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Abstract

The focus of this study is to examine the effects of velocity-slip on the surface of the moving wedge on the

laminar boundary layer flow of a viscous fluid in addition to the heat transfer across the moving wedge. When

fluid and solid interact, velocity-slip effects may have a major impact on most industrial applications. It is
considered that the mainstream and wedge velocities and the shape of the velocity-slip depend on the distance

along the boundary layer wall. These equations offer the essence of a set of ordinary differential equations for the

momentum and thermal boundary layer systems. The numerical solutions reveal that when the velocity-slip and
unstable parameters increase, the thermal and momentum boundary layers narrow. The momentum boundary

layer domain also appears to be reduced due to pressure gradient effects. There is also little variation in the

thermal boundary layers as the wall shear stress (skin-friction) and temperature gradient curves grow flat with
increasing velocity-slip parameter. The physical mechanisms underlying these remarkable results are further upon.
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1. Introduction

Due to its widespread practical applications in filament spinning, power generation, the polymer industry, gas
turbine rotors, flow measuring and pumping, rotating machinery, information storage, electronic gadgets, and crystal
growth, laminar boundary layer flow of a viscous and incompressible fluid has been studied for decades. During these
processes, fluid is used to cool the stretched sheet or filaments, as well as to impart other desirable qualities onto the
sheet. Controlling the rate at which sheets or filaments stretch is vital. The method of stretching should be slow
enough so that the sheet does not break and the end result has the desired quality. It must also ensure that the sheet
keeps flat during the process. In a consequence, these sheets/filaments must be drawn in the space between supported
porous blocks or Newtonian fluid [1, 2, 11, 31].

Since it has numerous applications such heat exchanger simulation, cooling and heating system design, thermal
optimization, and electric fan simulation, the forced convective heat transfer boundary layer flow is taken into con-
sideration. Further applications for forced convection include high-temperature mechanisms, the flow of refined oil
through porous rocks, the extraction of energy from geothermal material, the separation of liquids and solids, and
more. The flow of heat between a flowing Newtonian fluid and a wedge surface at a different temperature is known
as convection heat transfer. Usually, there are two mechanisms involved in the heat exchange from the fluid to the
surface or vice versa. First, when an external force is applied, heat is transferred by the motion of fluid particles,
which may be generated by a pump, fan, or density gradients. Secondly, heat is transferred by the interaction between
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the motion of particles and the moving fluid layer subsequent to the moving surface. The temperature adjacent to
the surface is certainly the same as the surface when the fluid flows over it. But velocity and temperature away from
a surface fail to change. The hydrodynamic and thermal boundary layers, respectively, are reached by a narrow zone
where the distribution of temperature and velocity switch from the wedge wall to the free stream [34]. Nakayama
et al. [25] addressed the forced convective boundary layer flow of a fluid with associated heat transfer over a flat
plate in a highly dense porous medium; the findings of a local comparable approach were higher compared to direct
finite-difference solutions. Salleh et al. [32] investigate the steady forced convection stagnation point boundary layer
flow and Newtonian heating, taking into account the surface heat transfer that is proportional to a local temperature.
Heat transfer and steady stagnation boundary layer flow in a laminar liquid flow caused by a stretched sheet have been
analyzed by Bachok et al. [5]. Due to the presence of nanofluid in the porous media and the inclusion of Brownian
motion, Khan and Pop [20] have investigated the transmission of heat. Grosan and Pop’s [15] numerical analysis of
forced convective boundary layer flow of nanofluid and heat transfer over a needle with a wall temperature variation
revealed that an increase in the particle volume fraction causes an increase in the thickness of both the thermal and
momentum boundary layers. The local Nusselt number, or temperature gradient, is found to be decreasing when the
Brownian motion and thermophoresis parameters increase, according to Ibrahim and Shanker’s [17] analysis of the ef-
fects of thermal radiation caused by stretching sheets in nanofluids and an externally applied magnetic field. boundary
layer fluxes caused by forced convection. Thermal diffusion and inclined magnetic field effects on convection flow have
been studied by Kaladhar et al. [18]. Their findings indicate that temperature profiles are found to be decreased while
velocity profiles are increased. Researchers Sheikholeslami and Chamkha [35] have examined forced convective heat
transfer in nanofluid boundary layer flow while taking Marangoni convection and magnetic field into account. Their
findings demonstrate that as Marangoni effects increase, it also increases the hydraulic boundary layer’s thickness.
Through their study of an unsteady convective slip flow of Casson fluid and heat transfer through a permeable vertical
plate, Parmar and Jain [28] have demonstrated that the slip-velocity plays a major role in increasing the thickness
of the boundary layer. Mishra et al. [22] studied Navier’s slip effects on non-Newtonian nanofluid boundary layer
flow over a continuously stretching surface using Buongiorno’s model with passive control. They found that the re-
sults with active control of wall nanoparticles have a greater influence on Nusselt number instead of Brownian diffusion.

