| تعداد نشریات | 45 |
| تعداد شمارهها | 1,449 |
| تعداد مقالات | 17,756 |
| تعداد مشاهده مقاله | 57,939,893 |
| تعداد دریافت فایل اصل مقاله | 19,544,521 |
تاثیر موقعیت نقص دو حفره ای بر عملکرد ترانزیستورهای اثر میدانی تونلی نانو نوار فسفرینی با لبه زیگزاگ | ||
| مجله مهندسی برق دانشگاه تبریز | ||
| دوره 55، شماره 3 - شماره پیاپی 113، دی 1404، صفحه 425-433 اصل مقاله (1.12 M) | ||
| نوع مقاله: علمی-پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22034/tjee.2025.64781.4928 | ||
| نویسندگان | ||
| هادی اولیا* 1؛ محمد باقر نصراله نژاد2 | ||
| 1استادیار، گروه مهندسی برق، دانشکده فنی و مهندسی، دانشگاه اردکان، اردکان، ایران | ||
| 2استادیار، گروه مهندسی برق ، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران | ||
| چکیده | ||
| در این پژوهش، تأثیر موقعیت نقص دو حفرهای بر عملکرد الکتریکی ترانزیستورهای اثر میدانی تونلی نانونوار فسفرینی با لبه زیگزاگ بررسی شده است. با تغییر موقعیت نقص در طول و عرض کانال ترانزیستور، مشاهده شد که وجود نقص در سه موقعیت طولی ("نزدیک سورس"، "مرکز" و "نزدیک درین") و سه موقعیت عرضی ("مرکز"، "میانه" و "نزدیک لبه") مورد بررسی، منجر به کاهش نسبت جریان روشن به خاموش ترانزیستور میشود. بهترین عملکرد در ساختاری با نقص در موقعیت میانه عرض کانال مشاهده میشود که این نسبت برابر 1600 میباشد. علاوه بر این، فرکانس قطع در همه حالات کاهش یافته و کمترین کاهش در حالت قرارگیری نقص در موقعیت میانه و لبه عرض کانال رخ میدهد که این مقدار کمتر از 10% میباشد. برای انجام محاسبات، از روش شبه تجربی Slater-Koster با استفاده از پارامترهای DFTB-CP2K بهره گرفته شده است. این یافتهها نشان میدهند که موقعیت نقص دوحفرهای تأثیر قابل توجهی بر عملکرد الکتریکی ترانزیستورهای اثر میدانی تونلی نانونوار فسفرینی دارد و میتواند به عنوان یک عامل مهم در طراحی و ساخت این نوع ترانزیستورها مورد توجه قرار گیرد. | ||
| کلیدواژهها | ||
| نقص دو حفرهای؛ نانونوار فسفرینی؛ ترانزیستور تونلی؛ روش CP2K | ||
| مراجع | ||
|
[1] A.R. Urade, I. Lahiri, and K.S. Suresh, "Graphene properties, synthesis and applications: a review," Jom, vol. 75, no. 3, pp.614-630. 2023. [2] Z. Hamzavi-Zarghani1,and A. Yahaghi, "Using Graphene for Tunable Scattering Manipulation of [3] C. Grazianetti, E. Cinquanta, and A. Molle, "Two-dimensional silicon: the advent of silicone," 2D Materials, vol. 3, no.1, p.012001. 2016. [4] J. Sun, X. Li, W. Guo, M. Zhao, X. Fan, Y. Dong, C. Xu, J. Deng, and Y. Fu, "Synthesis methods of two-dimensional MoS2: A brief review," Crystals, vol. 7, no. 7, p.198. 2017. [5] S. Roy, X. Zhang, A.B. Puthirath, A. Meiyazhagan, S. Bhattacharyya, M.M. Rahman, G. Babu, S. Susarla, S.K. Saju, M.K. Tran, and L.M. Sassi, "Structure, properties and applications of two‐dimensional hexagonal boron nitride," Advanced Materials, vol. 33, no.44, p.2101589, 2021. [6] J. Wang, and S. Wang, "A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application," Coordination Chemistry Reviews, 453, p.214338. 2022. [7] W. Zhang, X. Zhang, L.K. Ono, Y. Qi, and H. Oughaddou, "Recent advances in phosphorene: structure, synthesis, and properties," Small, vol. 20, no.4, p.2303115. 2024. [8] L. Ding, P. Shao, Y. Yin, and F. Ding," Synthesis of 2D Phosphorene: Current Status and Challenges," Advanced Functional Materials, p.2316612, 2024. [9] M.B. Nasrollahnejad, and P. Keshavarzi, "Inverse Stone Throwers Wales defect and enhancing ION/IOFF ratio and subthreshold swing of GNR transistors," The European Physical Journal Applied Physics, vol. 86, no.2, p.20202.2019. [10] H. Owlia, and P. Keshavarzi, "Locally defect-engineered graphene nanoribbon field-effect transistor." IEEE Transactions on Electron Devices, vol. 63, no.9, pp.3769-3775. 