initially introduced by Weston et al. [47], Universum
data represents instances that do not belong to any specific class. Their study explored its application within the
support vector machine (SVM) framework, leading to the development of the Universum support vector machine
(U-SVM). The findings indicated that U-SVM outperformed conventional SVM models that do not utilize Universum
data. Building on this concept, several extensions of traditional models have been introduced. Chapelle et al. [4]
proposed a least squares version of the Universum support vector machine. Later, Qi et al. [33] integrated Universum
data into the twin support vector machine (TSVM), resulting in the Universum twin support vector machine (U-
TSVM), which outperformed models that excluded Universum data. Building on this progress, Xu et al. [50],
developed a least squares variant of TSVM with Universum data (ULS-TSVM) to further improve the effectiveness
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of U-TSVM. In EEG signal classification, several studies have proposed novel methodologies leveraging U-SVM. For
instance, Richhariya and Tanveer [34] applied U-SVM for EEG signal classification Gupta et al. [11] developed a
regularized Universum twin support vector machine (RUTWSVM) by incorporating regularization constraints into
the U-SVM framework, enhancing its stability and robustness. Kumar and Gupta [20] proposed the Universum
twin bounded Lagrangian support vector machine (ULTBSVM) to differentiate between healthy and seizure EEG
signals. Similarly, Ganaie et al. [9] presented a Pin-Ball Universum twin support vector machine (Pin-UTSVM) for
EEG signal classification, further expanding the applicability of Universum-based models in this domain. Richhariya
and Tanveer [36] introduced the Universum twin support vector machine with least squares and parametric margin
(ULSTPMSVM), which builds upon the least squares parametric margin twin support vector machine (LSTPMSVM)
developed by Shao et al. [39]. Additionally, Richhariya et al. [37] proposed an angle-based Universum twin support
vector machine (AULSTSVM) for classification. Moosaei and Hlad́ık [25] presented a Lagrangian-based method for
the bounded Universum twin support vector machine. Drawing inspiration from previous research and leveraging
the benefits of Universum data, Hazarika et al. [13] introduced a novel TPMSVM model, applying it to EEG signal
classification. Furthermore, Xiao et al. [49] explored the concept of Universum learning by utilizing non-target task
data as prior knowledge. They introduced a novel approach called the multi-task Universum support vector machine
(U-MTLSVM) to enhance learning across multiple tasks. Moosaei et al. [26] introduced UPar-ν-SVR, integrating
Universum data into parametric ν-support vector regression to enhance classification performance. They proposed
two solutions: Dual Problem Formulation, which improves efficiency by solving the dual problem, and Least Squares
Version (LS-UPar-ν-SVR), which reduces complexity by using the L2 norm and replacing inequality constraints with
equality constraints, enabling linear equation solving instead of quadratic programming. Their approach offers an
efficient solution for large-scale classification tasks while minimizing computational costs. Universum models have
attracted considerable interest from researchers because of their straightforward structure and consistently strong
performance in a wide range of domains [10, 21, 23, 27, 28, 35, 53].

In this paper, we present a Newton-based method for solving UPar-ν-SVR, with the objective of further improving its
efficiency and accuracy. Our approach reformulates the problem into an unconstrained convex optimization framework
and employs a generalized Newton’s method for its solution.

The rest of the paper is structured as follows: Section 2 briefly introduces the background of Par-ν-SVR and
UPar-ν-SVR. Section 3 describes the NUPar-ν-SVR model and outlines the approach for solving the problem using
Newton’s method. Section 4 presents experimental results for UCI benchmark data sets. Finally, Section 5 offers the
conclusion of the paper.

2. Background

In this section, we provide a brief overview of the Par-ν-SVR and UPar-ν-SVR formulations for binary classification
problems. Consider the given training data set χ, which is represented as:

χ =
{
(x1, y1), . . . , (xm, ym)

}
∈ (Rn × {±1})m,

where xi ∈ Rn, yi ∈ {±1}, i = 1, . . . ,m. The problem involves binary classification with m1 positive samples and m2

negative samples (where m1 +m2 = m), and the data is organized in matrix form. The positive class consists of data
points represented by the matrix A ∈ Rm1×n, where each row Ai ∈ Rn corresponds to a sample of class A. Similarly,
the negative class is represented by the matrix B ∈ Rm2×n, where each row Bi ∈ Rn corresponds to a sample of class
B.

