| تعداد نشریات | 45 |
| تعداد شمارهها | 1,422 |
| تعداد مقالات | 17,532 |
| تعداد مشاهده مقاله | 56,751,549 |
| تعداد دریافت فایل اصل مقاله | 18,817,356 |
شناسایی مناطق مستعد سیلخیزی در حوضه آبریز یامچی با پایش شاخصهای طیفی و دادههای ماهوارهای | ||
| هیدروژئومورفولوژی | ||
| دوره 12، شماره 44، مهر 1404، صفحه 150-132 اصل مقاله (1.69 M) | ||
| نوع مقاله: کاربردی | ||
| شناسه دیجیتال (DOI): 10.22034/hyd.2025.66392.1784 | ||
| نویسندگان | ||
| بتول زینالی* 1؛ مهدی فروتن2 | ||
| 1استاد آب و هواشناسی گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی | ||
| 2 دانشجوی دکتری آب و هواشناسی، گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل. | ||
| چکیده | ||
| این پژوهش با رویکردی کاربردی و تحلیلی، به شناسایی نواحی مستعد سیلخیزی در حوضه آبخیز یامچی پرداخته است. در ابتدا، دادههای دبی روزانه ایستگاههای لای، نیر و یامچی طی سالهای 2014 تا 2021 از شرکت آب منطقهای استان اردبیل جمعآوری شد. سپس، پارامترهای محیطی مؤثر شامل شیب زمین، فاصله از آبراهه، کاربری اراضی و رطوبت خاک در محیط ArcGIS و گوگل ارث انجین ترسیم شدند. همچنین، شاخصهای طیفی NDWI، AWEI، WRI و LSWI از تصاویر لندست 8 استخراج گردید. پس از استانداردسازی متغیرها، مدل جنگل تصادفی رگرسیونی با 100 درخت تصمیم آموزش داده شد. 70 درصد دادهها برای آموزش و 30 درصد برای آزمون مدل استفاده شد. عملکرد مدل با شاخصهای آماری R² و MSE به ترتیب برابر با 9353/0 و 000210/0 ارزیابی شد. در نهایت نواحی مستعد سیلخیزی شناسایی گردیدند. بهمنظور اعتبارسنجی، رویداد سیل آوریل 2017 بهعنوان نمونه موردی تحلیل شد. نتایج نشان داد که بخش شمالی حوضه، به دلیل ارتفاع زیاد، شیب تند، رطوبت خاک ۳۵ درصد و مقادیر بالای AWEI و WRI، بیشترین پتانسیل برای وقوع سیلخیزی را دارد. در مقابل، نواحی مرکزی و جنوبی به علت شیب ملایمتر و رطوبت کمتر خاک، احتمال کمتری برای سیلخیزی نشان دادند. مدل جنگل تصادفی صحت این الگو را تأیید کرد و عملکرد آن با منحنی ROC و مقدار AUC برابر با 616/0، قابل قبول ارزیابی شد. تحلیل دادههای راداری نیز نشان داد که بازتاب سیگنالها در مناطق شمالی، پیش و پس از وقوع سیلاب، تغییر محسوسی داشته و بیانگر تمرکز منابع آبی در این بخش از حوضه است. | ||
| کلیدواژهها | ||
| سیل؛ صدک 99%؛ شاخصهای طیفی؛ جنگل تصادفی (RF)؛ حوضه آبخیز یامچی اردبیل | ||
| مراجع | ||
|
Abdolazimi, H., Roshun, S. H., Shamsnia, S. A., & Shahinifar, H. (2021). Identification of potential areas to flood inundation in Shiraz city using TOPSIS-GIS. Hydrogeomorphology, 7(25), 159-139. https://doi.org/10.22034/hyd.2021.43413.1565(in persian). Adnan, M. S. G., Dewan, A., Zannat, K. E., & Abdullah, A. Y. M. (2019). The use of watershed geomorphic data in flash flood susceptibility zoning: A case study of the Karnaphuli and Sangu river basins of Bangladesh. Natural Hazards, 99(2), 425–448. https://doi.org/10.1007/s11069-019-03749-3. Ahmadzadeh, H., Saeedabadi, R., & Noori, E. (2015). A study and zoning of the areas prone to flooding with an emphasis on urban floods (Case study: City of Maku). Hydrogeomorphology, 2(2), 1-24. https://dor.isc.ac/dor/20.1001.1.23833254.1394.2.2.1.0(in persian). Asghari Saraskanroud, S., Khonkham, S., & Abdi, O. (2024). Evaluation of water indicators using Landsat and Sentinel satellite images (Case area: Zaribar Lake). Remote Sensing and GIS Applications in Environmental Sciences, 4(12), 115–95. https://doi.org/10.22034/rsgi.2024.64194.1111(in persian). Asghari, S., Jalilyan, R., Pirozineghad, N., Madadi, A., & Yadeghari, M. (2020). Evaluation of water extraction indices using Landsat satellite images (Case study: Gamasiab River of Kermanshah). Journal of Geographical Studies, 20(58), 53-70. https://doi.org/10.29252/jgs.20.58.53(in persian). Azadtalab, M., Shahabi, H., Shirzadi, A., & Chapi, K. (2020). Flood hazard mapping in Sanandaj using combined models