- Hydrogen from renewable power: technology outlook for the energy transition. Abu Dhabi: International Renewable Energy Agency; 2018.
- Hydrogen: a renewable energy perspective. Abu Dhabi: International Renewable Energy Agency; 2019.
- Salkuyeh YK, Saville BA, MacLean HL. Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. Int J Hydrogen Energy 2017;42(30):18894e909.
- عبدالعلی پورعدل م، رستمی م، خلیل آریا ش، یاری م، تحلیل انرژی و اگزرژی یک سیستم بر مبنای انرژی زمینگرمایی برای تولید همزمان توان، آب شیرین، گرمایش و هیدروژن. مجلۀ مهندسی مکانیک دانشگاه تبریز.1400، د. 51، ش. 3، ص. 135-144.
- نامی ح، استفاده از اتلاف حرارتی توربین گازهای نصب شده در تاسیسات دریایی برای تولید هیدروژن و گرما توسط الکترولایزر آلکالین. مجلۀ مهندسی مکانیک دانشگاه تبریز . 1401، د. 52، ش. 1، ص. 313-319.
- El-Emam RS, € Ozcan H. Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. J Clean Prod 2019;220: 593e609.
- Touili S, Amjoud M, Mezzane D, Kutnjak Z, Luk’Yanchuk IA, Jouiad M, El Marssi M. An overview of low-carbon hydrogen production via water splitting driven by piezoelectric and pyroelectric catalysis. Int J Hydrogen Energy 2024;78:218e235.
- Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 2017;67:597e611.
- Guo L, Chen Y, Su J, Liu M, Liu Y. Obstacles of solar-powered photocatalytic water splitting for hydrogen production: a perspective from energy flow and mass flow. Energy 2019;172:1079e86.
- Xiao L, Wu SY, Li YR. Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions. Renew Energy 2012;41:1e12.
- Safari F, Dincer I. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Convers Manag 2020;205:112182.
- Mehrpooya, M., Habibi, R. A review on hydrogen production thermochemical water-splitting cycles. J Clean Prod, 123836, 2020.
- Ozbilen A, Dincer I, Rosen MA. Environmental impact assessment of nuclear assisted hydrogen production via CueCl thermochemical cycles. Sustain. Cities Soc. 2013;7:16e24.
- Naterer GF, Dincer I, Zamfirescu C. Hydrogen production from nuclear energy. London: Springer; 2013.
- Ishaq H, Dincer I. A comparative evaluation of three CuCl cycles for hydrogen production. Int J Hydrogen Energy 2019;44(16):7958e68.
- Sadeghi S, Ghandehariun S. Thermodynamic analysis and optimization of an integrated solar thermochemical hydrogen production system. Int J Hydrogen Energy 2020;45(53):28426e36.
- Ghandehariun S, Rosen MA, Naterer GF. Pinch analysis for recycling thermal energy in the Cu-Cl cycle. Int J Hydrogen Energy 2012;37:16535e41.
- Ghandehariun S, Naterer GF, Rosen MA, Wang Z. Indirect contact heat recovery with solidification in thermochemical hydrogen production. Energy Convers Manag 2014;82:212e8.
- Ghandehariun S, Rosen MA, Naterer GF. Direct contact heat transfer from molten salt droplets in a thermochemical water splitting process of hydrogen production. Int J Heat Mass Tran 2016;96:125e31.
- Ghandehariun S, Wang Z, Naterer GF, Rosen MA. Experimental investigation of molten salt droplet quenching and solidification processes of heat recovery in thermochemical hydrogen production. Appl Energy 2015;157:267e75.
- Sadeghi S, Ghandehariun S, Naterer GF. Exergoeconomic and multi-objective optimization of a solar thermochemical hydrogen production plant with heat recovery. Energy Convers Manag 2020;225:113441.
- Ozcan H, Dincer I. Energy and exergy analyses of a solar driven MgeCl hybrid thermochemical cycle for co-production of power and hydrogen. Int J Hydrogen Energy 2014;39(28):15330e41.
- Sayyaadi H, Boroujeni MS. Conceptual design, process integration, and optimization of a solar CuCl thermochemical hydrogen production plant. Int J Hydrogen Energy 2017;42(5):2771e89.
- Ishaq H, Dincer I. Design and performance evaluation of a new biomass and solar based combined system with thermochemical hydrogen production. Energy Convers Manag 2019;196:395e409.