2.1. Parametric ν-support vector machine. SVMs were originally developed for classification tasks, but their
extension to regression, known as SVR, has gained significant attention. Standard SVR employs a loss function that
ignores errors within a certain margin, known as the ϵ-insensitive zone, making it effective in handling noise. ν-SVR,
an extension of traditional SVR, introduces the ν parameter, which provides control over the number of support
vectors and the margin width. This flexibility allows ν-SVR to adapt to varying data distributions and improve
generalization. Par-ν-SVR builds upon ν-SVR by introducing an additional set of parameters to optimize model
flexibility and sparsity. By fine-tuning these parameters, Par-ν-SVR can effectively balance bias and variance, leading
to better performance on heterogeneous data sets. The primary advantage of Par-ν-SVR is its adaptability in different
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Figure 1. Par-ν-SVR.

regression scenarios, where standard SVR models might struggle due to rigid hyper parameters. By introducing a
parametric-insensitive function f∗(x), a new parametric-insensitive loss function lf∗(f, x, y) is derived as follows:

l∗f (x, y, f) = (|y − f(x)| − f∗(x))+,

where f∗(x) is a real-valued function. Based on this, Hao [12] proposed Par-ν-SVR for estimating functions of the
form:

f (x) = w1
⊤x+ b1, f∗ (x) = w2

⊤x+ b2.

The goal is to find the values of w1, w2, b1, and b2 that minimize the regularized risk functional:

1
2w

⊤
1 w1 + CR

f∗(x)
emp [f ],

where R
f∗(x)
emp [f ] = 1

m

∑m
i=1 (|yi − f(xi)| − f∗(xi) )+ represents the f∗(x)-insensitive training error, and C is a constant

that determines the trade-off. Minimizing this expression is equivalent to solving the constrained quadratic problem:

min
w1,w2,b1,b2,ξ1,ξ2

1

2
w⊤

1 w1 + C
(
ν
(1
2
w⊤

2 w2 + b2

)
+

1

m
(e⊤1 ξ1 + e⊤2 ξ2)

)
s.t. (Aw1 + e1b1) + (Aw2 + e1b2) ≥ Y1 − ξ1,

(Bw2 + e2b2)− (Bw1 + e2b1) ≤ Y2 + ξ2,

ξ1, ξ2 ≥ 0, (2.1)

here, C and ν are positive penalty parameters. A graphical representation of Par-ν-SVR is shown in Figure 1. The
Lagrangian function for this problem is:

L(w1, w2, b1, b2, α̃1, α̃2, β̃1, β̃2, ξ1, ξ2) =
1

2
w⊤

1 w1 + C
(
ν(

1

2
w⊤

2 w2 + b2) +
1

m
(e⊤1 ξ1 + e⊤2 ξ2)

)
− α̃1

⊤
[(Aw1 + e1b1) + (Aw2 + e1b2)− Y1 + ξ1]

− α̃2
⊤
[Y2 + ξ2 + (Bw1 + e2b1)− (Bw2 + e2b2)]

− β̃1
⊤
ξ1 − β̃2

⊤
ξ2,
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α̃1, α̃2, β̃1, and β̃2 are non-negative Lagrange multipliers. Applying the Karush-Kuhn-Tucker (KKT) conditions, the
dual optimization problem is obtained as follows:

max
α̃1,α̃2

− 1

2
(A⊤α̃1 +B⊤α̃2)

⊤(A⊤α̃1 +B⊤α̃2)−
1

2Cν
(A⊤α̃1 −B⊤α̃2)

⊤(A⊤α̃1 −B⊤α̃2) + Y ⊤
1 α̃1 + Y ⊤

2 α̃2

s.t. − e⊤1 α̃1 − e⊤2 α̃2 = 0, (2.2)

e⊤1 α̃1 − e⊤2 α̃2 = Cν,

0 ≤ α̃1 ≤ C

m
e1,

0 ≤ α̃2 ≤ C

m
e2.

Solving this dual problem yields the Lagrange multipliers α̃1 and α̃2 , which allow us to compute the weight vectors
w1 and w2:

w1 = A⊤α̃1 +B⊤α̃2, (2.3)

w2 =
1

Cν
(A⊤α̃1 −B⊤α̃2).

