
تعداد نشریات | 45 |
تعداد شمارهها | 1,397 |
تعداد مقالات | 17,051 |
تعداد مشاهده مقاله | 54,983,771 |
تعداد دریافت فایل اصل مقاله | 17,461,756 |
بررسی ویژگیهای پروبیوتیکی، آنتی اکسیدانی و ایمنی سویه Lactiplantibacillus plantarum sps1 | ||
پژوهش های صنایع غذایی | ||
دوره 35، شماره 2، مرداد 1404، صفحه 1-22 اصل مقاله (971.82 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/fr.2024.62552.1938 | ||
نویسندگان | ||
بهروز علیزاده بهبهانی1؛ محمد حجتی* 2؛ بهاره گودرزی شمس آبادی3 | ||
1دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران | ||
2دانشگاه علوم کشاورزی و منابع طبیعی خوزستان | ||
3دانشجوی دکتری، گروه علوم و صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران | ||
چکیده | ||
زمینه مطالعاتی: در این پژوهش آزمایشگاهی ویژگیهای پروبیوتیکی، آنتیاکسیدانی و ایمنی سویهLactiplantibacillus plantarum sps1 جداسازی شده از ماست محلی بررسی شد. هدف: با توجه به بروز ویژگیهای پروبیوتیکی متفاوت در جنس و گونههای مختلف باکتریهای اسیدلاکتیک در این پژوهش، ارزیابی ویژگیهای پروبیوتیکی، آنتی اکسیدانی و ایمنی سویهLactiplantibacillus plantarum sps1 جداسازی شده از ماست محلی مورد بررسی قرار گرفت. روش کار: ویژگیهای پروبیوتیکی از قبیل مقاومت به اسید (pH ۵/۲، ۵/۳ و ۵/۴)، خاصیت هیدروفوبیسیتی، مقاومت به صفرا (3/0، 5/0 و 7/0)، جذب کلسترول، تولید آمین بیوژنیک، حساسیت به آنتیبیوتیکها، عدم فعالیت همولیتیک و DNase بررسی شد. ظرفیت آنتیاکسیدانی سویه (DPPH و ABTS)، پتانسیل چسبندگی به سلول 2-Caco، ضدچسبندگی، تجمیع خودکار و انباشتگی نیز ارزیابی گردید. نتایج: با کاهش میزان pHو همچنین افزایش زمان ماندگاری از صفر تا ۳ ساعت در pHهای مورد بررسی تعداد سلولهای زنده سویه کاهش یافت. سویه درتمامی غلظتهای نمکهای صفراوی مقاومت خوبی از خود نشان داد. خاصیت هیدروفوبی، ۵0/۴۶ درصد، میزان جذب کلسترول 30/4۲ و میزان مهار رادیکال آزاد DPPH و ABTS به ترتیب ۵0/4۰ و ۳۰/۴۶ درصد ارزیابی گردید. نتایج حاصل از بررسی تولید آمین بیوژنیک، DNase، و فعالیت همولیتیک سویه منفی بود. پتانسل تجمیع خودکار و انباشتگی به ترتیب 60/3۸ و ۴۰/۲۲ درصد، پتانسیل چسبندگی به سلول 2-Caco، 11 و پتانسیل ضدچسبندگی در برابر Salmonella enterica serovar Typhimurium در رقابت ۲۰/44، در مهار ۲۹ و در جابهجایی ۵0/22 درصد به دست آمد. نتیجهگیری نهایی: بر اساس نتایج، سویه دارای پتانسیل پروبیوتیکی، آنتیکسیدانی و ایمنی قابل قبولی است. بنابراین میتوان بیان کرد این سویه در بهبود سلامتی و کاهش بروز برخی بیماریها موثر است. | ||
کلیدواژهها | ||
پروبیوتیک؛ جذب کلسترول؛ Lactiplantibacillus plantarum؛ ضدچسبندگی | ||
مراجع | ||
Abdoli H, Sa'i Dehkordi SS, Mobini Dehkordi M, and Abtahi Forushani SM, 2018. The first isolation and identification of the molecular activities of indigenous lactobacilli with probiotic potential from traditional Iranian rind cheese and their antioxidant properties. Microbial Biology 8(32): 25–39. doi: 10.22108/bjm.2018.111602.1139.