On the other hand, the fundamental understanding of Navier assumption is that slip boundary condition must be
utilized which is essential in most of the applications and also in both experimental and theoretical studies [9, 10]
confirm that the velocity slip occurs when the fluid-solid surface interaction takes place. The slip boundary condition
suggests that both slip velocity and velocity gradient have a linear variation on the wall [4, 23, 26, 29, 37]. Nevertheless,
there are applications where the velocity-slip condition is not satisfied and is, therefore, replaced by a partial slip
condition [14]. Partial velocity slip happens on the boundary when the fluid is particulate, as in foams, emulsions,
polymer solutions, suspensions, and so on. When velocity-slip, a phenomenon known as the non-adherence of fluid
particles to the stretching boundary occurs, as is seen in several circumstances [33]. By applying the Chebyshev
collocation method, Akolade [3] has examined suction/injection, variable thermophysical influence, and squeezing flow
of a magnetised Casson fluid model between two discs subject to velocity slip and convective surface conditions. The
author has convincingly demonstrated that the results presented are applicable to parallel disc gate valves, piston
locomotion in rings, thermoforming, injection moulding, and other related applications. The fluid flow and associated
heat transfer via an oscillating plate in a porous media that accounts for thermal diffusion heat production have been
studied by Sheikholeslami et al. [35]. Bhattacharyya et al. [7] showed the effect of slip velocity on a uniformly applied
magnetic field in a vertical direction to the boundary layer over a flat plate in a porous material. Two-dimensional
flow of a viscous fluid over a wedge in a porous medium has recently been examined by Sayyed et al. [33], who took
into account the velocity slip condition.

An unsteady flow is usually the start-up motion or allowed impulsively to move from the rest or transition from
one state to another which has significant applications such as missile aerodynamics, influtter phenomena that involve
wings, in turbomachines, in aircraft reactions to atmospheric variations, propulsion of fish, etc. During the last few
years, it has been also a topic of interest in the fields of biomedical engineering (flow through the arteries, etc).
However, the unsteady theory is poorly developed compared to a steady flow, mainly because the velocity component
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depends on an extra independent variable in the problem that increases the mathematical complexity. These unsteady
effects in the model significantly alter the nature of the flow response including transient or non-parallel flow effects.

The assumption is made that the pressure gradient in the flow field remains constant in the normal direction, result-
ing in the pressure distribution being dependent solely on the streamwise direction, denoted as x. The derivation of the
pressure distribution may be obtained from the Prandtl unsteady boundary layer equations, as they are dependent on
the unsteady variable that governs the mainstream flow [6]. In the context of unsteady laminar two-dimensional flow,
it is commonly assumed that the variation of the mainstream flow may be approximated by a power function of the
distance. This power function is expressed as A(t)xm, where x represents the distance along the surface of the wedge,
and m is a constant parameter. The Blasius flow is observed in the condition of steady flow with m = 0, whereas the
stagnation point flow is analyzed when m = 1. The Falkner-Skan equation is utilized to describe the characteristics
of an unstable boundary layer. Dhanak and Duck [12] and Duck et al. [13] have demonstrated that the Falkner-Skan
type flows, resulting from boundary layer flows, encompass a wider range of significant flow phenomena. This has
been achieved by utilizing the mainstream velocity in the aforementioned formulation. When the pressure gradient
in the boundary layer is equal to the gradient of the mainstream flow, a connection could be established between the
Prandtl boundary layer equations and the flow under the inviscid flow core. Hence, the aforementioned constant m
is now associated with the pressure gradient. The inclusion of the arbitrary parameter m in the governing equation
provides an extra factor that contributes to the overall complexity of the problem. When the value of m is less than
zero and greater than zero, the flow is associated with an unfavourable and a favourable pressure gradient, respectively.
Furthermore, the moving wedge also plays an important role in unsteady boundary layer flow, with a variable pressure
gradient. Kudenatti et al. [21] have obtained double solution structures for m ∈ [0, 1] in their two-dimensional lami-
nar boundary layer flow and forced convection heat transfer. Analogous to the above approximation, the temperature
distribution T (x, t) is also approximated as BA(t)x2m−1, where B is some constant related to temperature. In this
study, we investigate the flow of a boundary layer and the convective heat transfer of a fluid across a wedge surface.
Our aim is to examine this phenomenon for all potential values of m, as self-similar solutions to the system have been
identified. The subsequent sections of this paper will provide a comprehensive analysis of these solutions.

