
Unco
rre

cte
d Pro

of

Research Paper
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. *, No. *, *, pp. 1-13
DOI:10.22034/cmde.2025.65909.3060

Space-efficient algorithms for counting triangles in data streams using trained oracles

Hossein Jowhari∗ and Arash Rahmati

Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran.

Abstract

In this paper we study data stream algorithms for approximating the number of triangles under the assumption

that the algorithm has access to an oracle that answers certain queries about the input graph. Specifically we
present algorithms that process the input graph given as a sequence of edges (or vertices) and output an estimate

of the number of triangles in the given graph. We consider algorithms that, while processing the input stream,

have access to a degree oracle (given a vertex, the oracle provides the degree of the queried vertex) or an edge-
triangle oracle where the oracle answers whether an edge (u, v) participates in a triangle or not. We implement

two single-pass algorithms and the associated oracles in both the edge-arrival and the vertex-arrival models, and

evaluate their performance on real-world datasets. Despite the inaccuracies of the oracles used in our experiments,
our study shows that they can improve the performance of state-of-the-art triangle counting algorithms on some

real-world graphs.
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1. Introduction

Graphs are useful structures that are used to model real-world problems by representing relationships between
entities. Computing the structural properties of a graph that models a real-world problem provides insight and
facilitates the analysis of the problem. A key structural property of a graph, with many applications, is its number
of triangles, i.e. the number of triplets of vertices in which each vertex is connected to the other two vertices.
Algorithms for counting triangles in graphs have been studied extensively in the classical model of computations using
combinatorial approaches [2] and linear algebraic methods [17, 27]. This problem has also been studied in alternative
models of computation such as the data stream model [3, 10, 11, 16, 22] or sampling-based frameworks [8, 23]. In this
paper, we focus on the data stream model of computation.

In the data stream model [18, 19], the input graph is given as a sequence of edges and the algorithm is allowed to
have one pass (or few passes) over the input while having memory restrictions. Since the space usage of the algorithm
is small in comparison with the input size (number of edges), the algorithms in this model often resort to randomness
and approximation to cope with the strict memory limitations.

The problem of counting the number of triangles in a graph presented as a stream of edges was first introduced in
2002 [3], and has since been extensively studied in the streaming model due to its wide range of applications, including
spam detection, community mining, and link prediction [1]. The problem has been studied under the assumption of
both single-pass [10] and multi-pass algorithms [4]. Some researchers have focused on the insertion-only model where
edges are not deleted later on once they appear in the stream [16, 22], whereas others have worked on the dynamic
setting [25, 26], which handles edge deletions as well. The order of the edges is divided into three main categories:
arbitrary order, random order, and vertex arrival. The most challenging case is the arbitrary order where edges may
arrive in any order that is decided by an adversary. In the random order model, as the name suggests, the edges
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randomly appear in the stream. Finally, in the vertex-arrival model, all edges incident to a certain vertex appear
together and thus every edge is seen twice in the stream.

Recently, the problem of counting triangles has been explored within the framework of learning-augmented algo-
rithms. In this context, it is assumed that a (noisy) predictor or oracle is available which is capable of answering
specific queries about the input, while the data stream is processed. In practice, the predictor is constructed by
training a machine learning model on previous instances of the problem or by utilizing other features of the input.
In some cases, a previously stored instance of the problem can directly fulfill the role of the predictor. Although the
predictor may give incorrect or approximate information about the input, assuming its error is bounded, empirical
results demonstrate that trained oracles enhance algorithm efficiency.

In this direction, Chen et al. [6] initiated the study of learning-augmented algorithms for estimating the number
of triangles in the data stream model. They proposed one-pass algorithms that leverage a heavy-edge oracle, which
predicts whether a given edge participates in many triangles. Specifically, they demonstrated that access to such an
oracle enables space bounds that are unattainable without this assumption. Additionally, they presented experimental
results on real-world datasets, highlighting the practicality of their approach.

