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Abstract

In this paper, we consider an inverse source problem of a fractional order diffusion-wave equation (FDWE), in
which the space-dependent source term is unknown. In order to obtain the numerical solution of the discussed

problem and to find the unknown source function, a Chebyshev collocation method is proposed. Since this inverse

problem is an ill-posed problem, a regularization scheme based on the mollification technique is used to find a stable
problem. Subsequently, the stable problem is solved numerically by applying the collocation method. Furthermore,

the convergence analysis is considered and finally, the effectiveness of the studied algorithm is demonstrated by

some test examples.
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1. Introduction

New tools and techniques are needed to solve inverse source problems of FDWEs. Many authors have developed
effective techniques to solve such problems [3, 5, 10, 13–16]. The FDWE is obtained by replacing the time derivative
in the usual diffusion and wave equations by the derivative of fractional order. If the derivative order for time variable
is in the range of 0 and 1, we have a generalized form of the diffusion equation, and if it is in the range of 1 and 2, we
have a generalized form of the wave equation.

In problems involving differential equations, we are dealing with two categories of problems, the direct and the
inverse [4]. In direct problems, the boundary conditions, initial conditions and parameters are known and the goal
is to find the unknown solution to the problem. In an inverse problem, however, some of the boundary data, initial
data or parameters may not be known. In these cases, we are dealing with inverse problems that require additional
conditions to solve the problem. Usually, these additional conditions are given on the basis of measured approximate
data [8]. Some of these problems are very sensitive to changes in the input parameters, and a small noise in these
data lead to significant changes in the solution of the problem [9].

Inverse problems are generally ill-posed due to the presence of high-frequency noise in the input data, so we need to
use regularization methods. To address this issue, regularization techniques have been developed, aimed at improving
stability and accuracy in the reconstruction process. Among these techniques, the Tikhonov regularization method
increases the stability of the solution by adding a regularization term to the objective function. Typically, when solving
the problem Ax = b, this method is written as:

min
x

∥Ax− b∥2 + λ∥x∥2,

where λ is the regularization parameter that establishes a balance between the fit of the data and the stability of the
solution. The value of λ must be chosen correctly, as a small value does not reduce instability, and a large value leads
to the loss of important details in the solution. In the Tikhonov method, the solution is therefore highly dependent
on the value of λ, which makes its selection a challenge [11].
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In contrast, the mollification method does not add an artificial penalty term, but solves the problem with a smooth
approximation of the data. So, this method can provide more physically meaningful solutions for some applications.
In addition, the mollification method can be computationally more efficient for certain problems because it uses a
direct smoothing filter instead of solving a modified system of equations (like the Tikhonov method), which selectively
removes real noise and preserves valuable information. This is particularly effective when the data contains systematic
errors and outliers [2, 9].

In this work, we consider the inverse source problem related to the FDWE of the form

Dα
t u(x, t) =

∂2u

∂x2
(x, t) + µ1(x)

∂u

∂x
(x, t) + µ2(x)u(x, t) + q(t)f(x), (x, t) ∈ ΩL × ΩT , (1.1)

with the initial and boundary conditions

u(x, 0) = ξ0(x), x ∈ ΩL, (1.2)

ut(x, 0) = ξ1(x), x ∈ ΩL, (1.3)

u(0, t) = λ0(t), t ∈ ΩT , (1.4)

u(L , t) = λ1(t), t ∈ ΩT , (1.5)

in which the known coefficients µi(x), and the conditions ξi(x), λi(t), i = 0, 1, are assumed to be continuous functions.
Also, ΩL = [0,L ], ΩT = [0,T ], and L, T are positive constants. The function q(t)f(x) in Eq. (1.1) is the source
term with the unknown factor f(x). Moreover, the operator Dα

t denotes the fractional derivative in Caputo formation,
which is defined as [6]:

Dα
t u(·, t) =

1

(1− α)!