In the studies of [30, 38] on the classical Falkner-Skan equation obtained from the steady boundary layer equations
with the mainstream flow proportional to xm, it has been shown that the problem admits a self-similar boundary-layer
flows. In addition to this, the unsteady boundary layer equations are also expected to admit similarity-type solutions
when the mainstream flow is of the same form. It is known that the steady Falkner-Skan equation exhibits interesting
boundary layer solutions for different values of m, and some of the solutions are oscillatory in nature [16, 27]. For an
unsteady parameter K ̸= 0, the existence of the unsteady solutions cannot be taken for granted. However, we are less
interested in the global nature of the boundary layer, rather we focus more on obtaining the solutions of the problem
involving unsteadiness and pressure gradient, and that admit aforementioned class.

The presentation of the paper is as follows. In section 2, we give the mathematical formulation of the problem in
question along with detailed derivation, similarity transformations, etc. The nonlinear partial differential equations
that model the problem are converted into a system of ordinary differential equations via the suitable similarity
transformations. Section 3 is devoted to give the detailed numerical solutions using the standard Keller-box method.
The various interesting results will be provided in section 4 followed by the conclusions in section 5.

2. Formulation

The Laminar flow of a viscous fluid and heat transfer over a floating wedge are studied. We employ the Cartesian
system, in which x− axis is taken along the stream-wise direction and y−axis be normal to it. We have taken into
account forced convective heat transfer over a wedge surface, with wedge surface temperature designated by Tw and
mainstream temperature denoted by T∞, and thus it assumes Tw ≫ T∞. This flow is addressed by the following
governing equations:

∇ · q = 0, (2.1a)
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ρ

(
∂q

∂t
+ (q · ∇)q

)
= ∇P + µ∇2q, (2.1b)

ρCp

(
∂T

∂t
+ q · ∇T

)
= k∇2T, (2.1c)

where q = (u, v) denotes the intrinsic velocity vector, u, v are velocities in x, y directions, ρ is the density of the fluid,
P denotes pressure, µ is the dynamic viscosity, Cp is the isobaric specific heat, T denotes the temperature and k is the
thermal conductivity of the fluid. For flows that have high Reynolds number, viscosity of the fluid is negligible. But,
the effect of fluid viscosity remains significant near a narrow region close to the wall of the wedge. This thin layer is
technically referred as boundary-layer. Further, for fluids with small thermal conductivity, the heat transfer through
conduction is akin to that of convection across a thin layer near the wall, known as thermal boundary-layer. Now, the
governing equations are taken in their vector form and then non-dimensionalized by the following variables

(x∗, y∗, t∗) =

(
x

L
,
y

L
,
Ut

L

)
, (u∗, v∗) =

( u
U
,
v

U

)
, P ∗ =

P

ρU2
, T ∗ =

T

∆T
, (2.2)

where U,L,∆T are the suitable reference quantities used to obtain the dimensionless velocity, length and temperature
quantities. The boundary-layer scaled version of system (2.1) can be written as

∂u

∂x
+
∂v

∂y
= 0, (2.3a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

∂2u

∂y2
, (2.3b)

0 =
∂P

∂y
, (2.3c)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

Pr

∂2T

∂y2
, (2.3d)

where ν = µ
ρ is the kinematic viscosity and Pr =

k
ρCp

UL is the ratio of thermal diffusivity to momentum diffusivity,

known as Prandtl number, (here * have been dropped for convenience). Further, from Bernoulli’s theorem it follows
that, for the flow outside the boundary-layer, we have

∂U

∂t
+ U

∂U

∂x
+

1

ρ

∂P

∂x
= 0. (2.4)

If Uw denotes the wedge velocity, the boundary conditions the system encompasses are as shown below.

when t < 0 : u = 0, v = 0, T = T∞, (2.5a)

when t > 0 : u = Uw(x, t) +Nµ
∂u

∂y
, v = 0, T = Tw, at y = 0, (2.5b)

u→ U(x, t), v = 0, T → T∞, as y → ∞ , (2.5c)

here the mainstream velocity outside the boundary-layer (U(x, t)) and the wedge velocity (Uw(x, t)) are approximated
as