Alizadeh Behbahani B, Barzegar H, Mehrnia M A and Ghodsi M, 2023. Probiotic Characterization of Limosilactobacillus fermentum Isolated from Local Yogurt: Interaction with Pathogenic Bacteria and Caco-2 Enteric Cell Line. Nutrition and Food Sciences Research; 10 (1) :37-45. http://nfsr.sbmu.ac.ir/article-1-593-fa.html
Alizadeh Behbahani B, Jooyandeh H, Falah F and Vasiee, A, 2020. Gamma‐aminobutyric acid production by Lactobacillus brevis A3: Optimization of production, antioxidant potential, cell toxicity, and antimicrobial activity. Food Science & Nutrition, 8(10), 5330-5339. DOI: 10.1002/fsn3.1838
Alizadeh Behbahani B, Jooyandeh H, Hojjati M and Sheikhjan, M G, 2024. Evaluation of probiotic, safety, and anti-pathogenic properties of Levilactobacillus brevis HL6, and its potential application as bio-preservatives in peach juice. LWT, 191, 115601.
Alizadeh Behbahani B, Jooyandeh H, Vasiee A, and Zeraatpisheh F, 2023. Evaluation of anti-yeast metabolites produced by Lactobacillus strains and their potential application as bio-preservatives in traditional yogurt drink. LWT, 188, 115428. https://doi.org/10.1016/j.lwt.2023.115428
Alizadeh Behbahani B, Noshad M and Falah F, 2019. Inhibition of Escherichia coli adhesion to human intestinal Caco2 cells by probiotic candidate Lactobacillus plantarum strain L15. Microbial Pathogenesis 136: 1-7. https://doi.org/10.1016/j.micpath.2019.103677
Alizadeh Behbahani B, Noshad M, Vasiee A and Brück W M, 2024. Probiotic Bacillus strains inhibit growth, biofilm formation, and virulence gene expression of Listeria monocytogenes. LWT, 191, 115596. https://doi.org/10.1016/j.lwt.2023.115596
Azevedo I, Barbosa J, Albano H, Nogueira T and Teixeira, P, 2024. Lactic Acid Bacteria isolated from traditional and innovative alheiras as potential biocontrol agents. Food Microbiology, 119, 104450. https://doi.org/10.1016/j.fm.2023.104450.
Barzegar H, Alizadeh Behbahani B and Falah F, 2021. Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Science & Nutrition published 2021; 9:4094–4107. https://doi.org/10.1002/fsn3.2365
Barzegar H, Behbahani B A, Mirzaei and Sheikhjan M G, 2023. Assessing the protection mechanisms against Enterobacter aerogenes by analyzing aggregation, adherence, antagonistic activity, and safety properties of potentially probiotic strain Lactobacillus brevis G145. Microbial pathogenesis, 181, 106175.
Bourdichon F, Laulund S and Tenning P, 2019. Inventory of microbial species with a rationale: a comparison of the IDF/EFFCA inventory of microbial food cultures with the EFSA Biohazard Panel qualified presumption of safety. FEMS microbiology letters, 366(5), fnz048. https://doi.org/10.1093/femsle/fnz048.
Chen J, Pang H, Wang L, Ma C, Wu G, Liu Y, Guan Y, Zhang M, Qin G and Tan Z, 2022. Bacteriocin-producing lactic acid bacteria strains with antimicrobial activity screened from bamei pig feces, 1–13. https://doi.org/10.3390/foods11050709.
Cizeikiene D and Jagelaviciute J, 2021. Investigation of antibacterial activity and probiotic properties of strains belonging to lactobacillus and bifidobacterium genera for their potential application in functional food and feed products. Probiotics Antimicrob Proteins 13, 1387–1403. https://doi.org/10.1007/s12602-021-09777-5.
Collado C M, Meriluoto J and Salmin P, 2007. In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus, Food Research International,Volume 40, Issue 5, 629-636,ISSN 0963-9969, https://doi.org/10.1016/j.foodres.2006.11.007.