Inspired by Chen et al.’s work, in this paper we study a related oracle called an “edge-triangle oracle” which decides
whether an edge participates in at least one triangle or not. We also consider the “degree oracle” which provides the
degree of a vertex once asked (the degree oracle has been considered before in a work by McGregor et al. [16]). We
revisit prior algorithms and observe that, in certain cases, the space complexity can be reduced—or the number of
passes decreased—when either an edge-triangle oracle or a degree oracle is available (or both). Our theoretical results
are detailed in section 1.3. On the experimental side, we demonstrate that the edge-triangle oracle can offer practical
benefits. Specifically, our experiments show that, in both the edge-arrival and vertex-arrival models, augmenting the
framework of [6] with an edge-triangle oracle yields more accurate triangle count estimates in low-memory settings on
certain datasets.

1.1. Preliminaries. Given a graph G(V,E) with m edges and n vertices, we focus on (ϵ, δ)-estimation of T (G), the
number of triangles in the graph using randomized algorithms with high probability. In other words, we need to
guarantee P[|T̂ − T (G)| > ϵT (G)] < δ where T̂ is our estimate. We only work on the insertion-only model in this
paper. Let ∆(G), ∆E , and ∆V denote the maximum degree of G, the maximum number of triangles on any given
edge, and the maximum number of triangles on any given vertex respectively. Now we give formal definition of the
oracles used in the previous works and the Edge-Triangle oracle introduced in this work.

Definition 1.1 (Degree Oracle). Given a vertex u, a degree oracle, Deg-Oracle(.), returns the degree of the vertex,
i.e. Deg-Oracle(u) = du.

Definition 1.2 (Heavy-Edge Oracle). If te denotes the number of triangles incident to the edge e = {u, v}, a heavy-
edge oracle, Heavy-Oracle(e), returns TRUE if te > θ and FALSE otherwise, where θ is the heaviness threshold.

Definition 1.3 (Edge-Triangle Oracle). Given an edge e, Edge-Triangle-Oracle(e), returns TRUE if te > 0 and FALSE
otherwise.

In our algorithmic analysis, we make use of Chebyshev’s inequality and Chernoff bounds, which we assume the reader
is familiar with. More specifically, we rely on the following standard application of these concentration inequalities,
known as the Median-of-Means estimator. A detailed proof of correctness can be found in [5].

Lemma 1.4 (Median-of-Means Estimator). There is a universal positive constant c such that the following holds. Let
the random variable X be an unbiased estimator for a real quantity Q. Let {Xij}i∈[t],j∈[k] be a collection of independent

random variables with each Xij distributed identically to X, i.e. E[Xij ] = Q, where t = c log 1
δ and k = 3Var[X]

ϵ2(E[X])2 . Let

Z = mediani∈[t]

(
1
k

∑k
j=1 Xij

)
. Then, we know Z is an (ϵ, δ)-estimate for Q as stated below.

P (|Z −Q| ≥ ϵQ) ≤ δ.
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Thus, if an algorithm can produce X using s bits of space, then there is an (ϵ, δ)-estimation algorithm using the
following bits of space.

O

(
s · Var[X]

(E[X])2
· 1
ϵ2

log
1

δ

)
.

1.2. Previous Work. We summarize the space bounds of existing algorithms under arbitrary order streams for both
one-pass and multi-pass settings in Table 1 and Table 2, respectively. We use Õ notation to suppress logarithmic
factors, which commonly arise in randomized algorithms due to independent repetitions. For simplicity, we denote the
number of triangles as T rather than T (G), as the reference to the input graph is clear from context.

Table 1. Previous one-pass, arbitrary order triangle counting algorithms.

Ref. Year Space Oracle

[11] 2005 Õ(ϵ−2m∆2/T ) -

[20] 2012 Õ(m(ϵ−2∆E/T + ε−1/
√
T )) -

[22] 2013 Õ(ϵ−2m∆/T ) -

[12] 2018
Õ(ϵ−1m

√
∆E/T ) -

Õ(ϵ−1m
√
∆V /T ) -

[10] 2021 Õ(ϵ−2(m/T )(∆E +
√
∆V )) -

[6] 2022 Õ(ϵ−1(m/
√
T +
√
m)) heavy-edge

Apart from the dependencies on T and m, we observe that all prior algorithms—except for [6]—also depend on ∆E

(note that ∆E ≤ ∆ and ∆E ≤ ∆V ). It is noteworthy that, the most recent work [6] eliminates this dependency by
leveraging a heavy-edge oracle. In their setting, a heavy edge is defined as one that participates in at least θ triangles.