U(x, t) = U∞A(t)x
m, Uw(x, t) = U0A(t)x

m, (2.6)

so that self-similar solutions exists. Here U∞, U0 are positive constants, A(t) is an arbitrary time function and m is
the exponent to which the length coordinate x must be raised in order to obtain similar velocity profiles. Also Tw
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denotes the temperature at the wall and T∞ is the ambient fluid temperature, such that Tw ≫ T∞. We now define
the following similarity variables

η =

√
(m+ 1) U

2νx
y, ψ(x, t) =

√
2νxU

m+ 1
f(η), T = T∞ +BA(t)x2m−1θ(η), (2.7)

which transforms the partial differential equation system (2.3) to a system of nonlinear coupled ordinary differential
equation as

f ′′′ + ff ′′ + β(1− f ′
2
) = K

(η
2
f ′′ + f ′ − 1

)
, (2.8a)

θ′′ + Prfθ′ − Pr(3β − 2)f ′θ = PrK
(η
2
θ′
)
, (2.8b)

when u = U(x, t)f ′ and v = −
√

(m+ 1) ν U

2x

(
f +

m− 1

m+ 1
ηf ′

)
are defined, which satisfies the continuity equation

identically. Further, the boundary conditions takes the from

at η = 0 f(η) = 0, f ′(η) = λ+Nf ′′(η), θ(η) = 1, (2.9a)

as η → ∞ f ′(η) = 1, θ(η) = 0, (2.9b)

where β =
2m

m+ 1
is the pressure gradient parameter, whose non-negative values denotes the flow is accelerated and

decelerated otherwise. Also λ =
U0

U∞
is termed as the velocity ratio parameter, it signifies direction and speed with

which the wedge moves relative to freestream. If λ = 0, the wedge is at rest and when λ < 0 the wedge moves in a
direction opposite to that of mainstream and vice-versa. Also when λ > 1, the wedge moves with a velocity faster
to mainstream and on contrary the freestream moves rapidly than the wedge if λ < 1. K is known as the unsteady

parameter defined as K = (2− β)
Um−2
∞
νm−1

A′(t)

A2(t)
.

The boundary conditions on the velocity component given in (2.9) are such that the fluid velocity on the wedge
surface decays under the influence of velocity-slip to the mainstream. In a manner quite similar, the temperature of
the fluid that is on the surface of the wedge gradually decreases until it reaches the temperature of the mainstream
some distance from the wedge.

Thus, the system (2.8)-(2.9) describes the forced convective heat transfer and the boundary layer flow over a moving
wedge in which the velocity-slip is also considered. Since the system (2.8)-(2.9) is highly nonlinear, any analytical
solution is not possible; we thus solve it numerically using the standard Keller-box method. A brief description of the
method is given in section 3.

3. Numerical procedure: Keller-box method

The above nonlinear problem has no analytical solution feasible; we therefore seek its solution by a numerical
procedure. We employ a finite difference-based technique which is often known as box method or Keller-box method
is fast and efficient technique which is unconditionally stable and has second order convergence[8, 19]. Keller-box
technique is a hybrid technique which employs finite difference method, Newton linearization and the factorization
method for its execution. The total fifth-order(3+2) equation is converted to five first order and coupled differential
equations by introducing the following variables

df

dη
= H, dH

dη
= S and

dθ

dη
= T , (3.1)

as

S ′ + fS + β
(
1−H2

)
= K

(η
2
S +H− 1

)
, (3.2a)
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T ′ + PrfT − Pr (3β − 2)H = PrK
η

2
T , (3.2b)

and the respective boundary conditions are given by

f(0) = 0, H(0) = λ+NS(0), θ(0) = 1, (3.3)

H(∞) = 1, θ(∞) = 0. (3.4)

Applying finite difference approximations using backward differences , we obtain

fi − fi−1 = d(Hi +Hi−1), (3.5a)

Hi −Hi−1 = d(Si + Si−1), (3.5b)

θi − θi−1 = d(Ti + Ti−1). (3.5c)

therefore, system (3.2) takes the form

(Si − Si−1) +
d

2
(fi + fi−1) (Si + Si−1) +

dβ

2

(
4− (Hi +Hi−1)

2)−K
(
id2 (Si + Si−1) + d (Hi +Hi−1)− 2d

)
= 0, (3.6a)