∫ t

0

(t− ς)1−α ∂
2u

∂τ2
(·, ς) dς, α ∈ (1, 2), (1.6)

where α! := Γ(α+ 1) and Γ(·) shows the Gamma function.
To find the unknown functions u and f in Eq. (1.1), we need an additional condition. Thus, for t̂ ∈ (0,T ), suppose

u(x, t̂) = κ(x), x ∈ ΩL. (1.7)

For this problem, the proof of uniqueness of the solution and stability is investigated in [3].
In this paper, we first present a regularization method based on the mollification technique to obtain a regularized

problem. Then, this stabilized problem is solved using a collocation scheme based on the sixth-kind Chebyshev
polynomials (SKCPs).

2. Mollification technique

In practice, we only have perturbed approximations for the input function κ(x), and its exact value is not available.
Therefore, this perturbed function may affect the solution of the problem. In this paper, the mollification regularization
technique is used to smooth the disordered data. Moreover, this method is suitable for achieving consistency and
stability in many types of ill-posed problems [2, 12].

Suppose Bs =
( ∫ s

−s
exp(−z2)dz

)−1

, such that υ, s > 0 and sυ < 1/2. The υ-mollification of an integrable function

is based on a convolution with the Gaussian kernel

fυ,s(t) =

{
Bsυ

−1exp(−x2

υ2 ), |x| ≤ sυ,

0, |x| > sυ.

The υ-mollifier fυ,s ∈ C∞(−sυ, sυ) is a non-negative function that vanishes outside of (−sυ, sυ) and satisfies the
following condition∫ sυ

−sυ

fυ,s(x)dx = 1. (2.1)
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Assuming that S := {x̂j : j ∈ Z} ⊂ [0, 1] and ∆x := sup
j∈Z

(x̂j+1− x̂j), satisfies x̂j+1− x̂j > b > 0 where b is a positive

constant. Let W := {κ(x̂j) = κj : j ∈ Z} be a discrete function defined on S. We set
hj =

1
2 (x̂j + x̂j+1), j ∈ Z. The discrete υ-mollification of W is now defined as:

JυW(x) =
∞∑

j=−∞

(∫ hj

hj−1

fυ(x− h)dh
)
κj .

Considering (2.1), we obtain
∞∑

j=−∞

(∫ hj

hj−1

fυ(x− h)dh
)
=

∫ sυ

−sυ

fυ(h)dh = 1.

Assume that instead of the function κ, there exists a noisy function κε ∈ C0([0, 1]), such that
∥κ − κε∥∞,[0,1] ≤ ε. The generalized cross validation (GCV) criterion automatically determines the smoothing pa-
rameter υ [12]. To compute JυWε over the range I = [0, 1], it is necessary to manage the data near the boundaries.
The technique presented in chapter 4 of [12] consists of extending κε to a larger interval Iυ = [−sυ, 1 + sυ]. An
extension κ∗ of κε to [−sυ, 0] and [1, 1 + sυ] is thus performed under the conditions that ∥Jυκ

∗ − κε∥L2[0,sυ] and
∥Jυκ

∗ − κε∥L2[1−sυ,1] are minimal. Then this optimization problem at x = 1 will have a unique solution as follows:

κ∗ =

∫ 1

1−sυ

(
κε(x)−

∫ 1

0
fυ(x− h)κ(h)dh

)(∫ 1+sυ

1
fυ(x− h)dh

)
dx∫ 1

1−sυ

(∫ 1+sυ

1
fυ(x− h)dh

)
dx

.

In the continuation, the set of points is defined as:

x̂i := ir, 0 ≤ i ≤ M̂, (2.2)

where M̂ is a positive constant and r = 1
M̂
. If the described method of discrete mollification is then applied to

{κε(x̂i) : 0 ≤ i ≤ M̂}, the result is a discrete mollified function {JυWε(x̂i) : 0 ≤ i ≤ M̂}. Hence, a stable
approximation of κ(x) is obtained by interpolating JυWε(x̂i) from the additional noise function κε.

3. Collocation Procedure

In this section, we will review the main properties of SKCP and some definitions. We present the SKCP collocation
scheme to numerically solve the introduced inverse source problem.

3.1. Shifted SKCPs.

Definition 3.1. In the interval ΩL, the explicit form for shifted SKCP is defined as [1]

Tn(x) =
n∑

k=0

ϑ̄k,n(x/L )k, (3.1)

where

ϑ̄k,n =


22k−n

(2k+1)!