The bias terms b1 and b2 can be determined using the KKT conditions:

b1 = −1

2
(Aiw1 +Biw1 +Aiw2 −Biw2), (2.4)

b2 = −1

2
(Aiw1 +Aiw2 −Biw1 +Biw2),

for i = 1, . . . ,m and α̃1, α̃2 ∈ (0, Cm ). The functions f(x) and f∗(x), the regression function and its corresponding
parametric-insensitive function, can be obtained using (2.3) and (2.4). The following decision function predicts the
class of a new sample xi ∈ Rn:

f(xi) =

{
+1 if w⊤

1 xi + b1 > 0,

−1 if w⊤
1 xi + b1 < 0.

2.2. Parametric ν-support vector regression with Universum data. Universum data consists of non-target
samples that do not belong to either the training or test distribution but share structural properties with the target
domain. The integration of Universum data into SVR aims to enhance generalization by regularizing the model and
preventing over-fitting to specific patterns. By incorporating Universum data into Par-ν-SVR, the model leverages
additional information that improves decision boundaries and robustness.

Consider a training data set χ̃ that is divided into two subsets:

χ̃ = χ ∪ U,
where

χ =
{
(x1, y1), . . . , (xm, ym)

}
∈ (Rn × {±1})m, and U = {x∗1, . . . , x∗u},

with xi ∈ Rn, yi ∈ {±1} and i = 1, . . . ,m. The matrix U ∈ Ru×n represents the Universum class, where each row
corresponds to a Universum sample. The objective is to enhance Par-ν-SVR by integrating Universum data, leading
to the proposed model: UPar-ν-SVR. To classify data in UPar-ν-SVR, we use a hyperplane function:

f(x) = w⊤
1 x+ b1,

unlike Par-ν-SVR, which relies on a functional margin, UPar-ν-SVR adopts a parametric margin model:

f∗(x) = w⊤
2 x+ b2.

Thus, the decision function f(x) = w⊤
1 x+ b1, classifies the data set if and only if:

(Aw1 + e1b1) ≥ (Aw2 + e1b2),

(Bw1 + e2b1) ≤ −(Bw2 + e2b2).
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The geometric interpretation of UPar-ν-SVR is depicted in Figure 2. Consequently, the optimization problem for

Figure 2. UPar-ν-SVR.

UPar-ν-SVR is formulated as:

min
w1,w2,b1,b2,ξ1,ξ2,ψ1,ψ2

1

2
w⊤

1 w1 + Cν
(1
2
w⊤

2 w2 + b2

)
+
C∗

m
(e⊤1 ξ1 + e⊤2 ξ2) +

C∗
u

u
(e⊤u ψ1 + e⊤u ψ2)

s.t. (Aw1 + e1b1) + (Aw2 + e1b2) ≥ Y1 − ξ1, (2.5)

(Bw2 + e2b2)− (Bw1 + e2b1) ≤ Y2 + ξ2,

(Uw1 + eub1) + (Uw2 + eub2) ≤ −eu(1 + ε) + ψ1,

(Uw1 + eub1)− (Uw2 + eub2) ≥ eu(1 + ε)− ψ2,

ξ1, ξ2, ψ1, ψ2 ≥ 0.

By solving this optimization problem, the parametric functions f(x) and f∗(x) can be determined. The corresponding
Lagrangian function is:

L(w1, w2, b1, b2,α̃1, α̃2, α̃3, α̃4, β̃1, β̃2, β̃3, β̃4, ξ1, ξ2, ψ1, ψ2)

=
1

2
w⊤

1 w1 + C
(
ν
(1
2
w⊤

2 w2 + d
))

+
C

m
(e⊤1 ξ1 + e⊤2 ξ2) +

Cu
u

(e⊤u ψ1 + e⊤u ψ2)

− α̃1
⊤
[(Aw1 + e1b1) + (Aw1 + e1b2)− Y1 + ξ1]

− α̃2
⊤
[Y2 + ξ2 + (Bw2 + e2b2)− (Bw2 + e2b2)]

− α̃3
⊤
[−eu(1 + ε) + ψ1 − (Uw1 + eub1)− (Uw2 + eub2)]

− α̃4
⊤
[(Uw1 + eub1)− (Uw2 + eub2)− eu(1 + ε) + ψ2]