Table 2. Space bound of the previous multi-pass, arbitrary order triangle counting algorithms.

Ref. Year Space Pass Oracle

[7] 2017 Õ(ϵ−2.5m/
√
T ) 2 -

[16] 2016
Õ(ϵ−2m/

√
T ) 2 -

Õ(ϵ−2m3/2/T ) 3 degree

[4] 2017 Õ(ϵ−2m3/2/T ) 4 -

[9] 2022 Õ(ϵ−2m3/2/T ) 3 -

We point out that the algorithm given by Bera and Chakrabarti [4] runs in 3 passes if given access to a degree
oracle. Note that depending on whether T > m or not, an algorithm with space complexity m3/2/T may outperform

an algorithm with complexity m/
√
T , or vice versa. Interestingly, Fichtenberger et al. [9] showed an algorithm that

achieves the space complexity of McGregor et al. [16] and runs in the same number of passes but without relying
on a degree oracle. We also note that the algorithms presented in [4, 9] are general frameworks that can be applied
to counting arbitrary subgraphs, particularly odd cycles. However, for the purpose of comparison with our triangle
counting algorithms, we report only the space complexities of their methods when specialized to the triangle counting
problem, which is the primary focus of this paper.

1.3. Our Results. Our results are of both theoretical and practical interest. Theoretical bounds for our algorithms
are summarized in Table 3, where we highlight the space complexity of each algorithm along with its corresponding
oracle usage. On the experimental side, we evaluate a modified version of the single-pass algorithms from [6], in
which we incorporate an oracle that identifies and discards unimportant edges—those not involved in any triangle.
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This oracle operates either by directly referencing earlier instances of the graph or by using machine learning models
trained to predict such edges. Our experimental results demonstrate that edge-triangle oracles, which directly utilize
previous instances of the graph to identify unimportant edges, are sufficiently accurate to achieve both lower relative
error and reduced variance compared to the one-pass streaming algorithm of Chen et al. However, when we use
machine learning models to train oracles on the specific datasets such as Reddit Hyperlinks, or when we use the first
half of the edges as our oracle in the large Wiki-talk dataset, the resulting oracles do not provide enough accuracy to
improve our estimates of T .

Table 3. Triangle counting algorithms in this work.

Space Pass Order Oracle

Õ(ϵ−2∆) 1 arbitrary edge-triangle

Õ(ϵ−2m3/2/T ) 2 arbitrary degree

Õ(ϵ−2
√
m) 2 arbitrary edge-triangle + degree

2. Algorithms

In this section we present our algorithms for the triangle counting problem that assume the existence of an oracle.

2.1. An algorithm with a degree oracle. Assuming a degree oracle, we build up on the algorithm of [4] using the
concepts in [22]. Vertices are compared based on their degrees; if two vertices have equal degrees, their names are
compared lexicographically. Let ≺ denote this ordering relation. Let Te be the number of triangles on edge e where
the maximum degree of the triangle is not on this edge. More precisely,

Te={u,v} = {s ∈ V (G) | ({s, u} ∈ E(G)) ∧ ({s, v} ∈ E(G)) ∧ max{u, v} ≺ s}.

Under this ordering, it holds that
∑

e∈E(G) Te = T , and it has been shown in [4] that for all edges e, we have Te ≤
√
2m,

reliant on the fact that the number of neighbors w of any fixed vertex v with higher degrees, i.e. v ≺ w, is bounded
by
√
2m. Based on this, we now present Algorithm 1.

Algorithm 1 Õ(ε−2m3/2/T )-Space, 2-Pass Algorithm.

Pass 1:
1: Select one edge e1 = {u, v} using reservoir sampling.

