
تعداد نشریات | 45 |
تعداد شمارهها | 1,370 |
تعداد مقالات | 16,844 |
تعداد مشاهده مقاله | 54,231,791 |
تعداد دریافت فایل اصل مقاله | 16,943,488 |
Introducing novel $(\psi,\phi)$-fractional operators advances in fractional calculus | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 29 اردیبهشت 1404 اصل مقاله (1.23 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2025.62416.2748 | ||
نویسنده | ||
Lakhlifa Sadek* | ||
Department of Mathematics, Faculty of Sciences and Technology, BP 34. Ajdir 32003 Al-Hoceima, Abdelmalek Essaadi University, Tetouan, Morocco. | ||
چکیده | ||
This study introduces novel generalized fractional derivatives known as $(\psi,\phi)$-fractional derivatives of the Riemann-Liouville and Caputo types, each incorporating exponential function kernels. These new operators offer distinct advantages, including a semi-group property and a seamless extension of the Riemann-Liouville (RL-FD) and Caputo fractional derivatives (C-FD), as well as integrals (RL-FI). We explore the Laplace transform of these $(\psi,\phi)$-fractional derivatives and $(\psi,\phi)$-integral, leveraging them to address linear $(\psi,\phi)$-fractional differential equations. Moreover, these fractional operators are general to classical fractional operators, cotangent fractional operators, and generalized proportional operators. | ||
کلیدواژهها | ||
$(\psi؛ \phi)$-fractional operators؛ Laplace transform؛ linear $(\psi؛ \phi)$-fractional differential equations | ||
آمار تعداد مشاهده مقاله: 33 تعداد دریافت فایل اصل مقاله: 46 |