Dardmeh N, yavarmanesh M, Moazzami A A, moghaddam matin M and Noorbakhsh H, 2023. In vitro evaluation of probiotic properties of commercial strains Lactobacillus plantarum and Bifidobacterium animalis subsp. lactis. FSCT 2023; 19 (133) :91-102.
Echresh S, Behbahani B A, Falah F, Noshad M and Ibrahim S A, 2024. Assessment of the probiotic, anti-bacterial, and anti-biofilm characteristics of Lacticaseibacillus rhamnosus CWKu-12, along with its potential impact on the expression of virulence genes in Listeria monocytogenes ATCC 19115. LWT, 116391.
Falah F, Mortazavi SA and Tabatabaei Yazdi F, 2019. Evaluation of probiotic properties of lactobacillus brevis strain pml1 based on the ability to adhesion to the epithelial cells of intestine. journal of applied microbiology in food industry, 5(1), 41-53.
Falah F, Vasiee A, Alizadeh Behbahani B, Tabatabaee Yazdi F and Mortazavi S A, 2021. Optimization of gamma‐aminobutyric acid production by Lactobacillus brevis PML1 in dairy sludge‐based culture medium through response surface methodology. Food Science & Nutrition, 9(6), 3317-3326.
Falah F, Vasiee A, Behbahani B A, Yazdi F T, Moradi S, Mortazavi S A and Roshanak S, 2019. Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4-17 against Escherichia coli causing urinary tract infection in humans. Microbial pathogenesis, 131, 246-253. https://doi.org/10.1016/j.micpath.2019.04.006
Falah F, Zareie Z, Vasiee A, Tabatabaee Yazdi F, Mortazavi S A and Alizadeh Behbahani B, 2021. Production of synbiotic ice-creams with Lactobacillus brevis PML1 and inulin: functional characteristics, probiotic viability, and sensory properties. Journal of Food Measurement and Characterization, 15(6), 5537-5546.
Gabriela K, Ivana H and iveta H, 2019. In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation. 54:1-11. https://doi.org/10.3390/fermentation5040100.
Garcia-Gonzalez N, Battista N, Prete R and Corsetti A, 2021. Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods. Microorganisms, 9(2), 349. https://doi.org/10.3390/microorganisms9020349.
Gotcheva V, Petrova G, Petkova M, Kuzmanova Y and Angelov A, 2018. Molecular and in vitro assessment of some probiotic characteristics of amylolytic Lactobacillus plantarum strains from Bulgarian fermented products. Engineering in Life Sciences, 18(11), 820-830.830. https://doi.org/10.1002/elsc.201800054.
Haghshenas B, Haghshenas M, Nami Y, Khosroushahi A Y, Abdullah N, Barzegari A and Hejazi M S, 2016. Probiotic assessment of Lactobacillus plantarum 15HN and Enterococcus mundtii 50H isolated from traditional dairies microbiota. Advanced pharmaceutical bulletin, 6(1), 37. doi: 10.15171/apb.2016.07.
Halder D, Mandal M, Chatterjee S S, Pal N K and Mandal S, 2017. Indigenous probiotic Lactobacillus isolates presenting antibiotic like activity against human pathogenic bacteria. Biomedicines 5, 1–11. https://doi.org/10.3390/biomedicines5020031.
Handa S and Sharma, N, 2016. In vitro study of probiotic properties of Lactobacillus plantarum F22 isolated from chhang–a traditional fermented beverage of Himachal Pradesh, India. Journal of Genetic Engineering and Biotechnology, 14(1), 91-97. https://doi.org/10.1016/j.jgeb.2016.08.001
Huang W, Dong A, Pham H T, Zhou, C, Huo Z, Wätjen A P, Prakash S, Bang-Berthelsen C H and Turner M S, 2023. Evaluation of the fermentation potential of lactic acid bacteria isolated from herbs, fruits and vegetables as starter cultures in nut-based milk alternatives. Food Microbiol. 112, 104243. https://doi.org/10.1016/j.fm.2023.104243.