Pass 2:
2: WLOG, we assume v ≺ u using the degree oracle
3: (Y, d′, f lag, e2) ← (0, 0, 0, ∅)
4: for edges in the form of ei = {u,wi} or ei = {v, wi} do
5: if u ≺ wi then
6: d′ ← d′ + 1
7: if coin(1/d′)=“head” then
8: (e2, f lag)← (ei, 0)
9: else

10: if ei completes the wedge e1e2 then
11: flag ← 1

12: if flag = 1 then Y ← d′

13: X ← mY
14: return X

In Algorithm 1, the outcome of coin(p) is “head” with probability p. In the first pass, the algorithm uniformly
samples one edge at random using reservoir sampling [28]. In the second pass, the algorithm samples one neighbor
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of the edge (u, v). However, the degree oracle helps us sample what we call a “good” neighbor: a neighbor with a
higher degree than those of u and v. Note that in the algorithm in [4], one has to sample multiple neighbors to detect
a “good” neighbor and thus the space complexity of an independent repetition in [4] becomes superconstant. Finally,
the algorithm waits for the arrival of the completing edge of the triangle after wi (the “good” neighbor) has been
sampled. We will now calculate the expectation and the variance of the output random variable of algorithm 1 and
prove theorem 2.1.

Theorem 2.1. Given graph G as a stream of edges, there is a 2-pass algorithm (i.e. 1) that benefits from a degree

oracle and approximates T (G) within 1 + ϵ factor using Õ(m
3/2

ϵ2T ) space.

Proof. If we assume that the algorithm has sampled ei = {u, v} in the first pass, we can calculate E[Y | ei]. Let
c′(e) be the number of good neighbors of e = {u, v} that are higher than u and v in the ordering relation ≺. The
algorithm, in the second pass, picks a fixed good neighbor of ei = {u, v} with probability 1

c′(ei)
. Also d′ = c′(ei). Thus

expectation is calculated as follows.

E[Y | ei] =
Tei

c′(ei)
c′(ei) = Tei .

So,

E[X] = mE[Y ] = m(
1

m
E[Y | e1] + · · ·+

1

m
E[Y | em]) = m

1

m

∑
e∈E

Te = T.

We now proceed to calculate an upper bound on the variance.

Var[X] = Var[mY ] = m2Var[Y ] ≤ m2E[Y 2] = m2 1

m

∑
e∈E

E[Y 2|e] = m
∑
ei∈E

Tei

c′(ei)
c′(ei)c

′(ei)

≤ mmax
ei∈E
{c′(ei)}

∑
ei∈E

Tei = 2m
√
2mT = O(m3/2T ).

Now that we have the upper bound on the variance of our unbiased estimator and that we know each execution
requires O(1) space, we use lemma 1.4 to calculate the number of repetitions required as follows.

Repetitions =
3Var[X]

ϵ2(E[X])2
c log (

1

δ
) = O(

m3/2T

ϵ2T 2
c log (

1

δ
)) = Õ(

m3/2

ϵ2T
).

□

2.2. An algorithm with an edge-triangle oracle. Pavan et al. [22] proposed a single-pass streaming algorithm in

the arbitrary-order model that approximates T using Õ(ϵ−2m∆/T ) space, achieving a multiplicative error guarantee.
With access to an edge-triangle oracle, as defined in Definition 1.3, it is straightforward to extend their approach to
prove the following theorem. Specifically, the only requirement is that the first edge r1 in their algorithm be sampled
from the set of “good” edges—those that participate in at least one triangle. In this case, the parameter m can
be replaced by m′, the number of triangle-participating edges. Since it holds that m′ ≤ 3T , this substitution leads
directly to the following result.

Theorem 2.2. Given graph G as a stream of edges, there is a 1-pass algorithm that benefits from an edge-triangle

oracle and approximates T (G) within 1 + ϵ factor using Õ(∆(G)
ϵ2 ) space.

Proof. Follows from the algorithm in Pavan et. al. [22]. □

2.3. A combination of two oracles. In this section, we explore the power of having access to both oracles. Similar
to what we proposed in section 2.1, we use the degree oracle to sample “good” neighbors. Furthermore, we sample
a “good” edge in the first pass similar to section 2.2. The pseudocode of this algorithm is illustrated in Algorithm 2
where we assume v ≺ u.
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Algorithm 2 Õ(ε−2
√
m)-Space, 2-Pass Algorithm.