(Ti − Ti−1) + Pr
d

2
(fi + fi−1) (Ti + Ti−1)− Pr(3β − 2)d (Hi +Hi−1) = PrKid2 (Ti + Ti−1) , (3.6b)

for j = 1, 2, · · · ,M − 1, where M is number of grid points in the boundary-layer domain, d = ∆η
2 , ∆η is the grid size

in η direction. The above system (3.5)-(3.6) produces a nonlinear algebraic system of equations which is tedious to
solve. We, therefore, linearize them using Newton’s Linearization technique

[a](k+1) = [a](k) + [δa](k), (3.7)

where

a =
[
f H S T θ

]tr
. (3.8)

Substituting (3.7) into the system (3.5)-(3.6) and dropping quadratic and higher-order terms we obtain a system of
linear algebraic equations. This linearized difference equation of the above system has a block tri-diagonal structure.
In the vector form, it can be represented in matrix form as

AD = R. (3.9)

The tridiagonal structure of (3.9) can be solved by using the factorization method. The solutions D is updated at
each iteration until desired convergence is achieved. The error tolerance is set to 10−6 for all the simulations. We
performed these simulations with error tolerance 10−8, solutions were indistinguishable. Henceforth, we continued
with 10−6 for all the numerical simulations.

The following are the important derived quantities that are relevant to the present study which are given by the
skin friction co-efficient Cf and the Nusselt number Nux (temperature gradient) and are given by

Cf =
τw
ρU2

and Nux =
xqw

λ(Tw − T∞)
, (3.10)

where the shear stress τw and the heat transfer qw are given by

τw = µ

(
∂u

∂y

)
y=0

and qw = −α
(
∂T

∂y

)
y=0

, (3.11)

with α is the specific heat conductivity and µ is the fluid viscosity. Accordingly, we have

Cf =
µ

ρ

(
(m+ 1)U

2νx

) 1
2

f ′′(0), and Nux =

(
(m+ 1)xU

2ν

) 1
2

θ′(0), (3.12a)

where both f ′′(0) and θ′(0) are determined the above system and these effects shall be discussed later.
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4. Results and discussion

In the present section, we discuss various results obtained for the system (2.8)-(2.9) numerically by Keller-box
technique. We have computed the quantities of engineering interest such as velocity profiles (f ′(η)), temperature
profiles θ(η), wall shear stress f ′′(0) and Nusselt number θ′(0) for a varying range of parameters K, λ, N, β, Pr.

We now discuss the velocity and temperature profiles obtained numerically for different values of the unsteady
parameterK while keeping other parameters constant. Figure 1 displays these quantities. Note thatK = 0corresponds
to the solutions of the Falkner-Skan flow problem. We noticed from Figure 1(a) that as the unsteady K increases,
the Keller-box method predicts the thinning of the momentum boundary layer compared to the steady flow (K = 0).
This means that as K increases the velocity of fluid starts to increase and hence adheres to the wedge surface. On the
other hand, also from Figure 1(b) is clear that as K increases, the thermal boundary layer thickness becomes thicker.
The heat transfer rate is thus enhanced.
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3
4
5

 K  =  0 . 0  
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 K  =  0 . 2
 K  =  0 . 3
 K  = 0 . 4�
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( a )
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(a) Velocity profiles.
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(b) Temperature profiles.

Figure 1. Velocity (1(a) ) and temperature (1(b)) profiles for different values of the unsteady aram-
eter K at λ = 0, P r = 1, β = 0.5, N = 1.

Figure 2 shows the variation of the velocity and temperature profiles for different velocity ratio parameters λ while
while keeping the other parameters constant. Note that for negative λ (say -1 and -0.5), the wedge is moving opposite
to the mainstream flow and vice-versa. When λ < 1 the wedge velocity is faster than that of the mainstream flow
velocity, while λ > 1 case corresponds to the opposite situation. In each case of λ as shown in Figure 2(a), all the
velocity profiles approach the mainstream asymptotically in which when λ < 1 (λ > 1) these curves decay to the
mainstream from the left (right). Since the wedge and mainstream velocities are equivalent when λ = 1, no boundary
layer arises, and the momentum boundary layer may be described exactly f(η) = η for all physical parameters. Figure
2(b) shows that the thermal boundary layer is thinner and heat transport is slower than envisaged.