∑n
2

j=⌊ k+1
2 ⌋

(−1)
n
2 +j+k(2j + k + 1)!

(2j − k)!
, n even,

22k−n+1

(n+1)(2k+1)!

∑n−1
2

j=⌊ k
2 ⌋

(−1)
n+1
2 +j+k(j + 1)(2j + k + 2)!

(2j − k + 1)!
, n odd.

Theorem 3.2. ([1]) Assume S (t) ∈ L2
w(ΩL) and |S (t)(3)| ≤ α for a positive constant α, sush that:

S (t) =
∞∑
j=0

gjTj(t). (3.2)
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Then, this series is uniformly convergent to S(t) and we have |gj | < α
2j3 for all j > 3. If

SN(t) ≃
N∑

j=0

gjTj(t),

is an estimation of S (t), then

|S (t)− SN(t)| < α

2N
. (3.3)

Let us assume that Θ := [0,L ] × [0,T ] and L2
w(Θ) is the space of square-integrable functions with the weight

function

w(x, t) =

√
1

L
(x− x2

L
)(2

x

L
− 1)2

√
1

T
(t− t2

T
)(2

t

T
− 1)2.

Theorem 3.3. ([7]) Assume S (x, t) ∈ L2
w(Θ) and

∥∥∥∂6S (x,t)
∂x3∂t3

∥∥∥
2
≤ ĝ, where ĝ is a positive constant, such that:

S (x, t) =
∞∑
i=0

∞∑
j=0

gi,jTi(x)Tj(t). (3.4)

So, we have |gi,j | < ĝ
i3j3 , for i, j > 3. Also, if an estimate of S is

S̃ (x, t) =

N∑
i=0

M∑
j=0

gi,jTi(x)Tj(t), (3.5)

where N and M are positive constants, then

|S − S̃| < ĝ

2N+M
.

Lemma 3.4. ([7]) According to the assumptions of Theorem 3.3 for S and S̃, we have

(i)
∣∣∣∂S (x, t)

∂x
− ∂S̃

∂x

∣∣∣ < η1
N

2N+M−2
,

(ii)
∣∣∣∂2S (x, t)

∂x2
− ∂2S̃

∂x2

∣∣∣ < η2
N3

2N+M−8
,

(iii)
∣∣∣∂2S (x, t)

∂t2
− ∂2S̃

∂t2

∣∣∣ < η3
M3

2N+M−8
,

where ηi, i = 1, 2, 3, are positive constants.

3.2. Numerical Method. In this subsection, we will present the numerical method to approximate the solution of
(1.1)–(1.4) and (1.7), based on SKCPs. To obtain this solution, we let

u(x, t) ≃ UN,M(x, t) =
N∑
i=0

M∑
j=0

gi,jTi(x)Tj(t) = Ψ(x)TGΨ̄(t), (3.6)

and

f(x) ≃ f̃N(x) =
N∑
i=0

diTi(x) = Ψ(x)TD, (3.7)

where

Ψ(x) = [T0(x), T1(x), ..., TN(x)]T , (3.8)

Ψ̄(t) = [T̄0(t), T̄1(t), ..., T̄M(t)]T , (3.9)



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-15 5

such that Ti(x) is the shifted SKCPs in the interval ΩL, T̄j(t) is the shifted SKCPs in the interval ΩT and M,N are
two positive constants. Also

G =

 g0,0 · · · g0,M
...

. . .
...

gN,0 · · · gN,M


(N+1)×(M+1)

,

is the unknown coefficients matrix andD = [d0, d1, ..., dN]T is an unknown coefficients vector that has to be determined.

Theorem 3.5. If Ψ̄(t) is defined in (3.9), Dα
t Ψ̄(t) = Λα(t), where (1 < α < 2), then

Λα(t) =

[
0, 0,

2∑
r=2

ξαr,2(t), . . . ,

j∑
r=2

ξαr,j(t), . . . ,
M∑
r=2

ξαr,M(t)

]T
, (3.10)

that

ξαr,j(t) =
Γ(r + 1)

T rΓ(r + 1− α)
ϑ̄r,jt

r−α.