− β̃1
⊤
ξ1 − β̃2

⊤
ξ2 − β̃3

⊤
ψ1 − β̃4

⊤
ψ2,
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here, α̃1, . . . , α̃4 and β̃1, . . . , β̃4 are non-negative Lagrange multipliers. The dual formulation is:

max L(θ1)

s.t. ▽θ2 L(θ1) = 0, θ3 ≥ 0,

where θ1 = (w1, w2, b1, b2, α̃1, α̃2, α̃3, α̃4, β̃1, β̃2, β̃3, β̃4, ξ1, ξ2, ψ1, ψ2),

θ2 = (w1, w2, b1, b2, ξ1, ξ2, ψ1, ψ2) and θ3 = (α̃1, α̃2, α̃3, α̃4, β̃1, β̃2, β̃3, β̃4).
By using KKT condition, we derive:

max
α̃1,α̃2,α̃3,α̃4

− 1

2
(A⊤α̃1 +B⊤α̃2 − U⊤α̃3 + U⊤α̃4)

⊤(A⊤α̃1 +B⊤α̃2 − U⊤α̃3 + U⊤α̃4)

− 1

2Cν
(A⊤α̃1 −B⊤α̃2 + U⊤α̃3 − U⊤α4)

⊤(A⊤α̃1 −B⊤α̃2 + U⊤α̃3 − U⊤α̃4)

+ Y ⊤
1 α̃1 + Y ⊤

2 α̃2 + e⊤u (1 + ε)α̃3 + e⊤u (1 + ε)α̃4,

s.t. − e⊤1 α̃1 − e⊤2 α̃2 + e⊤u α̃3 − e⊤u α̃4 = 0, (2.6)

e1
⊤α̃1 − e⊤2 α̃2 − e⊤u α̃3 − e⊤u α̃4 = Cν,

0 ≤ α̃1 ≤ C

m
e1,

0 ≤ α̃2 ≤ C

m
e2,

0 ≤ α̃3 ≤ Cu
u
eu,

0 ≤ α̃4 ≤ Cu
u
eu.

Solving these conditions yields:

w1 = A⊤α̃1 +B⊤α̃2 − U⊤α̃3 + U⊤α̃4, (2.7)

w2 =
1

Cν
(A⊤α̃1 −B⊤α̃2 + U⊤α̃3 − U⊤α̃4). (2.8)

b1 = −1

2
(Aiw1 +Biw1 +Aiw2 −Biw2), (2.9)

b2 = −1

2
(Aiw1 +Aiw2 −Biw1 +Biw2). (2.10)

Therefore, f(x) = w⊤
1 x+b1 and f∗(x) = w⊤

2 x+b2 are found. A new data point x ∈ Rn is allocated to class i ∈ {+1, 1}
by a similar rule to the Par-ν-SVR.

3. Modified Newton’s method for solving parametric ν-support vector regression with Universum
data

In this section, we present a novel method for addressing the problem (2.5) in the primal space. Our approach
involves adapting Newton’s method to solve this problem, and we call our technique NU par-ν-SVR. Subsequently, we
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add 2-norm slack variables, denoted as ξ1, ξ2, ψ1, and ψ2, into the objective function of (2.5). Therefore, we obtain:

min
w1,w2,b1,b2,ξ1,ξ2,ψ1,ψ2

1

2
w⊤

1 w1 + Cν
(1
2
w⊤

2 w2 + b2

)
+
C∗

m
(ξ⊤1 ξ1 + ξ⊤2 ξ2) +

C∗
u

u
(ψ⊤

1 ψ1 + ψ⊤
2 ψ2)

s.t. (Aw1 + e1b1) + (Aw2 + e1b2) ≥ Y1 − ξ1, (3.1)

(Bw2 + e2b2)− (Bw1 + e2b1) ≤ Y2 + ξ2,

(Uw1 + eub1) + (Uw2 + eub2) ≤ −eu(1 + ε) + ψ1,

(Uw1 + eub1)− (Uw2 + eub2) ≥ eu(1 + ε)− ψ2,

ξ1, ξ2, ψ1, ψ2 ≥ 0.