Islam M Z, Jahan N, Liza, R I, Sojib M S I, Hasan M S, Ferdous T and Rashid MH U, 2022. Newly characterized Lactiplantibacillus plantarum strains isolated from raw goat milk as probiotic cultures with potent cholesterol-lowering activity. Journal of Agriculture and Food Research, 10, 100427. https://doi.org/10.1016/j.jafr.2022.100427.
Isvand Heydari E, Jooyandeh H, Hojjati M, Alizadeh Behbahani B, and Noshad M, 2021. Assessment of antimicrobial and viability of Lactobacillus plantarum LZ95 under acidic and bile conditions. Iranian Food Science and Technology Research Journal 17(4): 533-541. doi: 10.22067/ifstrj.v17i4.85831
Javed, G A, Arshad N, Munir A, Khan S Y, Rasheed S, Hussain I, 2022. Signature probiotic and pharmacological attributes of lactic acid bacteria isolated from human breast milk. Int. Dairy J. 127 https://doi.org/10.1016/j.idairyj.2021.105297
Keter M T, El Halfawy N M and El-Naggar MY, 2022. Incidence of virulence determinants and antibiotic resistance in lactic acid bacteria isolated from food products. Future Microbiol. 17, 325–337. https://doi.org/10.2217/fmb-2021-0053.
Koushki V, Vatandoost J, Mortazavi S A, Jannat Abadi A A and Hosseini S A, 2005. Isolation and biochemical and molecular identification of probiotic bacteria from traditional dairy products of Sabzevar. Sabzevar University of Medical Sciences Journal, 20(5), 726–737.
Krausova G, Hyrslova I and Hynstova I, 2019. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation; 5:100. https://doi.org/10.3390/fermentation5040100.
Laskin A I, Bennett J W and Gadd G M, 2003. Advances in applied microbiology. Academic Press.
Li X, Xu W, Yang J, Zhao H, Pan C, Ding X and Zhang Y, 2016. Effects of applying lactic acid bacteria to the fermentation on a mixture of corn steep liquor and air-dried rice straw. Animal Nutrition, 2(3), 229-233. https://doi.org/10.1016/j.aninu.2016.04.003.
Liu Z, Ren Z, Zhang J, Chuang C C, Kandaswamy E, Zhou T, Zuo L, 2018. Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018, 9, 477. https://doi.org/10.3389/fphys.2018.00477.
Lund P, Tramonti A and De Biase D, 2014. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS microbiology reviews, 38(6), 1091-1125. https://doi.org/10.1111/1574-6976.12076.
Luz C, Calpe J, Quiles J M, Torrijos R, Vento M, Gormaz M, et al., 2021. Probiotic characterization of Lactobacillus strains isolated from breast milk and employment for the elaboration of a fermented milk product. Journal of Functional Foods, 84, 1–9. https://doi.org/10.1016/j.jff.2021.104599.
Lynch K M, Zannini E, Coffey A and Arendt E K, 2018. LacticAcid Bacteria xopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 155–176. https://doi.org/10.1146/annurev‐food‐030117‐012537.
Makhamrueang N, Sirilun S, Sirithunyalug J, Chaiyana W, Wangcharoen W, Peerajan S and Chaiyasut, C, 2021. Lactobacillus plantarum SK15 as a Starter Culture for Prevention of Biogenic Amine Accumulation in Fermented Beverage Containing Hericium erinaceus Mushroom. Applied Sciences, 11(15), 6680. https://doi.org/10.3390/app11156680.
Mao B, Yin R, Li X, Cui S, Zhang H, Zhao J and Chen W, 2021. Comparative Genomic Analysis of Lactiplantibacillus plantarum Isolated from Different Niches. Genes 12, 241. https://doi.org/10.3390/genes12020241.
Mathur S and Singh R, 2005. Antibiotic resistance in food lactic acid bacteria—a review. International journal of food microbiology, 105(3), 281-295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008
Medina-Pradas E, Pérez-Díaz I M, Garrido-Fernández A and Arroyo-López F N, 2017. Chapter 9—Review of Vegetable Fermentations with Particular Emphasis on Processing Modifications, Microbial Ecology, and Spoilage. In The Microbiological Quality of Food; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; Woodhead Publishing: Cambridge, UK, pp. 211–236. https://doi.org/10.1016/B978-0-08-100502-6.00012-1.
