
تعداد نشریات | 45 |
تعداد شمارهها | 1,370 |
تعداد مقالات | 16,844 |
تعداد مشاهده مقاله | 54,231,468 |
تعداد دریافت فایل اصل مقاله | 16,943,270 |
AMBARZUMYAN TYPE THEOREM WITH CONFORMABLE DERIVATIVE | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 06 خرداد 1404 اصل مقاله (1.05 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2025.64979.2963 | ||
نویسندگان | ||
Beyhan Kemaloglu* ؛ Hasan Bulut | ||
Faculty of Science, Department of Mathematics 23119, Firat University, Elazig, Turkey. | ||
چکیده | ||
In this paper, we show the Ambarzumyan theorem by taking into account the Sturm-Liouville problem with separable boundary conditions by local derivative. We prove that if the spectrum consists of the first eigenvalue, then the potential function can be found depending on the first eigenvalue. Also, we give some examples like periodic and anti-periodic boundary conditions. In the case of α = 1, results were given in [32]. Although the concept of conformable fractional is debatable, we hope the results will be useful for Sturm-Liouville theory. | ||
کلیدواژهها | ||
Ambarzumyan theorem؛ Sturm-Liouville problem؛ conformable derivatives and integrals؛ eigenvalues | ||
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 7 |