- Ishaq H, Dincer I. A comparative evaluation of OTEC, solar and wind energy based systems for clean hydrogen production. J Clean Prod 2020;246:118736.
- Temiz M, Dincer I. Enhancement of solar energy use by an integrated system for five useful outputs: system assessment. ustain. Energy Technol. Assess. 2021;43:100952.
- Vignarooban K, Xu X, Arvay A, Hsu K, Kannan AM. Heat transfer fluids for concentrating solar power systemsea review. Appl Energy 2015;146:383e96.
- Ghandehariun S, Naterer GF, Dincer I, Rosen MA. Solar thermochemical plant analysis for hydrogen production with the copperechlorine cycle. Int J Hydrogen Energy 2010;35(16):8511e20.
- Pourrahmani H, Moghimi M. Exergoeconomic analysis and multi-objective optimization of a novel continuous solar driven hydrogen production system assisted by phase change material thermal storage system. Energy 2019;189:116170.
- Xu C, Wang Z, Li X, Sun F. Energy and exergy analysis of solar power tower plants. Appl Therm Eng 2011;31(17e18):3904e13.
- Balta MT, Dincer I, Hepbasli A. Comparative assessment of various chlorine family thermochemical cycles for hydrogen production. Int J Hydrogen Energ 2016;41(19):7802e13.
- Li X, Kong W, Wang Z, Chang C, Bai F. Thermal model and thermodynamic performance of molten salt cavity receiver. Renew Energy 2010;35(5):981e8.
- National Institute of Standards and Technology (NIST). http://webbook.nist.gov/chemistry/form-ser.html. [Accessed 12 January 2021].
- Bejan A, Tsatsaronis G, Moran MJ. Thermal design and optimization. John Wiley & Sons; 1995.
- Couper JR, Penney WR, Fair JR. Chemical process equipment-Selection and design. Revised second ed. Gulf Professional Publishing; 2009.
- Mosaffa AH, Farshi LG, Ferreira CI, Rosen MA. Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers. Energy Convers Manag 2016;117: 442e53..
- Mosaffa AH, Mokarram NH, Farshi LG. Thermoeconomic analysis of a new combination of ammonia/water power generation cycle with GT-MHR cycle and LNG cryogenic exergy. Appl Therm Eng 2017;124:1343e53.
- Ameri M, Ahmadi P, Hamidi A. Energy, exergy and exergoeconomic analysis of a steam power plant: a case study. Int J Energy Res 2009;33(5):499e512.
- Ozbilen AZ. Development, analysis and life cycle assessment of integrated systems for hydrogen production based on the copper-chlorine (Cu-Cl) cycle. Doctoral dissertation. 2013.
- Ma Y, Morozyuk T, Liu M, Yan J, Liu J. Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach. Applied Energy 2019;242:1134e54.
- An XH, Cheng JH, Su T, Zhang P. Determination of thermal physical properties of alkali fluoride/carbonate eutectic molten salt. AIP Conference Proceedings 2017;1850(1):070001.
- Orhan MF, Dincer I, Naterer GF. Cost analysis of a thermochemical CueCl pilot plant for nuclear-based hydrogen production. Int J Hydrogen Energy 2008;33(21):6006e20.
- Zhuang X, Xu X, Liu W, Xu W. LCOE analysis of tower concentrating solar power plants using different molten-salts for thermal energy storage in China. Energies 2019;12(7):1394.
- Ishaq H and Dincer I. Design and performance evaluation of a new biomass and solar based combined system with thermochemical hydrogen production. Energy Convers Manag 2019;196:395–409.
- Siddiqui O, Ishaq H, and Dincer I. A novel solar and geothermal-based trigeneration system for electricity generation, hydrogen production and cooling. Energy Convers Manag 2019;198:111812.
- Lin M and Haussener S. Techno-economic modeling and optimization of solar-driven high-temperature electrolysis systems. Sol. Energy 2017;155:1389e1402.
- Yadav D and Banerjee R. Economic assessment of hydrogen production from solar driven high-temperature steam electrolysis process. J. Clean. Prod. 2018;183:1131e1155.
- Moser M, Pecchi M, and Fend T. Techno-Economic Assessment of Solar Hydrogen Production by Means of Thermo-Chemical Cycles. Energies 2019;12:3.
|