The variations of velocity-slip parameter N on both velocity and temperature distribution are shown in Figures
3(a) and 3(b) respectively. On the account of the velocity-slip, the flow velocity is modified near the wedge surface
but approaches asymptotically to mainstream flow. The results are seemingly similar to the solutions given in Figure
2. The effects of velocity-slip are to decrease the thickness of both boundary layers. Mukhopadhyay [24] has noticed
similar velocity profiles in a still fluid in the presence of the uniformly applied magnetic field. In the case of temperature
profiles, when N < 0 there are overshoots near the wedge surface but eventually disappear when N is increased. The
thickness of thermal boundary layer is again found to be thinning for increasing N .

To continue, we will look into how the pressure gradient influences the boundary layer flow and the unsteady forced
convection heat transfer over a moving wedge. Figure 4(a) depicts the flow trend for favourable pressure gradient β
keeping other parameters constant. It is clear that an increasing value of β, increases the flow speed which makes
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(a) Variation of velocity profiles.
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(b) Variations in thermal velocity profiles.

Figure 2. Variation of velocity and thermal profiles for different λ at K = 0.25, P r = 1, β =
0.5, N = 1.
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Figure 3. Variation of velocity and thermal profiles for different N at K = 0.25, P r = 1, β =
0.5, λ = 0.5.

thinning of the boundary layer thickness. The velocity in the confinement of the boundary-layer approaches that of
mainstream asymptotically. Since, the velocity gradient on the surface is a function of both λ and N , the initiation
of velocity is rather different for different pressure gradient. On boundary layer thickness increases for enhanced
accelerated flows as shown in Figure 4(b). When pressure gradient parameter is as large as 1, there is a overshoot
(θ(η) > 1) in the thermal boundary layer which further enhances the heat transfer rate. Fluid velocity increases
as viscosity effects increase and temperature lowers. The figure further confirms that the thermal and momentum
boundary layer thicknesses are analogous since Pr = 1.

We now study the effects of Prandtl number on the forced convection heat transfer. We see that as equation(8a)
is independent of Pr, no changes are observed in velocity profiles; hence, have plotted the temperature profiles for
varying Prandtl number. The velocity-slip on the surface appears to have little influence on heat transfer. The thermal
boundary layer becomes smaller as the Prandtl number increases. In general, the higher the Prandtl number, the bigger
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Figure 4. Variation of velocity and thermal profiles for different β at K = 0.25, P r = 1, N =
1.5, λ = 0.5.

the thermal diffusivity relative to momentum diffusivity and, as a result, the quicker the rate of heat transfer. As seen
in Figure 5, this typically decreases the thickness of the thermal boundary layer.
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Figure 5. Variation of temperature
for different values of Prandtl num-
ber Pr at K = 0.25, β = 0.5, N =
1.5, λ = 0.5.
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Figure 6. Variation of wall shear
stress (f ′′(0)) and Nusselt number
(θ′(0)) values as a function of un-
steady parameterK for Pr = 1, β =
0.5, N = 1, λ = 0.7.

We now discuss most of our results in a broader structure in terms of the wall shear stress (skin-friction) f ′′(0) and
temperature gradient(Nusselt number) θ′(0). Figure 6 shows these variations when Pr is increased from zero. It is
noticed that, f ′′(0) is always positive while is negative. The curves for f ′′(0) is almost flat thereby showing a little
variation. The velocity profiles produced in Figure 1(a) can be confirmed that also a little variation in the velocity
profiles although K ∈ [0, 0.4] have been considered.
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Figure 7 depicts that there is a variation in f ′′(0) and θ′(0) or different values of N . The numerical results show
that for negative N values, the visible difference can be seen while for positive N values, both results become almost
flat thereby showing a constant variation. Thus, to have the significant velocity-slip effects, the value of N should be
sufficiently small in the model. The wall shear stress and the Nusselt number are given in Figure 8 show that when
the velocity ratio λ is increased from -1, the decreases gradually to a negative infinity while varies marginally. Because
the mainstream flow velocity is significantly faster than the wedge velocity, the skin-friction is always decreasing. This
is due to the fact that the wedge velocity is significantly lower. When λ increases, there is a gradual enhancement in
the heat transfer.

- 1 1 3
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 � ' ( 0 )f ''(
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N
Figure 7. Variation of wall shear
stress (f ′′(0)) and Nusselt number
(θ′(0)) values as a function of Knud-
sen number N for Pr = 1, β =
0.5,K = 0.25, λ = 0.5.
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Figure 8. Variation of wall shear
stress (f ′′(0)) and Nusselt number
(θ′(0)) values as a function of ve-
locity ratio parameter λ for Pr =
1, β = 0.5,K = 0.25, N = 1.