Proof. According to (1.6) and (3.1), we have

Dα
t T̄0(t) = Dα

t T̄1(t) = 0.

For r ≥ 2, we have

Dα
t t

r =
Γ(r + 1)

Γ(r + 1− α)
tr−α. (3.11)

Thus, for j = 1, ...,M,

Dα
t Ψ̄j(t) =

j∑
r=0

ϑ̄r,jD
α
t (t/T )r =

j∑
r=2

Γ(r + 1)

T rΓ(r + 1− α)
ϑ̄r,jt

r−α. (3.12)

□
From (1.1), (3.6), and (3.7),

Ψ(x)TCΛα(t) = Ψxx(x)
TGΨ̄(t) + µ1(x)Ψx(x)

TGΨ̄(t) + µ2(x)Ψ(x)TGΨ̄(t) + q(t)Ψ(x)TD. (3.13)

In addition, from the conditions (1.2)–(1.5) and Eq. (3.6), we have

Π1(x) = Ψ(x)TGΨ̄(0)− u0(x), (3.14)

Π2(x) = Ψ(x)TGΨ̄t(0)− ut0(x), (3.15)

Ω0(t) = Ψ(0)TGΨ̄(t)− λ0(t), (3.16)

Ω1(t) = Ψ(L )TGΨ̄(t)− λ1(t), (3.17)

Ξ(x) = Ψ(x)TCΛα(t̂)−Ψxx(x)
TGΨ̄(t̂)− µ1(x)Ψx(x)

TGΨ̄(t̂)− µ2(x)Jυϕ
ε(x)− q(t̂)Ψ(x)TD, (3.18)

where

Ψ̄t(t) =

[
d

dt
T̄0(t), ...,

d

dt
T̄M(t)

]T
,

Ψx(x) =

[
d

dx
T0(x), ...,

d

dx
TN(x)

]T
,

and

Ψxx(x) =

[
d2

dx2
T0(x), ...,

d2

dx2
TN(x)

]T
.
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Assume that x0 = 0, xN = L , x1...., xN−1 are the roots of TN−1(x), and t1...., tM−1 are the roots of TM−1(t). Now,
by appraising (3.13) in (M− 1)× (N− 1) collocation points (xi, tj) for 1 ≤ i ≤ N− 1 and 1 ≤ j ≤ M− 1, we obtain

R(xi, ti) = Ψ(xi)
TGΛα(tj)−Ψxx(xi)

TGΨ̄(tj)

− µ1(xi)Ψx(xi)
TGΨ̄(tj)− µ2(xi)Ψ(xi)

TGΨ̄(tj)− q(tj)Ψ(xi)
TD. (3.19)

Hence, by evaluating (3.15)–(3.19) at the collocation points and using Eq. (3.13), a system of linear equations of order
(N+ 1)× (M+ 1) is obtained as:


R(xi, tj) = 0, 1 ≤ i ≤ N− 1, 1 ≤ j ≤ M,

Πr(xi) = 0, 0 ≤ i ≤ N, r = 1, 2,

Ωz(tj) = 0, 1 ≤ j ≤ M, z = 0, 1,

Ξ(xi) = 0, 0 ≤ i ≤ N,

(3.20)

in which the unknown coefficients gi,j and di, 0 ≤ i ≤ N, 0 ≤ j ≤ M, should be determined. □

4. Convergence Analysis

In this section, the convergence of the numerical solution obtained in section 3 is examined.

Theorem 4.1. Suppose that for exact solution u of (1.1), we have the numerical approximation UN,M, which is
determined according to the procedure presented in subsection 3.2. Moreover, the functions µi(x), i = 1, 2 and q(t) are
bounded and RN,M(x, t) is the residual error u. Then, ∥RN,M∥∞ → 0, when N, M → ∞.