of statistical index and evidential belief function. Motaleate Shahri, 9(36), 27-40. https://doi.org/10.34785/J011.2021.801(in persian). Chezgi, J., & Poyan, S. (2024). Determining flood-prone areas using machine learning models in the Shahrestank Watershed Area of Khosef City. Journal of Water Management and Soil Erosion in Iran, 17(63), 4. Retrieved from http://jwmsei.ir/article-1-1127-fa.html(in persian). Dasallas, L., Kim, Y., & An, H. (2019). Case study of HEC-RAS 1D–2D coupling simulation: 2002 Baeksan flood event in Korea. Water, 11(10), 2048. https://doi.org/10.3390/w11102048. Faraji, M., & Fatemi, B. (2022). Comparative analysis of remote sensing water indexes for wetland water body monitoring using Landsat images and the Google Earth Engine platform (Case study: Meighan Wetland, Iran). Journal of Geomatics Science and Technology, 10(2), 39–62. http://jgit.kntu.ac.ir/article-1-871-fa.html (in persian). Feyzolahpour, M. (2024). Investigating the flood-affected areas of Khuzestan in the period from 7 March 2019 to 24 April 2019 using NDVI, NDBaI, and NDWI indices and analyzing the degradation process of Hourol Azim wetland from 2000 to 2023 using Random Forest Model (RTC). Geography and Human Relationships, 6(4), 423–449. https://doi.org/10.22034/gahr.2023.413223.1931(in persian). Hemmati, M., Shahnazi, M., Ahmadi, H., & Salarjazi, M. (2017). Flood peak flow simulation and determination of flood source area in the Qaranqu watershed using hydrological Mod-Clark model and GIS. Irrigation and Water Engineering, 7(4), 65-80. Retrieved from https://www.waterjournal.ir/article_74156.html?lang=en(in persian). Jahangir, M. H., Mousavi Reineh, S. M., & Abolghasemi, M. (2019). Spatial prediction of flood zonation mapping in Kan River Basin, Iran, using artificial neural network algorithm. Weather and Climate Extremes, 25, 100215. https://doi.org/10.1016/j.wace.2019.100215. Jalaliyan, S. I. (2022). Evaluating and zoning flooding on a temporal and spatial scale (Study Area: Gorgan River Watershed in Golestan Province). Geographical Planning of Space, 11(42), 143-162. https://doi.org/10.30488/gps.2020.213834.3157(in persian). Javadi, F., Rezayan, S., & Jozi, S. A. (2020). Evaluating satellite indicators in determining the level of aquatic areas using satellite sensors (Case study: Zaribar Wetland, Kurdistan Province). Journal of Ecohydrology, 7(2), 539-550. https://doi.org/10.22059/ije.2020.295355.1267(in persian). Kieu, Q. L. (2021). Flash flood hazard mapping using satellite images and GIS integration method: A case study of Lai Chau province, Vietnam. Geographia Technica, 16(2), 105-115. https://doi.org/10.21163/gt_2021.162.09. Madadi, A., Faal Naziri, M., & Piroozi, E. (2022). Evaluation of land use changes and its effects on soil erosion in the basin upstream of Yamchi Dam in Ardabil, using ARAS multi-criteria decision algorithm and modern remote sensing methods. Quantitative Geomorphological Research, 11(2), 52-70. https://doi.org/10.22034/gmpj.2022.315438.1314(in persian). Mirzaee, N., & Sarraf, A. (2022). Application of data fusion models in river flow simulation using signals of large-scale climate, case study: Jiroft Dam Basin. Watershed Engineering and Management, 13(4), 672–689. https://doi.org/10.22092/ijwmse.2021.343547.1816(in persian). Mohammad Doust, A., & Shamsnia, S. A. (2023). Identification and zoning of flood-prone areas using AHP - GIS (Case study: Dayyer County, Bushehr Province). Journal of Geography and Environmental Studies, 47, 152-167. https://dorl.net/dor/20.1001.1.20087845.1402.12.47.9.5(in persian). Mohammadi, M., Ebrahimnezhadian, H., Asgarkhan