5. Conclusions

We have presented the forced convective heat transfer and boundary layer flow of a Newtonian fluid over a wedge
in which the velocity-slip is also accounted in the study. We have transformed the governing equations to a system
of first order nonlinear ordinary differential equations and have solved numerically using Keller-box method. The
various results on velocity, temperature profiles and wall-shear stress and temperature gradients are presented. Our
numerical results show that the thicknesses of momentum (thermal) boundary layer are found to be thinner (thicker)
for increasing unsteady, pressure gradient and velocity ratio parameters. While the thickness for both boundary layers
is thinner for increasing velocity-slip parameter. Further, the velocity and temperature gradients on the wall are found
to increase for unsteadiness of the flow and the opposite trend is noticed for velocity-slip parameter. The effect of
velocity-slip is to enhance the heat transport in the boundary layer by transferring some of wedge heat to the fluid.

Acknowledgments

Authors would like to thank the Editor and an anonymous reviewer for the useful comments which improved the
quality of the article.



Unco
rre

cte
d Pro

of

REFERENCES 11

References

[1] T. A. Abdelhafez, Skin friction and heat transfer on a continuous flat surface moving in a parallel free stream,
International Journal of Heat and Mass Transfer, 28 (1985), 1234-1237.

[2] N. Afzal, A. Badaruddin, and A. A. Elgarvi, Momentum and heat transport on a continuous flat surface moving
in a parallel stream, International Journal of Heat and Mass Transfer, 36 (1993), 3399-3403.

[3] M. T. Akolade, Thermo-physical impact on the squeezing motion of non-Newtonian fluid with quadratic convection,
velocity slip, and convective surface conditions between parallel disks, Partial Differential Equations in Applied
Mathematics, 4 (2021), 100056.

[4] P. D. Ariel, T. Hayat, and S. Asghar, The flow of an elastico-viscous fluid past a stretching sheet with partial
slips, Acta Mechanics, 187 (2006), 29-35.

[5] N. Bachok, A. Ishak, and I. Pop, Melting heat transfer in boundary layer stagnation-point flow towards a stretch-
ing/shrinking sheet, Physics Letters A, 374 (2010), 4075-4079.

[6] G. K. Batchelor, An introduction to fluid dynamics, first ed., Cambridge University Press, (1967).
[7] K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, MHD boundary layer slip flow and heat transfer over a

flat plate, Chinese Physics Letters, 28 (2011), 024701-024704.
[8] K. Cebeci and P. Bradshaw, Momentum transfer in boundary layers, Mc-Graw Hill, New York, (1977).
[9] N. V. Churaev, V. D. Sobolev, and N. Somov, Slippage of liquids over lyophobic solid surfaces, Journal of Colloidal

and Interface Science, 97 (1984), 574-581.
[10] V. S. J. Craig, C. Neto, and D. R. M. Williams, Shear-dependent boundary slip in an aqueous Newtonian liquid,

Physical Review Letters, 87 (2001), 054504/1-4.
[11] L. J. Crane, Flow past a stretching plate, Journal of Applied Mathematics and Physics, 21 (1970), 645-647.
[12] P. W. Duck and S. L. Dry, On a class of unsteady, nonparallel, three-dimensional disturbances to boundary-layer

flows, Journal of Fluid Mechanics, 441 (2001), 31-65.
[13] P. W. Duck, S. R. Stow, and M. R. Dhanak, Boundary-layer flow along a ridge: alternatives to the Falkner-Skan

solutions, Philosophical Transactions of the Royal Society A, 358 (2000), 3075-3090.
[14] R. Ellahi, S. Z. Alamri, A. Basit, and A. Majeed, Effects of MHD and slip on heat transfer boundary layer flow

over a moving plate based on specific entropy generation, Journal of Taibah University for Science, 12 (2016),
476-482.

[15] T. Grosan and I. Pop, Forced convection boundary layer flow past non-isothermal thin needles in nanofluids,
ASME-Journal of Heat Transfer, 133 (2011), 054503.

[16] S. P. Hastings and W. C. Troy, Oscillating solutions of the Falkner-Skan equation for negative β, SIAM Journal
on Mathematical Analysis, 18 (1987), 422-429.

[17] W. Ibrahim and B. Shanker, Magnetohydrodynamic boundary layer flow and heat transfer of a nanofluid over
non-isothermal stretching sheet, ASME-Journal of Heat Transfer, 136 (2014), 051701.