Proof. From (1.1) and UN,M(x, t), we have

Dα
t UN,M(x, t) =

∂2UN,M

∂x2
(x, t) + µ1

∂UN,M

∂x
(x, t) + µ2UN,M(x, t) + f̃N(x)q(t) + RN,M(x, t). (4.1)

First, we consider ∥u(x, t)∥∞ = ∥u∥∞ = sup(x,t)∈L×I

∣∣∣u(x, t)∣∣∣ and from Eqs. (1.1) and (4.1), the following inequality

can be seen:

∥RN,M∥∞ ≤
∥∥∥Dα

0,t

(
u−UN,M

)∥∥∥
∞

+
∥∥∥uxx − ∂2UN,M

∂x2

∥∥∥
∞

+
∥∥∥µ1

∥∥∥
∞

∥∥∥ux − ∂UN,M

∂x

∥∥∥
∞

+
∥∥∥µ2

∥∥∥
∞

∥∥∥u−UN,M

∥∥∥
∞

+
∥∥∥q∥∥∥

∞

∥∥∥f − f̃N

∥∥∥
∞
. (4.2)

Using Lemma 3.4 results∥∥∥utt −
∂2UN,M

∂t2

∥∥∥
∞

<
η1M

3

2N+M−8
, (4.3)

where η1 is a positive integer, thus∥∥∥Dα
0,t

(
u−UN,M

)∥∥∥
∞

≤
(∫ t

0

∥(t− υ)1−α∥∞
Γ(2− α)

∥∥∥uυυ − ∂2UN,M

∂2υ

∥∥∥
∞
dυ

)
<

η1M
3

Γ(2− α)2N+M−8

(∫ t

0

∥(t− υ)1−α∥∞dυ

)
.

Since 0 < υ < t ≤ T , we get∥∥∥Dα
t

(
u−UN,M

)∥∥∥
∞

<
η1T 2−αM3

Γ(2− α)2N+M−8
. (4.4)
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Assume
∥∥∥µ1(x)

∥∥∥
∞

< ϑ1,
∥∥∥µ2(x)

∥∥∥
∞

< ϑ2 and
∥∥∥q(t)∥∥∥

∞
< ϑ3, also, from Theorem 3.3,

∥∥∥uxx − ∂2UN,M

∂x2

∥∥∥
∞

<
η2N

3

2N+M−8
, (4.5)

∥∥∥µ1

∥∥∥
∞

∥∥∥ux − ∂UN,M

∂x

∥∥∥
∞

<
ϑ1η3N

2N+M−2
, (4.6)

∥∥∥µ2

∥∥∥
∞

∥∥∥u−UN,M

∥∥∥
∞

<
ϑ2η4N

2N+M
, (4.7)

∥∥∥q(f − f̃N)
∥∥∥
∞

<
ϑ3η5
2N

, (4.8)

where η2, η3, η4, η5, ϑ1, ϑ2 and ϑ3 are positive constants. Then, from Eqs. (4.2)–(4.8), the following results are
obtained;

∥RN,M∥∞ <
η1T 2−αM3

Γ(2− α)2N+M−8
+

η2N
3

2N+M−8
+

ϑ1η3N

2N+M−2
+

ϑ2η4
2N+M

+
ϑ3η5
2N

<
η1T 2−αM3

Γ(2− α)2N+M−8
+

η2N
3

2N+M−8
+

ϑ1η3N
3

2N+M−8
+

ϑ2η4
2N+M−8

+
ϑ3η5
2N

< η̂
M+ 2N3 + 1

2N+M−8
+

1

2N
, (4.9)

where

η̂ = max{ η1T
2−α

Γ(2− α)
, η2, ϑ1η3, ϑ2η4, ϑ3η5}.

So, from Eq. (4.9), we can see when N, M → ∞, then ∥RN,M∥∞ → 0.
□

5. Test Examples

Herein, the correctness and applicability of the proposed method is investigated using some examples. Here, the
L2-norm error is considered to evaluate the accuracy of the method:

∥ϵM∥2 =

(
M∑
i=1

(
u(1, ϵi)− ũ(1, ϵi)

)2) 1
2

, (5.1)

such that t = ϵi, i = 1, ...,M, are the list of collocation points. According to the space variable, the convergence order
is

CO = logM2
M1

∥ϵM1
∥2

∥ϵM2
∥2

. (5.2)