Pass 1:
1: (m′, e1) ← (0, ∅)
2: for edges ei in the stream do
3: if Edge-Triangle-Oracle(ei) = “TRUE” then ▷ ei is in a triangle.
4: m′ ← m′ + 1
5: e1 = {u, v} ← ei w.p. (1/m′)

Pass 2:
6: WLOG, we assume v ≺ u using the degree oracle
7: (Y, d′, f lag, e2) ← (0, 0, 0, ∅)
8: for edges in the form of ei = {u,wi} or ei = {v, wi} do
9: if u ≺ wi then

10: d′ ← d′ + 1
11: if coin(1/d′)=“head” then
12: (e2, f lag)← (ei, 0)
13: else
14: if ei completes the wedge e1e2 then
15: flag ← 1

16: if flag = 1 then Y ← d′

17: return X = m′Y

Theorem 2.3. Given graph G as a stream of edges, there is a 2-pass algorithm (i.e. 2) that benefits from a degree

oracle and an edge-triangle oracle, and approximates T (G) within 1 + ϵ factor using Õ(ϵ−2
√
m) space.

Proof. Note that, in the end of the second pass, m′ equals the number of edges in the input graph that participate in
at least one triangle. Using a similar discussion presented in Theorem 2.1, we see that:

E[X] = T, Var[X] = O(m′√mT ) = O(
√
mT 2).

Here we have used the fact that m′ ≤ 3T . Since the space complexity of one execution of the algorithm is O(1), the
space complexity required to achieve (1 + ϵ) approximation is

Repetitions =
3Var[X]

ϵ2(E[X])2
c log (

1

δ
) = O(

√
mT 2

ϵ2T 2
c log (

1

δ
)) = Õ(

√
m

ϵ2
).

□

3. Experimental Results

3.1. Datasets. We use four datasets described as follows.

• Oregon1: This dataset consists of 9 graphs {#1, ...,#9} of Autonomous Systems (AS) peering information
inferred from Oregon route-views between March 31 2001 and May 26 2001 on the internet [15].
• As-Caida2: The dataset contains 122 CAIDA Autonomous System (AS) graphs, from January 2004 to No-
vember 2007. Each file contains a full AS graph derived from a set of RouteViews BGP table snapshots.
We will use the data from 2006 and 2007 in our experiments. There are 52 instances of the graph of 2006
{#1, ...,#52}, and there are 46 instances of the graph of 2007 {#1, ...,#46}.

• Reddit Hyperlinks3: The hyperlink network [13] represents the directed connections between two subreddits (a
subreddit is a community on Reddit, a social network). Note that we ignore edge directions in our experiments.
300-dimensional embeddings are also available for most of the nodes. The network is extracted from publicly

1https://snap.stanford.edu/data/Oregon-1.html
2https://snap.stanford.edu/data/as-Caida.html
3https://snap.stanford.edu/data/soc-RedditHyperlinks.html

https://snap.stanford.edu/data/Oregon-1.html
https://snap.stanford.edu/data/as-Caida.html
https://snap.stanford.edu/data/soc-RedditHyperlinks.html
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Table 4. Statistics of the graph datasets.

Dataset n m T ∆ ∆E ∆V

OREGON#1 10670 22002 17144 2312 526 3431
CAIDA-2006#1 21202 42925 30433 2381 578 3530
CAIDA-2007#1 24013 49332 40475 2377 602 4590
Reddit-Hyperlink 35775 124330 406391 2336 725 31967

Wiki-talk#1 528230 1346354 3603493 71211 1833 117709

available Reddit data of 2.5 years from Jan 2014 to April 2017. The subreddit-to-subreddit hyperlink network
is extracted from the posts that create hyperlinks from one subreddit to another. We say a hyperlink originates
from a post in the source community and links to a post in the target community.
• Wiki-talk1: The Wiki-talk dataset [14, 21] is the largest dataset used in our experiments, containing over one
million edges. It is a temporal graph representing interactions between Wikipedia users, where a directed edge
(u, v, t) indicates that user u edited user v’s talk page at time t. For our experiments, we treat the graph as
undirected and remove duplicate edges.