2016. [11] H. Owlia, P. Keshavarzi, and M.B. Nasrollahnejad, "Effects of Stone-Wales defect position in graphene nanoribbon field-effect transistor," J. Nano Electr. Phys. Vol.9,no. 6, p. 06008, 2017. [12] H. Owlia, "Effects of passivation type on electrical transport of a defect-engineered graphene nanoribbon FET," Journal of Computational Electronics, vol. 22, no. 2, pp.626-633, 2023. [13] M.B. Nasrollahnejad, and P. Keshavarzi, "Inverse Stone-Thrower-Wales defect and transport properties of 9AGNR double-gate graphene nanoribbon FETs," Journal of Central South University, vol. 26, no.11, pp.2943-2952, 2019. [14] J. Gao, J., Zhang, H. Liu, Q. Zhang, and J. Zhao, "Structures, mobilities, electronic and magnetic properties of point defects in silicone," Nanoscale, vol. 5, no. 20, pp.9785-9792, 2013. [15] F. Wan, X. Wang, Y. Guo, J. Zhang, Z. Wen, and Y. Li, "Role of line defect in the bandgap and transport properties of silicene nanoribbons," Physical Review B, vol.104, no.19, p.195413,2021. [16] W. Hu, and J. Yang, "Defects in phosphorene," The Journal of Physical Chemistry C, vol. 119, no. 35, pp.20474-20480, 2015. [17] A. H. Bayani,D. Dideban, and N. Moezi, "Reducing Ambipolar Current in Germanene Nanoribbon Tunneling Field Effect Transistor (GeNR-TFET) using Gate-Drain Overlap and Decreasing Doping Density in the Drain Side," Tabriz Journal of Electrical Engineering, vol. 49, no. 4,pp.1521532, 2019. [18] H. Owlia, and M.B. Nasrollahnejad, "Exploring performance characteristics via edge configuration in black phosphorene TFETs," International Journal of Modern Physics B, p.2540048, 2024. [19] H. Mamori, A. Al Shami, L. Attou, A. El Kenz, A. Benyoussef, A. Taleb, A. El Fatimy, and O. Mounkachi, “Layer engineering in optoelectronic and photonic properties of single and few layer phosphorene using first-principles calculations,” RSC advances, Vol. 14, No. 1, pp. 608–615, 2024. [20] T.D. Kühne, M. Iannuzzi, M. Del Ben, V.V. Rybkin, P. Seewald, F. Stein, T. Laino, R.Z. Khaliullin, O. Schütt, F. Schiffmann, and D. Golze, "CP2K: An electronic structure and molecular dynamics software package-Quickstep: Efficient and accurate electronic structure calculations," The Journal of Chemical Physics, vol. 152, no.19, 2020. [21] G. Murdachaew, CJ. Mundy, GK. Schenter, T . Laino, and J. Hutter, "Semiempirical Self-Consistent Polarization Description of Bulk Water, the Liquid-Vapor Interface, and Cubic Ice," J Phys Chem A , vol.115, no. 23, pp. 6046–6053, 2011. [22] The CP2K simulation package, Available online at: https://www.cp2k.org. Accessed 10 February 2025. [23] RG. Parr, W. Yang, "Density-Functional Theory of Atoms and Molecules," Oxford University Press, Oxford, 1995. [24] QuantumATK (ATK-VNL 2016), Available online at: https://www.synopsys.com/manufacturing/quantumatk.html. Accessed 10 February 2025. [25] H. Owlia, and P. Keshavarzi, "A bilayer graphene nanoribbon field-effect transistor with a dual-material gate," Materials Science in Semiconductor Processing, 39, pp.636-640, 2015. [26] H. Owlia, and R. Fazli, "Bilayer graphene nanoribbon field-effect transistor with electrically embedded source-side gate," Superlattices