Mokoena M P, Omatola C A and Olaniran A O, 2021. Applications of Lactic Acid Bacteria and Their Bacteriocins against Food Spoilage Microorganisms and Foodborne Pathogens. Molecules, 26, 7055. https://doi.org/10.3390/molecules26227055.
Momenzadeh S, Juyandeh H, Alizadeh Behbahani B and Barzegar H, 2020. Evaluation of probiotic and antibacterial properties of Lactobacillus fermentum SL163-4. Iranian Food Science and Technology Research Journal, 17(2), 233–242. https://doi.org/10.22067/ifstrj.2020.39266.
Mousanejadi N, Barzegar H, Alizadeh Behbahani B and Joyandeh H, 2023. Production and evaluation of a functional fruit beverage consisting of mango juice and probiotic bacteria. Food Measure 3253-3240,17. https://doi.org/10.1007/s11694-023-01862-3.
Nezhad S J E, Dovom M R E, Najafi M B H, Yavarmanesh M and Mayo B, 2020. Technological characteristics of Lactobacillus spp. isolated from Iranian raw milk Motal cheese. LWT, 133, 110070. https://doi.org/10.1016/j.lwt.2020.110070.
Nielsen SS, 2017. Total Carbohydrate by Phenol‐Sulfuric Acid Method. In Food Analysis Laboratory Manual; Food Science Text Series; Springer: Berlin/Heidelberg, Germany. https://doi.org/10.1007/978‐3‐319‐44127‐6_14.
Noshad M, Alizadeh Behbahani B and Hojjati M, 2011. Evaluation of probiotic and technological properties of lactic acid bacteria isolated from traditional Doogh of Behbahan. Food Industry Research Journal, 31(4), 2021.
Nouri S, Nazari S and Hosseini S, 2011. Isolation and biochemical and molecular identification of Lactobacillus plantarum from the rhizosphere of Lenjan rice roots. Scientific-Research Quarterly of Microorganism Biology, 9(29).
Nuraida L, Anggraeni D and Dewanti-Hariyadi R, 2012. Adherence properties of lactic acid bacteria as probiotic candidates isolated from breast milk.
Ołdak A, Zielińska D, Rzepkowska A and Kołożyn-Krajewska D, 2017. Comparison of antibacterial activity of Lactobacillus plantarum strains isolated from two different kinds of regional cheeses from Poland: Oscypek and Korycinski cheese. BioMed research international, 2017(1), 6820369. https://doi.org/10.1155/2017/6820369.
Panel E B and Herman L, 2021. Statement on the update of the list of QPS-recommended bio-logical agents intentionally added to food or feed as notified to EFSA 14: Suitability of taxonomic units notified to EFSA until March 2021. EFSA Journal. 19, e06377. https://doi.org/10.2903/j.efsa.2021.6689.
Pino A, Russo N, Van Hoorde K, De Angelis M, Sferrazzo G, Randazzo CL and Caggia C, 2019. Piacentinu Ennese PDO Cheese as Reservoir of Promising Probiotic Bacteria. Microorganisms;7(8).254. https://doi.org/10.3390/microorganisms7080254.
Pinto A, Barbosa J, Albano H, Isidro J and Teixeira P, 2020. Screening of bacteriocinogenic lactic acid bacteria and their characterization as potential probiotics. Microorganisms 8. https://doi.org/10.3390/microorganisms8030393.
Prete R , Dell’Orco F , Sabatini Gi , Montagano F , Battista N and Corsetti A, 2024. Improving the Antioxidant and Anti-Inflammatory Activity of Fermented Milks with Exopolysaccharides-Producing Lactiplantibacillus plantarum Strains. Foods. 13. 1663. https://doi.org/10.3390/foods13111663.