In the optimal solution to problem (3.1), we obtain

ξ1 = (Y1 − (Aw1 + e1b1) + (Aw2 + e1b2))+, (3.2)

ξ2 = ((Bw2 + e2b2)− (Bw1 + e2b1)− Y2)+, (3.3)

ψ1 = ((Uw1 + eub1) + (Uw2 + eub2) + eu(1 + ε))+, (3.4)

ψ2 = (eu(1 + ε)− (Uw1 + eub1) + (Uw2 + eub2))+. (3.5)

In this case, (.)+ sets any negative elements of a vector to zero. Consequently, we can substitute ξ1, ξ2, ψ1, and
ψ2 in problem (3.1) with (3.2)-(3.5), transforming problem (3.1) into an equivalent form (3.6), which becomes an
unconstrained optimization problem expressed as:

min
w1,w2,b1,b2

F (w1, w2, b1, b2) =
1

2
w⊤

1 w1 + Cν
(1
2
w⊤

2 w2 + b2

)
+
C∗

m
(∥(Y1 − (Aw1 + e1b1)

+ (Aw2 + e1b2))+∥2 + ∥((Bw2 + e2b2)− (Bw1 + e2b1)− Y2)+∥2)

+
C∗
u

u
(∥((Uw1 + eub1) + (Uw2 + eub2) + eu(1 + ε))+∥2

+ ∥(eu(1 + ε)− (Uw1 + eub1) + (Uw2 + eub2))+∥2) (3.6)

The function F (w1, w2, b1, b2) is piecewise quadratic, convex, and differentiable once. However, its gradient lacks
differentiability. As a result, the objective function in problem (3.6) is not twice differentiable, preventing the use of
the standard Newton’s method to solve it. Hence, we begin by introducing the following concept:

Definition 3.1. If f is continuously differentiable on A and ∇f is locally Lipschitz on A, then f is a LC1 function
on an open set A.

This condition ensures that∇f is differentiable almost everywhere withinA, which allows us to define the generalized
Hessian of f in the sense of Clarke [5]. Specifically, the generalized Hessian at a point x, denoted Hf(x), is the convex
hull of all possible limits of Hessians at nearby differentiable points:

Hf(x) = conv
{
M ∈ Rn×n : ∃xk → xwith∇f differentiable atxk and∇2f(xk) →M

}
,

where conv(.) denotes the convex hull. The set Hf(x) forms a nonempty, compact, and convex subset of symmetric

matrices. In the context of problem (3.6) , the second-order generalized derivative ∂2F(w1, w2, b1, b2) belongs to the set
HF . Thus, we can apply the generalized Newton method to address the unconstrained optimization problem defined
in (3.6). Since the generalized Hessian might be singular in some instances, we adopt a regularized Newton direction
to maintain nonsingularity. This direction is computed as:

dk = −(∂2F(xk) + ϵ0I)
−1∇F(xk),

where xk = (w1k, w2k, b1k, b2k) and ϵ0 is a small positive constant (set to ϵ0 = 10−6in our experiments), and I denotes
the identity matrix of suitable size. The update rule for the generalized Newton algorithm is then given by:

xk+1 = xk + δkdk,
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where δk is a step size used at the k-th iteration. The procedure is initialized with an initial guess x0, and the algorithm
continues until convergence is achieved according to the following stopping condition:

∥xk+1 − xk∥ ≤ tol,

with the tolerance level set to tol = 10−8 in our numerical tests.
Thus, with the formulization above, the generalized Hessian can be defined. The problem can then be solved using

the generalized Newton’s approach (3.6).

Remark 3.2. (On time complexity) The generalized Newton method functions as an iterative procedure, and its
computational cost depends on factors such as the algorithm’s implementation details, the dimensionality of the
problem, and the number of iterations required. Typically, for a problem involving n variables and k iterations,
the time complexity can be expressed as O(kn3). Likewise, the linear NUPar-ν-SVR approach proceeds iteratively,
where each cycle entails solving an unconstrained optimization problem (3.6). This problem includes 2n+2 variables,
resulting in an overall complexity of O(k(2n+ 2)3) after k iterations.