The statistics of the first instances of Oregon and As-Caida along with the statistics of Reddit Hyperlinks and Wiki-talk
are summarized in Table 4.

3.2. How to make oracles. We build oracles in three ways similar to [6].

• In Oregon and As-Caida, we directly use previous data. In fact, we look at the first instance of each graph and
memorize those important (heavy) edges. We also memorize unimportant edges (edges not involved in any
triangle).
• In Reddit Hyperlinks, since we have node representations, f(u), we train machine learning models. More

specifically, we train a linear regression model as our heavy-edge oracle, and a logistic regression model as our
edge-triangle oracle that outputs yes/no. Similar to [6], the labels are calculated using the exact count, and
the features of edges are made using node embeddings as follows.

f(e = {u, v}) = (f(u), f(v), ∥f(u)− f(v)∥1, ∥f(u)− f(v)∥2)︸ ︷︷ ︸
602-dimensional vector

.

• In the case of Wiki-talk, we divide the graph into two segments, referred to as Part #1 and Part #2. Since
Wiki-talk is a temporal graph in which each edge is associated with a timestamp, we first sort the edges
chronologically. The first half of the edges is used to construct an edge-triangle oracle using an exact triangle
counting approach. The remaining half serves as the input stream over which we approximate the number of
triangles.

3.3. One-Pass Algorithms of Interest. For practical considerations, the algorithms we implement and evaluate
on our datasets differ from the theoretical algorithms analyzed in Section 2. While inspired by the same principles,
the implemented versions are adapted to better suit real-world constraints such as space limits and oracle availability.
We primarily compare three algorithms: the oracle-based algorithm of Chen et al., our proposed modification of their
method, and the non-oracle ThinkD algorithm. The one-pass variant of ThinkD is widely regarded as state-of-the-
art among non-oracle algorithms and is available in two versions: Fast and Accurate. In our experiments, we have
implemented the Accurate version and report its performance across the datasets under the edge-arrival model.

We primarily compare our algorithms with Algorithms 1 and 4 from the work of Chen et al. [6]. This choice is
motivated by their empirical results, which demonstrate that these oracle-based algorithms outperform prior state-of-
the-art one-pass streaming algorithms without oracle access—such as ThinkD [25] and WRS [24]—on most datasets,
including Oregon, Caida-2006, and Caida-2007, under both edge-arrival and vertex-arrival models. Thus, at least on
these datasets, the algorithms of Chen et al. can be considered state-of-the-art. We emphasize that our proposed

1https://snap.stanford.edu/data/wiki-talk-temporal.html

https://snap.stanford.edu/data/wiki-talk-temporal.html
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Figure 1. Comparison of algorithms (edge-arrival) on Oregon and CAIDA datasets.

algorithms build upon the framework introduced by Chen et al., particularly the use of heavy-edge oracles. In addition,
we incorporate edge-triangle prediction oracles, which extend their approach. This enhancement—combined with the
original strategy of retaining important (i.e., heavy) edges—not only improves the accuracy of our estimates but,
more importantly, significantly reduces variance across multiple executions, especially in settings where only a limited
number of edges can be sampled.

We refer the reader to [6] for a detailed description of Chen et al.’s algorithm. Briefly, their core idea is to leverage
an oracle to retain heavy edges separately while uniformly sampling the remaining light edges. Triangles are then
categorized based on the combination of heavy and light edges they contain, with each category assigned a distinct
counter. These counters are appropriately scaled by the inverse of the sampling probability for each triangle type.
Finally, the adjusted counts are summed to produce an estimate of the total number of triangles in the graph.