Rouhi A, Falah F, Azghandi M, Behbahani B A, Mortazavi S A, Tabatabaei-Yazdi F and Vasiee A, 2024. Investigating the effect of Lactiplantibacillus plantarum TW57-4 in preventing biofilm formation and expression of virulence genes in Listeria monocytogenes ATCC 19115. LWT, 191, 115669. https://doi.org/10.1016/j.lwt.2023.115669
Ryu E H and Chang H C, 2013. In vitro study of potentially probiotic lactic acid bacteria strains isolated from kimchi. Annals of microbiology, 63, 1387-1395. https://doi.org/10.1007/s13213-013-0599-8.
Saboktakin‑Rizi M, Alizadeh Behbahani B, Hojjati M, Noshad M, 2021. Identifcation of Lactobacillus plantarum TW29‑1 isolated from Iranian fermented cereal‑dairy product (Yellow Zabol Kashk): probiotic characteristics, antimicrobial activity and safety evaluation. Journal of Food Measurement and Characterization .15:2615–2624. https://doi.org/10.1007/s11694-021-00846-5
Shirani K, Falah F, Vasiee A, Yazdi F T, Behbahani B A and Zanganeh H, 2022. Effects of incorporation of Echinops setifer extract on quality, functionality, and viability of strains in probiotic yogurt. Journal of Food Measurement and Characterization, 16(4), 2899-2907.
Sidhu P K and Nehra K, 2019. Bacteriocin-nanoconjugates as emerging compounds for enhancing antimicrobial activity of bacteriocins. Journal of King Saud University - Science. 31, 758–767. Pages 758-767. https://doi.org/10.1016/j.jksus.2017.12.007.
Silva J, Barbosa J, Albano H, Sequeira M, Pinto A, Bonito CC, Saraiva M and Teixeira P, 2019. Microbiological characterization of different formulations of alheiras (fermented sausages). AIMS Agric. Food 4, 399–413. https://doi.org/10.3934/AGRFOOD.2019.2.399.
Sun Z, Zhang Y, Lin X, Zhang S, Chen Y, Ji C, 2023. Inhibition Mechanism of Lactiplantibacillus plantarum on the Growth and Biogenic Amine Production in Morganella morganii. Foods. 29;12(19):3625. doi: 10.3390/foods12193625. PMID: 37835277; PMCID: PMC10572400. https://doi.org/10.3390/foods12193625.
Terefe N S, 2016. Emerging trends and opportunities in food fermentation.
Touret T, Oliveira M and Semedo-Lemsaddek T, 2018. Putative probiotic lactic acid bacteria isolated from sauerkraut fermentations. PloS one, 13(9), e0203501. https://doi.org/10.1371/journal.pone.0203501
Tuo Y, Yu H, Ai L, Wu Z, Guo B and Chen W, 2013. Aggregation and adhesion properties of 22 Lactobacillus strains. J. Dairy Sci. 2013; 96:4252–4257. https://doi.org/10.3168/jds.2013-6547.
Van Thu T, Foo H L, Loh T C and Bejo M H, 2011. Inhibitory activity and organic acid concentrations of metabolite combinations produced by various strains of Lactobacillus plantarum. African Journal of Biotechnology, 10(8), 1359-1363. DOI: 10.5897/AJB10.1610.
Varela-Ramirez A, Abendroth J, Mejia A A, Phan I Q, Lorimer D D, Edwards TE and Aguilera R J, 2017. Structure of acid deoxyribonuclease. Nucleic Acids Res. 45 (10), 6217–6227. https://doi.org/10.1093/nar/gkx222.
Vasechi N, Iranmanesh M, Haj Ghasemi M, Karimi Tarshizi M A and Mozhgani N, 2020. Measurement of hydrophobicity, adhesion, and colonization of probiotic Lactobacillus strains under in vitro conditions. Veterinary Microbiology Journal, 16(1), 21–31.
Vasiee A R, Mortazavi A, Tabatabaei-yazdi F and Dovom, M R, 2018. Detection, identification and phylogenetic analysis of lactic acid bacteria isolated from Tarkhineh, Iranian fermented cereal product, by amplifying the 16s rRNA gene with universal primers and differentiation using rep-PCR. International Food Research Journal, 25(1).