We assume that ε is the maximum amount of noise in the input data. By adding some random errors, we simulate
the exact data function for the inverse problem. For this purpose,

ϱε(x̂i) = ϱ(x̂i)(1 + ε× rand(i)),

will be considered as a discrete noisy version of ϱ(t), where t̂i, i = 0, ..., M̂ are defined in (2.2) and the uniformly
distributed random numbers in [−1, 1] are defined by the command rand(i) in Matlab.
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Example 5.1. Suppose that we have the equation

Dα
t u(x, t) = uxx(x, t) + x ux(x, t) + u(x, t) + f(x)q(t), (x, t) ∈ [0, 1]× [0, 1],

with ξ0(x) = 0, ξ1(x) = πx, λ0(t) = 0, λ1(t) = sin(πt) and

q(x) = −
π3t3−αHypergeometricPFQ[{1}, {2− α

2
,
5

2
− α

2
},−(

1

4
)π2t2]

(6− 5α+ α2)Γ(2− α)
− 2 sin(πt).

The exact solution to this problem is u(x, t) = x sin (πt) and f(x) = x.
The exact and computed approximations of f(x) without regularization when α = 1.5, t̂ = 1, N = 14, M = 10,

and M̂ = 300 are shown in Figure 1. In Figure 2, the exact solution and the numerical solution using the Tikhonov
method and the mollification approach are shown. As can be seen, the mollification method performed better in
regularizing the data and provided a more accurate solution than the solution regularized by the Tikhonov method.
The mollification method uses a mollifier function to modify the input data. The smoothed data is then used to solve
the problem.

The numerical approximation with regularization and the absolute error (AE) when α = 1.5, t̂ = 1, N = 14,

M = 10, and M̂ = 300 are shown in Figure 3. The AE for u when α = 1.5, t̂ = 1, N = 14, M = 10 and M̂ = 300 can
be seen in Figure 5. The L2-norm error, CO and CPU-times of the numerical solution, for different values of M at
t̂ = 1 and N = 14, are displayed in Table 1. As the mesh size r is refined in the mollification approach, the numerical
error is reduced despite the noise. Here, the theoretical results and the obtained findings are in a good agreement.
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Figure 1. The exact and computed approximations of f(x) without regularization, with ε = 1% and
ε = 5% for Example 5.1.

Example 5.2. To explain the impact of choosing a suitable regularization approach on the search for a stable solution
in more detail, in this example we examine the problem (1.1)–(1.5) with α = 1.6, ξ0(x) = ξ1(x) = λ0(t) = λ1(t) = 0,
µ1(x) = µ2(x) = 1, and

q(t) =

(
−t2 +Π2t2 − 2t2−α

(−2 + α)Γ(2− α)

)
,
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Figure 2. The exact and numerical values of f(x), using the Tikhonov method and the mollification
method when ε = 1% for Example 5.1.
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Figure 3. The exact and computed approximations with regularization (left) and the AE (right) for
ε = 1% and ε = 5% in Example 5.1.

for (x, t) ∈ [0, 1]× [0, 1]. This problem has the exact solution u(x, t) = sin (πx) t2 and f(x) = sin (πx) .
Consider two sample input functions that are defined as follows: κ1(x) = sin (πx) and κ2(x) = κ1(x) + 0.1. The

algorithm proposed in Section 3.2 is used to calculate the source term f1(x) and f2(x), that depend on κ1(x) and
κ2(x). Figure 6 illustrates the input functions κi(x) for i = 1, 2 and the approximated source terms fi(x) for i = 1, 2.
Despite the small difference between the input functions, the computed source terms show considerable deviations
from the expectations. This result highlights the ill-posedness of the inverse problem. Therefore, the application of
appropriate regularization techniques is essential to obtain a stable numerical solution.
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Figure 4. The exact and numerical solutions for Example 5.1, with ε = 5%.
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Figure 5. The AE of u for Example 5.1, with ε = 1% (left) and ε = 5% (right) .