In the nonlinear case, problem (3.1) incorporates the following hyperplane:

K(x,D⊤)W + λ = 0,

where D = [A⊤ B⊤]⊤, W ∈ Rn, λ ∈ R and K(·, ·) is an arbitrary kernel function. This leads to the formulation of
the nonlinear optimization problem as follows:

min
W1,W2,λ1,λ2,ξ1,ξ2,ψ1,ψ2

1

2
W⊤

1 W1 + Cν
(1
2
W⊤

2 W2 + λ2

)
+
C∗

m
(ξ⊤1 ξ1 + ξ⊤2 ξ2) +

C∗
u

u
(ψ⊤

1 ψ1 + ψ⊤
2 ψ2)

s.t. (K(A,D⊤)W1 + e1λ1) + (K(A,D⊤)W2 + e1λ2) ≥ Y1 − ξ1, (3.7)

(K(B,D⊤)W2 + e2λ2)− (K(B,D⊤W1 + e2λ1) ≤ Y2 + ξ2,

(K(U,D⊤)W1 + euλ1) + (K(U,D⊤)W2 + euλ2) ≤ −eu(1 + ε) + ψ1,

(K(U,D⊤)W1 + euλ1)− (K(U,D⊤)W2 + euλ2) ≥ eu(1 + ε)− ψ2,

ξ1, ξ2, ψ1, ψ2 ≥ 0.

Following a similar procedure in the linear case, the unconstrained problem (3.7) can be addressed as follows:

min
W1,W2,λ1,λ2

F̃ (W1,W2, λ1, λ2) =
1

2
W⊤

1 W1 + Cν
(1
2
W⊤

2 W2 + b2

)
+
C∗

m
(∥(Y1 − (K(A,D⊤)W1 + e1λ1)

+ (K(A,D⊤)W2 + e1λ2))+∥2 + ∥((K(B,D⊤)W2 + e2λ2)− (K(B,D⊤)W1 + e2λ1)

− Y2)+∥2) +
C∗
u

u
(∥((K(U,D⊤)W1 + euλ1) + (K(U,D⊤)W2 + euλ2) + eu(1 + ε))+∥2

+ ∥(eu(1 + ε)− (K(U,D⊤)W1 + euλ1) + (K(U,D⊤)W2 + euλ2))+∥2) (3.8)

After resolving the optimization problem mentioned above, we produce a non-parallel classifier by applying the gen-
eralized Newton’s approach.

4. Numerical experiment

Several UCI data sets [8] are used in the numerical experiment section to compare the suggested approach (NUPar-
ν-SVR) with Par-ν-SVRC+ [17] and UPar-ν-SVR [26]. Using Matlab R2018b, all numerical experiments are conducted
on a PC running Microsoft Windows 64-bit with a Core(TM) i7 CPU operating at 2.20 GHz and 4GB of RAM. Addi-
tionally, we applied the five-fold cross-validation technique to evaluate the algorithm’s performance and classification
accuracy. In each benchmark data set, we randomly selected an equal number of samples from each class. To gener-
ate the Universum data, we then averaged pairs of samples belonging to different classes, using half of the selected
data. The experimental findings for linear and nonlinear states on several UCI data sets are compiled in Tables 1 and
2, where ”Acc(%)” indicates the accuracy mean value plus or minus the associated standard deviation. ”Time(s)”
denotes the algorithm’s execution time.
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Choosing the right parameter values is important for getting good results from a machine learning model. Grid
search is a common method used to find the best values by testing different combinations of parameters and selecting
the one with the highest performance [14]. In our experiments, we used grid search to find the best set of parameters.
As shown in Figure 3, different parameter values (such as C and γ) have a significant impact on the model’s accuracy.

The effectiveness of these methods relies heavily on the selection of the parameters C,C∗, C∗
u, and ν. For Par-ν-

SVR, UPar-ν-SVR, and NUPar-ν-SVR, the ideal values were determined as follows: C,C∗, and C∗
u were chosen from

the set {2i|i = 10, ..., 10}, while ν was selected from the range {0.1, ..., 0.9}. Additionally, a Gaussian kernel, defined as
K(x, y) = exp(−γ∥x−y∥2), γ > 0 where γ > 0, was utilized for all methods in their nonlinear forms. The value of the
kernel parameter γ was picked from the set {2i | i = −10, . . . , 10}. The Gaussian kernel is commonly used in related
studies because of its flexibility in capturing nonlinear relationships and its consistent empirical performance across a
wide range of data sets, including those from the UCI benchmark data sets repository. As demonstrated by Tables 1
and 2, our suggested approach achieves the best classification accuracy for the majority of UCI data sets using both
linear and nonlinear states. Although the proposed method generally achieves strong performance across most data
sets, we observe a decrease in accuracy on certain data sets, such as the Housing data set in linear state. This may
be attributed to the specific properties of the data. Moreover, in our approach, the Universum data are constructed
by averaging randomly selected pairs of samples from different classes. While this method helps introduce neutral,
non-target information into the learning process, its effectiveness may vary depending on how well the generated
Universum points reflect the structure of the actual data space. Such variations can influence the model’s ability to
generalize, particularly in datasets with unique or sparse feature distributions. Therefore, we conclude that, compared
to other approaches, our suggested strategy has the best classification accuracy and the most manageable learning
time.