[18] K. Kaladhar, K. Madhusudhan Reddy, and D. Srinivasacharya, Inclined magnetic field and Soret effects on mixed
convection flow between vertical parallel plates, Journal of Applied Analysis and Computation, 9(6) (2019), 2111-
2123.

[19] H. B. Keller, Numerical methods in boundary layer theory, Annual Review of Fluid Mechanics, 10 (1978), 417-428.
[20] W. A. Khan and I. Pop, Free convection boundary layer flow past a horizontal flat plate embedded in a porous

medium filled with a nanofluid, ASME-Journal of Heat Transfer, 133 (2011), 094501.
[21] R. B. Kudenatti, N. E. Misbah, and M. C. Bharathi, Linear Stability of Momentum Boundary Layer Flow and

Heat Transfer Over a Moving Wedge, Journal of Heat Transfer-Transactions of the ASME, 142(6) (2020), 061804.
[22] M. K. Mishra, G. S. Seth, and R. Sharma, Navier’s slip effect on mixed convection flow of non-Newtonian

nanofluid: Buongiorno’s model with passive control approach, International Journal of Applied and Computational
Mathematics, 5 (2019), 107.

[23] S. Mukhopadhyay and R. S. R. Gorla, Effects of partial slip on boundary layer flow past a permeable exponential
stretching sheet in presence of thermal radiation, Heat and Mass Transfer, 48 (2012), 1773-1781.

[24] S. Mukhopadhyay, Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suc-
tion/blowing and thermal radiation, Ain Shams Engineering Journal, 4 (2013), 485-491.



Unco
rre

cte
d Pro

of

12 REFERENCES

[25] A. Nakayama, Kokudai, and H. Koyama, Non-Darcian boundary layer flow and forced convective heat transfer
over a flat plate in a fluid-saturated porous medium, ASME-Journal of Heat Transfer, 112 (1990), 157-162.

[26] C. L. Navier and M. H. Memoire, Sur les lois du mouvement des fluids, Mem. Academic Science Institute of
France, 6 (1823), 389–440.

[27] B. Oskam and A. E. P. Veldman, Branching of the Falkner-Skan solutions for λ < 0, Journal of Engineering
Mathematics, 16 (1982), 295-308.

[28] A. Parmar and S. Jain, Exploration of heat and mass transfer in the convective slip flow of non-Newtonian Casson
fluid, International Journal of Applied and Computational Mathematics, 4 (2018), 67.

[29] J. Rao and K. R. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel, Acta
Mechanica, 135 (1999), 113–126.

[30] P. L. Sachdev, R. B. Kudenatti, and N. M. Bujurke, Exact analytic solution of boundary value problem for the
Falkner-Skan equation, Studies in Applied Mathematics, 120 (2008), 1-16.

[31] B. C. Sakiadis, Boundary-layer behavior on continuous solid surfaces, Journal of AICHE, 7 (1961), 26-28.
[32] M. Z. Salleh, R. Nazar, and I. Pop, Forced convection boundary layer flow at a forward stagnation point with

Newtonian heating, Chemical Engineering Communications, 196 (2009), 987-996.
[33] S. R. Sayyed, B. B. Singh, and B. Nasreen, Analytical solution of MHD slip flow past a constant wedge within a

porous medium using DTM-Pade, Applied Mathematics and Computation, 321 (2018), 472-482.
[34] H. Schlichting and K. Gersten, Boundary Layer Theory, 8th ed., Springer, New York, 2004.
[35] M. Sheikholeslami and A. J. Chamkha, Influence of Lorentz forces on nanofluid forced convection considering

Marangoni convection, Journal of Molecular Liquids, 225 (2017), 750-757.
[36] M. Sheikholeslami, H. R. Kataria, and A. S. Mittal, Effect of thermal diffusion and heat-generation on MHD

nanofluid flow past an oscillating vertical plate through porous medium, Journal of Molecular Liquids, 257 (2018),
12-25.

[37] C. Y. Wang, Analysis of viscous flow due to a stretching sheet with surface slip and suction, Nonlinear Analysis:
Real World Applications, 10 (2009), 375-380.

[38] H. T. Yang and L. C. Chien, Analytic solutions of the Falkner-Skan equation when β = -1 and γ = 0, SIAM
Journal on Applied Mathematics, 29 (1975), 558-569.


	1. Introduction
	2. Formulation
	3. Numerical procedure: Keller-box method
	4. Results and discussion
	5. Conclusions
	Acknowledgments 
	References