Figure 7 shows the exact function f(x) and its calculated approximate values using the proposed collocation scheme

without regularization for α = 1.6, t̂ = 1, N = 12, M = 6, and M̂ = 300. The exact and the numerical solutions using
the mollification and Tikhonov regularizations are shown in Figure 8, where the mollification method clearly performs
better than the Tikhonov method. In fact, in the mollification method, the noisy data is smoothed and then used to
find the solution. In other words, the mollification method aims to remove the effects of noise or large fluctuations
without altering the underlying structure of the data, leading to more accurate and stable computations. Thus, these
results clarify that the mollification regularization scheme is a valid method to achieve sustainable solutions compared
to the Tikhonov regularization technique.
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Table 1. The L2-norm error, CO and CPU-time (Sec) for Example 5.1.

r = 0.003 ε = 1% ε = 5%
M ∥ϵM∥

2
CO CPU-time ∥ϵM∥

2
CO CPU-time

6 3.3444× 10−4 − 3.766 4.6758× 10−4 − 3.844
8 1.9553× 10−4 1.86582 5.406 3.3324× 10−4 1.17636 5.47
10 4.6795× 10−5 6.40806 7.687 8.02299× 10−5 6.38143 7.687

r = 0.002 ε = 1% ε = 5%
M ∥ϵM∥2 CO CPU-time ∥ϵM∥2 CO CPU-time
6 3.2435× 10−4 − 3.781 3.28023× 10−4 − 3.765
8 1.38681× 10−4 2.7063 5.454 1.48369× 10−4 2.7578 5.312
10 2.0226× 10−5 8.6276 7.794 1.57612× 10−5 9.7723 7.469
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Figure 6. The two estimated source terms, f1(x) and f2(x) (Right) correspond to the two close
input functions κ1(x) and κ2(x) (Left) in Example 5.2.

The exact and computed approximation of f(x) with regularization when α = 1.6, t̂ = 1, N = 12, M = 6, and

M̂ = 300, are shown in Figure 9. Figure 10 displays the exact and numerical approximation of u and Figure 11 shows
the AE of the approximations for u, when α = 1.6, t̂ = 1, N = 12, M = 6, and M̂ = 300. Table 2 shows the L2-norm
error, CO and CPU-times for the approximated values of u, when α = 1.6, t̂ = 1, and N = 12. This table confirms
that the numerical error decreases with decreasing noise level and decreasing grid size.

6. Conclusion

In this study, a combination of SKCPs collocation method and mollification regularization technique was presented
to solve an inverse source problem based on FDWE with an unknown space-dependent source function. The numerical
method was expressed and the required convergence conditions were explored. Finally, two numerical implementations
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Figure 7. The exact function f(x) and its computed approximations without regularization for
different noise levels in Example 5.2.
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Figure 8. The exact and numerical approximations of f(x) with the mollification and the Tikhonov
methods when ε = 1% in Example 5.2.

were used to investigate the performance of the proposed scheme. The numerical results show the accuracy and high
quality of the numerical method.
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Figure 9. The exact function f(x) and its computed approximations with regularization for different
noise levels in Example 5.2.

Table 2. The L2-norm error, CO and CPU-time (Sec) for Example 5.2.

r = 0.003 ε = 1% ε = 5%
M ∥ϵM∥

2
CO CPU-time ∥ϵM∥

2
CO CPU-time

2 1.2469× 10−4 − 0.767 1.10123× 10−4 − 0.782
4 9.3421× 10−5 0.4165 1.202 5.0791× 10−5 0.9950 1.25
6 3.25217× 10−5 2.6025 1.86 2.0868× 10−5 2.6921 1.845

r = 0.002 ε = 1% ε = 5%
M ∥ϵM∥2 CO CPU-time ∥ϵM∥2 CO CPU-time
2 7.1734× 10−5 − 0.781 8.3222× 10−5 − 0.752
4 4.3864× 10−5 0.7096 1.39 4.75428× 10−5 0.9345 1.328
6 1.6819× 10−5 2.36412 1.812 2.7453× 10−5 2.5627 1.766
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Figure 10. The exact and numerical approximation of u with ε = 5% in Example 5.2.
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Figure 11. The AE for the approximations of u with ε = 1% (left) and ε = 5% (right) in Example 5.2.
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