5. Conclusion

This study presented a novel method for resolving the UPar-ν-SVR optimization challenge. We modified the
constrained quadratic programming problem (UPar-ν-SVR) into an unconstrained quadratic problem by utilizing the
2-norm of the slack vectors in the quadratic problem’s objective functions. We then proposed a modified version of
Newton’s method for dealing with unconstrained quadratic situations, which simplifies and expedites the solution of
the associated problem.

Figure 3. The impact of selecting different values for parameters γ and C on the accuracy of Cancer
data sets in nonlinear state.
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Table 1. Performance comparison of linear algorithm’s on UCI data sets.

Data set Par-ν-SVR Par-ν-SVRC+ NUPar-ν-SVR
Size Acc (%) Acc (%) Acc (%)

Time (s) Time (s) Time (s)

German 70 ±0.00 70±0.00 77.20±2.79
1000×24 18.04 0.56 0.65
Ripley 67.60±0.21 86.40±2.19 86.40±4.09
250×2 1.36 0.27 0.39
Heart 79.62±3.92 85.55±4.22 85.92±4.05
270×16 3.07 0.56 0.67

F-diagnosis 88.03±2.46 88.03±2.46 86.04±4.03
100×9 1.40 0.28 0.29
Wdbc 82.97±3.17 88.25±5.25 96.14±1.78
569×30 2.13 0.42 0.44

House Vote 92.41±3.86 96.78±2.74 97.01±2.88
435×16 1.46 0.30 0.33
Housing 93.28±4.36 82.58±1.80 71.48±5.95
506×14 1.76 0.37 0.45

Haberman 73.53±0.00 73.53±5.32 68.17±5.81
306×3 1.77 0.34 0.43
Bupa 58.84±3.63 59.13±2.59 70.14±6.60
345×6 1.43 0.34 0.39
Splice 71.39±3.59 73.29±2.97 81.39±3.92

1000×60 9.05 0.88 1.22
Ionosphere 84.04±3.12 87.75±5.93 88.31±6.34
351×34 1.41 0.32 0.37
Sonar 61.54±5.24 77.87±3.23 78.37±3.33
208×60 1.34 0.31 0.33
Cancer 90.59±7.42 97.42±8.27 97.28±6.02
699×6 1.82 0.33 0.37
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Table 2. Performance comparison of nonlinear algorithm’s on UCI data sets.

Data set Par-ν-SVR Par-ν-SVRC+ NUPar-ν-SVR
Size Acc (%) Acc (%) Acc (%)

Time (s) Time (s) Time (s)

German 45.90 ±0.01 72.20±0.00 73.40±3.28
1000×24 6.26 24.49 28.95
Ripley 86±0.11 88.80±1.23 89.60±2.60
250×2 1.42 0.80 0.87
Heart 81.11±1.51 84.81±1.27 85.18±2.41
270×16 4.37 1.18 1.26

F-diagnosis 89.03±0.21 89.12±0.33 89.17±2.46
100×9 1.54 0.32 0.48
Wdbc 45.25±2.19 63.44±0.55 63.45±0.90
569×30 2.19 5.28 6.86

House Vote 92.41±0.11 96.54±1.54 96.79±2.03
435×16 1.61 3.41 3.93
Housing 43.98± 0.24 94.06±0.21 94.06±0.70
506×14 6.86 5.65 5.66

Haberman 75.49±0.00 74.84±0.21 74.84±1.52
306×3 2.46 1.44 1.96
Bupa 49.24±0.61 68.98±0.00 69.56±0.88
345×6 2.47 1.47 1.51
Splice 68.89±0.09 87.50±1.27 88.39±0.98

1000×60 32.57 29.74 31.42
Ionosphere 91.44±0.21 89.12±0.32 89.17±0.24
351×34 1.92 1.52 1.86
Sonar 62.49±1.22 84.08±0.00 90.39±4.39
208×60 1.45 0.72 0.75
Cancer 94.55±0.33 96.57±1.11 97.34±0.42
699×6 8.59 7.23 8.31
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