3.4. Comparison of Algorithms. We use Oregon#1, Caida-2006#1, and Caida-2007#1 as oracles to detect heavy
and unimportant edges. The input of the algorithms are Oregon#4, Caida-2006#30, and Caida-2007#25. The error is∣∣∣(1− T̂ /T )× 100

∣∣∣. We run each algorithm 50 times and calculate the median relative error. The colors around each

line is ±1 standard deviation of the relative errors in 50 independent executions.
We observe from Figure 1 that the proposed algorithm in all cases has lower variance especially when the space is

very limited. The median relative errors of the proposed algorithm, except for the space of 9000 edges, have been lower
compared to the work of Chen et al. [6]. It is reasonable that the proposed algorithm cannot outperform the work of
Chen et al. when we are allowed to sample many edges since the oracles are not perfect, and we lose some triangles
by mistakenly removing some edges involved in triangles (see discussion 3.5 for more details). Despite a higher error
at 9000 sampled edges, the variance of the proposed algorithm is still lower. We also note that the non-oracle baseline
of ThinkD is noticeably outperformed by the oracle-based methods on these datasets.

For the Oregon dataset, we further evaluate the performance of the proposed algorithm across multiple instances,
as shown in Figure 2. In this experiment, both algorithms are allocated the same memory budget, allowing up to
3000 edges. The vertical lines in Figure 2 indicate ±1 standard deviation of the relative error, computed over 50
independent runs.

We have also compared our algorithm to that of Chen et al. (see Figure 3) on the Wiki-talk dataset. On this
relatively bigger dataset, we have allowed the algorithm to keep as many as 30K edges. Similarly, we see our proposed
algorithm outperforms the work of Chen et al. in the low memory setting. However, the non-oracle algorithm of
ThinkD outperforms both Chen et al.’s and our proposed methods. In subsection 3.5, we will explain that this
happens due to the lower accuracy of the oracles that are based on the first half of the edges in Wiki-talk graph.

To further evaluate our idea of removing unimportant edges, we implemented the first algorithm of [6] which is in
the vertex arrival model. Vertex-arrival model is a simpler setting in which vertices arrive with their neighbors one at
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Figure 3. Comparison (edge-arrival) on Wiki-talk dataset.

a time. The errors become smaller in this setting and using our idea of removing unnecessary edges makes the errors
even smaller as seen in Figure 4 for datasets Oregon#4, CAIDA2006#30 and CAIDA2007#25.

Since each algorithm is randomized and is executed 50 times to calculate the median error, standard deviations of
output values are illustrated in Figure 5. These values are calculated for all algorithms at 6000 edges, accompanied
by those in the edge-arrival model for the CAIDA-2006#30 dataset. This also confirms the reduction in variance by
removing the unnecessary edges. Similar reductions will be observed at other space capacities, which we have excluded
for brevity.

We conclude by presenting our results on the Reddit Hyperlinks dataset using oracles trained via machine learning.
As described earlier, we construct edge features by combining features from the corresponding nodes. Due to missing
node features, we are able to generate edge features for only 103K out of the 124K edges. We then train a logistic
regression model to predict whether an edge participates in at least one triangle, and a linear regression model to
estimate the triangle count of an edge (i.e., whether it is heavy). The first half of the edges is used as the training set
for both models. The results of this approach are presented in Figure 6.

As we observe from figure 6, the proposed algorithm does not reduce the median errors in most cases. More
importantly, as similarly illustrated in Chen’s work [6], ThinkD outperforms their oracle-assisted approach and our
algorithm as well. In the following section, we will discuss why this has happened.
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3.5. Discussion. In the previous section we showed how using an edge-triangle oracle can improve the accuracy of
the learning-augmented algorithms in [6]. In practice, our main idea is to eliminate edges that do not participate in
any triangle, thereby reducing unnecessary processing. While one might argue that identifying such edges requires
additional space to track them, our intention is primarily to demonstrate that removing irrelevant edges can enhance
the performance of state-of-the-art algorithms. In fact, oracles can be implemented as lightweight machine learning
models that do not consume significant memory, yet can predict with high confidence whether an edge is likely to be
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Table 5. Oracle accuracy (direct use of previous data and exact count).

Oracle TP TN FP FN NI Acc
OREGON-#1 11061 8534 522 517 2113 %94

CAIDA-2006-#1 16299 16836 1734 1589 9627 %90
CAIDA-2007-#1 19102 19906 1528 1540 9434 %92
Wiki-talk#1 26188 4319 2990 2781 1454299 %84

Table 6. Logistic regression accuracy.