Vasiee A R, Tabatabaei Yazdi F, Mortazavi A and Edalatian M R, 2014. Isolation, identification and characterization of probiotic Lactobacilli spp. from Tarkhineh. International Food Research Journal, 21(6).
Vasiee A, Alizadeh Behbahani B, Yazdi F, Mortazavi SA and Noorbakhsh H, 2018. Diversity and probiotic potential of lactic acid bacteria isolated from horreh, a traditional Iranian fermented food. Probiotics and antimicrobial proteins. 1;10(2):258-68. DOI 10.1007/s12602-017-9282-x
Vasiee A, Falah F, Alizadeh Behbahani B and Tabatabaee-Yazdi F, 2020. Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. Journal of Bioscience and ioengineering.;130(5):471-9. https://doi.org/10.1016/j.jbiosc.2020.07.002.
Vasiee A, Falah F, and Mortazavi S A, 2022. Evaluation of probiotic potential of autochthonous lactobacilli strains isolated from Zabuli yellow kashk, an Iranian dairy product. Journal of Applied Microbiology, 2022;133:3201–3214. https://doi.org/10.1111/jam.15772.
Vasiee A, Falah F, Sankian M, Tabatabaei-Yazdi F and Mortazavi SA, 2022. Oral immunotherapy using probiotic ice cream containing recombinant food-grade Lactococcus lactis which inhibited. allergic responses in a BALB/c mouse model. Journal of Immunology Research. 2020. https://doi.org/10.1155/2020/2635230.
Yang S J, Kim K-T, Kim TY, Paik H-D, 2020. Probiotic properties and antioxidant activities of Pediococcus pentosaceus SC28 and Levilactobacillus brevis KU15151 in fermented black gamju. Foods ;9(9):1154. https://doi.org/10.3390/foods9091154.
Zareie Z, Moayedi A, Garavand F, Tabar-Heydar K, Khomeiri M and Maghsoudlou Y, 2023. Probiotic Properties, Safety Assessment and Aroma-Generating Attributes of Some Lactic Acid Bacteria Isolated from Iranian Traditional Cheese. Fermentation. 9(4):338. https://doi.org/10.3390/fermentation9040338.
Zavišić G, Popović M, Stojkov S, Medić D, Gusman V, Jovanović Lješković N and Jovanović Galović, A, 2023. Antibiotic resistance and probiotics: knowledge gaps, market overview and preliminary screening. Antibiotics, 12(8), 1281. https://doi.org/10.3390/antibiotics12081281
Zawistowska-Rojek A, Zaręba T and Tyski S, 2022. Microbiological testing of probiotic preparations. International Journal of Environmental Research and Public Health, 19(9), 5701. https://doi.org/10.3390/ijerph19095701.
Zhou Q, Gu R, Li P, Lu Y, Chen L and Gu Q, 2020. Anti-Salmonella mode of action of natural L-phenyl lactic acid purified from Lactobacillus plantarum ZJ316. Applied Microbiology and Biotechnology, 104, 5283-5292. https://doi.org/10.1007/s00253-020-10503-4
Zibaei-Rad A, Rahmati-Joneidabad M, Alizadeh Behbahani B and Taki M, 2024. Probiotic-loaded seed mucilage-based edible coatings for fresh pistachio fruit preservation: an experimental and modeling study. Scientific Reports, 14(1), 509. https://doi.org/10.1038/s41598-023-51129-6
Zibaei-Rad A, Rahmati-Joneidabad M, Behbahani B A and Taki M, 2023. Assessing the protection mechanisms on Enterobacter aerogenes ATCC 13048 by potentially probiotic strain Lacticaseibacillus casei XN18: An experimental and modeling study. Microbial pathogenesis, 181, 106177.
Zommiti M, Bouffartigues E, Maillot O, Barreau M, Szunerits S, Sebei K and Ferchichi M, 2018. In vitro assessment of the probiotic properties and bacteriocinogenic potential of Pediococcus pentosaceus MZF16 isolated from artisanal Tunisian meat “Dried Ossban”. Frontiers in microbiology, 9, 2607. | ||
آمار تعداد مشاهده مقاله: 102 تعداد دریافت فایل اصل مقاله: 11 |