Maskan, M., & Vaziri, V. (2022). Evaluation of the one and two-dimensional HEC-RAS models' performance in determining flood zone of rivers. Journal of Water and Soil Science, 26(2), 187-201. Retrieved from http://jstnar.iut.ac.ir/article-1-4149-fa.html(in persian). Noroozi, A. A., Saneie, M., & Rezghi, Z. (2019). Identification and differentiation of rice fields using semi-automatic in north Iran. Journal Name, 4(1), 11-21. https://sanad.iau.ir/en/Journal/iapb/Article/1095958/FullText (in persian). Pham, B. T., Avand, M., Janizadeh, S., Phong, T. V., Al‐Ansari, N., Ho, L. S., Das, S., Le, H. V., Amini, A., Bozchaloei, S. K., Jafari, F., & Prakash, I. (2020). GIS based hybrid computational approaches for flash flood susceptibility assessment. Water, 12(3), 683. https://doi.org/10.3390/w12030683. Rezaei Moghaddam, M. H., Hejazi, A., Valizadeh Kamran, K., & Rahimpour, T. (2020). Flood analysis of subbasins using WASPAS model (Case study: Aland Chai Basin, Northwest of Iran). Hydrogeomorphology, 7(24), 83–106. https://doi.org/10.22034/hyd.2020.39815.1534 (in persian). ShahiriParsa, A., Heydari, M., Sadeghian, M. S., & Moharrampour, M. (2015). Flood Zoning Simulation by HEC-RAS Model (Case Study: Johor River-Kota Tinggi Region). 1(1): https://doi.org/10.5281/zenodo.18264. Sims, N. C., & Colloff, M. J. (2012). Remote sensing of vegetation responses to flooding of a semi-arid floodplain: Implications for monitoring ecological effects of environmental flows. Ecological Indicators, 18, 387-391. https://doi.org/10.1016/j.ecolind.2011.12.007. Sinsomboonthong, S. (2022). Performance Comparison of New Adjusted Min‑Max with Decimal Scaling and Statistical Column Normalization Methods for Artificial Neural Network Classification. International Journal of Mathematics and Mathematical Sciences, Article ID 3584406. https://doi.org/10.1155/2022/3584406. Swain, K. C., Singha, C., & Nayak, L. (2020). Flood susceptibility mapping through the GIS-AHP technique using the cloud. MDPI, 9(12), 720. https://doi.org/10.3390/ijgi9120720. Tahmasebi, M. R., Shabanlou, S., Rajabi, A., & Yosefvand, F. (2021). Flood probability zonation using a comparative study of two well-known random forest and support vector machine models in northern Iran. Water and Irrigation Management, 11(2), 223-235. https://doi.org/10.22059/jwim.2021.317527.856 (in persian). Talaei, R., & Shadfar, S. (2023). Landslide susceptibility modeling using artificial neural network and logistic regression methods at the Saqezchay Basin, south of Ardabil Province. Watershed Engineering and Management, 15(3), 481–503. https://doi.org/10.22092/ijwmse.2022.360475.1996 (in persian). Vishnu, C. L., Sajinkumar, K. S., Oommen, T., Coffman, R. A., Thrivikramji, K. P., Rani, V. R., & Keerthy, S. (2019). Satellite-based assessment of the August 2018 flood in parts of Kerala, India. Geomatics, Natural Hazards and Risk, 10(1), 758-767. https://doi.org/10.1080/19475705.2018.1543212. Yousefzadeh, A., Zeinali, B., Valizadeh Kamran, K., & Asghari Sar Eskanrood, S. (2019). The extraction of flood potential of Simineh River Basin applying satellite images, topographic wetness index and morphological features. Geography and Environmental Sustainability, 9(3), 49-61. https://doi.org/10.22126/ges.2019.4294.2071(in persian). Ziari, K., Rajai, S. A., & Darabkhani, R. (2021). Flood zoning using hierarchical analysis and fuzzy logic in GIS: Case study: Ilam City. Emergency Management, 10(1), 21-30. https://dor.isc.ac/dor/20.1001.1.23453915.1400.10.1.2.2(in persian).
| ||
|
آمار تعداد مشاهده مقاله: 162 تعداد دریافت فایل اصل مقاله: 37 |
||