Oracle TP TN FP FN NI Acc
Logistic Regression
on Reddit Hyperlinks

81431 3148 16039 3147 20565 %81

part of a triangle. Such models are only trained on the first few instances of the graph and are subsequently saved
and benefited from in the future instances to detect the unimportant edges. On datasets Oregon, CAIDA2006, and
CAIDA2007, oracles are over 90% accurate and correctly remove over 8K unimportant edges (See table 5 for exact
figures.) In this table, Positive means the oracle has declared an edge to be part of a triangle while Negative means the
oracle has declared an edge unnecessary. NI means the oracle cannot make a prediction on that edge because it either
had not appeared in previous instances or does not have a feature vector (representation) for the regression model.

However, our proposed algorithms do not generalize well across all datasets and may fail to produce accurate
estimates, particularly in cases where the oracle-based approach of Chen et al. is itself ineffective (see Figures 3
and 6). We emphasize that the effectiveness of our method strongly depends on the oracle’s ability to accurately
identify edges that do not participate in any triangles. When we directly use previous data, the edge-triangle oracle,
although not perfect, is accurate enough to help us outperform the algorithm of Chen et al. However, the accuracy
of oracles that rely on the first m/2 (half of) edges are relatively lower. Specifically, when we incorporate learning
into the problem, the accuracy drops to 81%. When we use logistic regression on the first half of the edges in Reddit
Hyperlinks, our approach does not lead to a better estimate. This oracle only removes 3K unnecessary edges as well
as mistakenly removing 3K important edges (See table 6 for exact figures.)

In fact, the non-oracle algorithm of ThinkD can outperform the oracle-assisted versions when oracles are less than
90% accurate. However, when the oracles become more accurate or perfect, the oracle-based algorithms (especially
ours) outperform ThinkD. If we run our algorithm with a perfect oracle, our approach can easily outperform ThinkD.
For instance, on Wiki-talk dataset and with a perfect oracle, our algorithm can remove 879K unnecessary edges and
decrease the error to as low as 2% at the space of 15000 sampled edges. Thus, although such oracles can be built for
some datasets (Oregon and CAIDA), the main challenge is building accurate or near-perfect oracles for any dataset of
interest and generalize the approach.

4. Conclusion

In this paper, we addressed the problem of triangle counting in the streaming model under the assumption that the
algorithm has access to oracles providing additional information about the input. Our focus was on the insertion-only
setting, where edges are added but not deleted. We presented both theoretical bounds and supporting experimental
results.

We proposed three algorithms in the arbitrary-order, insertion-only model. The first algorithm leverages an edge-
triangle oracle, a novel oracle introduced in this work. The second algorithm assumes access to a degree oracle, while
the third utilizes both oracles. The space complexities of the algorithms are Õ(ϵ−2∆), Õ(ϵ−2m3/2/T ), and Õ(ϵ−2

√
m)

where the first algorithm works in a single pass while the others are 2-Pass algorithms.
In our experiments, we have implemented the idea of removing edges that do not participate in any triangles by

calling oracles. These oracles can directly use previous instances of the graph, or they can be built by training machine
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learning models. Our experiments show that in the autonomous systems’ datasets, due to the high accuracy of edge-
triangle oracles that directly use previous data, the proposed algorithms can lead to improvements over state-of-the-art
(the algorithms of Chen et al. [6]). This happens specifically when space usage is low both in the edge-arrival and the
vertex-arrival model.

However, on other datasets such as Reddit Hyperlinks andWiki-talk, the oracles are not accurate enough to outperform
even the non-oracle baseline of ThinkD. This observation highlights a key limitation of our approach: its effectiveness
depends on the ability to construct accurate oracles. As part of future work, we plan to focus on improving the oracle
component by exploring more powerful machine learning models—such as Graph Neural Networks—that can better
capture structural patterns in graphs and make more reliable predictions across a broader range of datasets. Such
oracles are particularly promising, as even large graphs with many triangles often contain a substantial number of
edges that do not participate in any triangles.
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