and Microstructures, vol. 142, p.106525, 2020. [27] H. Owlia, M.B. Nasrollahnejad, and R. Fazli, "Phosphorene nanoribbon field effect transistor with a dual material gate," Engineering Research Express, vol.6 , no. 2, pp. 025362(1-10), 2024. [28] H. Shamloo, and A.Y. Goharrizi, "Performance study of tunneling field effect transistors based on the graphene and phosphorene nanoribbons," Micro and Nanostructures, vol. 169, p.207336, 2022. [29] M.K. Anvarifard, Z. Ramezani, and S.A. Ghoreishi, "A ballistic transport nanodevice based on graphene nanoribbon FET by enhanced productivity for both low-voltage and radio-frequency scopes," ECS Journal of Solid State Science and Technology, vol. 11, no.6, p.061008, 2022. [30] S.S. Ghoreishi, and R. Yousefi, "A computational study of a novel graphene nanoribbon field effect transistor," International Journal of Modern Physics B, vol. 31, no. 9, p.1750056, 2017. [31] G. Liang, N. Neophytou, M.S. Lundstrom, and D.E. Nikonov, "Computational study of double-gate graphene nano-ribbon transistors," Journal of Computational Electronics, vol. 7, pp.394-397, 2008. [32] M.A., Hasan, S.S. Nishat, M. Hossain, and S. Islam, "Influence of Device Parameters on Performance of Ultra-Scaled Graphene Nanoribbon Field Effect Transistor," ECS Journal of Solid State Science and Technology, vol. 9, no. 12, p.121006, 2020. [33] A. Naderi," Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region," Superlattices and Microstructures, vol. 89, pp.170-178, 2016. [34] E. Suhendi, L. Hasanah, D. Rusdiana, F.A. Noor, and N. Kurniasih, "Comparison of tunneling currents in graphene nanoribbon tunnel field effect transistors calculated using Dirac-like equation and Schrödinger's equation," Journal of Semiconductors, vol. 40, no. 6, p.062002, 2019. [35] H. Shamloo, and A.Y. Goharrizi, "Performance study of tunneling field effect transistors based on the graphene and phosphorene nanoribbons," Micro and Nanostructures, vol. 169, p.207336, 2022. [36] Poljak, M. and Suligoj, T., " The potential of phosphorene nanoribbons as channel material for ultrascaled transistors," IEEE transactions on electron devices, 65(1), pp.290-294, 2017. [37] Pantis-Simut, C.A., Preda, A.T., Filipoiu, N., Allosh, A. and Nemnes, G.A.,"Electric-field control in phosphorene-based heterostructures," Nanomaterials, vol. 12, no. 20, p.3650, 2022. [38] H. Li, J. Tie, J. Li, M. Ye, H. Zhang, X. Zhang, Y. Pan, Y. Wang, R. Quhe, F. Pan, and J. Lu, "High-performance sub-10-nm monolayer black phosphorene tunneling transistors," Nano Research, vol. 11, pp. 2658-2668, 2018. [39] H. Li, B. Shi, Y. Pan, J. Li, L. Xu, L. Xu, Z. Zhang, F. Pan, and J. Lu, "Sub-5 nm monolayer black phosphorene tunneling transistors," Nanotechnology, vol. 29, no. 48, p. 485202, 2018. [40] A. Khodabakhsh, A. Amini, and A. Afzal, "Phosphorus-based heterojunction tunnel field-effect transistors: from atomic insights to circuit renovations," Physical Chemistry Chemical Physics, vol. 27, no. 3, pp. 1459-1472, 2025. [41] K. Ganapathi, Y. Yoon, M. Lundstrom, and S. Salahuddin, “Ballistic IV characteristics of short-channel graphene field-effect transistors: Analysis and optimization for analog and RF applications,” IEEE Transactions on Electron Devices, Vol. 60, No. 3, pp. 958–964, 2013. | ||
|
آمار تعداد مشاهده مقاله: 456 تعداد دریافت فایل اصل مقاله: 73 |
||