
تعداد نشریات | 45 |
تعداد شمارهها | 1,417 |
تعداد مقالات | 17,409 |
تعداد مشاهده مقاله | 56,140,767 |
تعداد دریافت فایل اصل مقاله | 18,437,354 |
تأثیر محصورسازی در لایه ماسه و ایجاد خمیدگی انتهایی بر بهبود مقاومت بیرون کشش تسمه پلیمری در رس | ||
نشریه مهندسی عمران و محیط زیست | ||
مقاله 6، دوره 55، شماره 119، شهریور 1404، صفحه 73-86 اصل مقاله (4 M) | ||
نوع مقاله: مقاله کامل پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/ceej.2025.64913.2403 | ||
نویسندگان | ||
مازیار غلامی شولی؛ سیدمحمد بینش* ؛ پیلتن طباطبایی شوریجه | ||
دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی شیراز | ||
چکیده | ||
طراحی و ساخت دیوارهای حائل خاک مسلح با توجه به ویژگی های ژئوتکنیکی مناسب و مقرون به صرفه بودن، در سال های اخیر مورد توجه مهندسان و پژوهشگران قرار گرفته است. تسلیح خاک با استفاده از تسمه پلیمری روشی ساده، مؤثر و ارزان برای بهبود رفتارهای مقاومتی و تغییر شکلی دیوارهای حائل خاک مسلح میباشد. در این پژوهش، به منظور افزایش مقاومت بیرون کشش تسمه های پلیمری در خاک رس از ترکیب دو راهکار محصورسازی تسمه پلیمری در لایه نازکی از ماسه و ایجاد ناحیه ای خمیده در انتهای تسمه استفاده شده است. آزمایش های بیرون کشش بزرگ مقیاس تحت فشارهای سربار مختلف برای تسمه ساده و تسمه با انتهای خمیده (U-شکل) انجام شده و مقاومت بیرون کشش تسمه U-شکل با مقاومت بیرون کشش تسمه ساده در ماسه و همچنین در خاک رس مقایسه شده است. سپس تأثیر محصورسازی تسمه U-شکل در لایه های نازکی از ماسه با ضخامت های مختلف، در محیط رسی بررسی گردیده است. نتایج نشان داد که ایجاد خمیدگی U-شکل در انتهای تسمه که همراه با افزایش 30% در طول تسمه مصرفی است، مقاومت بیرون کشش را نسبت به تسمه ساده بیش از سه برابر افزایش می دهد. همچنین محصورسازی تسمه U-شکل در لایه نازک ماسه، مقاومت بیرون کشش را تا حدود پنج برابر نسبت به تسمه ساده در خاک رسی افزایش می دهد. | ||
کلیدواژهها | ||
بهسازی خاک؛ ماسه؛ رس؛ تسمه پلیمری؛ آزمون بیرونکشش | ||
مراجع | ||
AASHTO, “LRFD Bridge Design Specifications”, third ed. AASHTO, Washington, DC, 2010. Abdelouhab A, Dias D, Freitag N, “Numerical analysis of the behaviour of mechanically stabilized earth walls reinforced with different types of strips”, Geotextiles and Geomembranes, 2011, 29 (2), 116-129. https://doi.org/10.1016/j.geotexmem.2010.10.011 Abdi MR, Sadrnejad A, Arjomand MA, “Strength enhancement of clay by encapsulating geogrids in thin layers of sand”, Geotextiles and Geomembranes, 2009, 27 (6), 447-455. https://doi.org/10.1016/j.geotexmem.2009.06.001 Abdi MR, Arjomand MA, “Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand”, Geotextiles and. Geomembranes, 2011, 29 (6), 588-595. https://doi.org/10.1016/j.geotexmem.2011.04.004 Abdi MR, Zandieh AR, “Experimental and numerical analysis of large-scale pull-out tests conducted on clays reinforced with geogrids encapsulated with coarse material”, Geotextiles and Geomembranes, 2014, 42 (5), 494-504. https://doi.org/10.1016/j.geotexmem.2014.07.008 Abdi MR, Tabarsa A, Haghgouy P, “Evaluation of soil-geometrically modified geogrid interaction in direct shear mode”, International Journal of Geosynthetics and Ground Engineering, 2023, 9 (60), 1-16. https://doi.org/10.1007/s40891-023-00479-2 Abu Farsakh M, Farrag K, Almohd I, Mohiuddin A, “Bearing and frictional contributions to the pullout capacity of geogrid reinforcements in cohesive backfill”, Proceeding Geo-Frontiers, Slopes and Retaining Structures Under Seismic and Static Conditions, 2005. https://doi.org/10.1061/40787(166)22 ASTM, “Standard test method for maximum index density and unit weight of soils using a vibratory table”, ASTM, U.S.A. ASTM Designation: D4253-00, 2000. ASTM, “Standard test method for measuring geosynthetic pullout resistance in soil”, ASTM, U.S.A. ASTM Designation: D6706-01, 2001. ASTM, “Standard test method for minimum index density and unit weight of soils and calculation of relative densityl”, ASTM, U.S.A. ASTM Designation: D 4254-16, 2016. Balakrishnan S, Viswanadham BVS, “Centrifuge model studies on the performance of soil walls reinforced with sand-cushioned geogrid layers”, Geotextiles and Geomembranes, 2019, 47 (6), 803-814. https://doi.org/10.1016/j.geotexmem.2019.103496 Berg RR, Christopher BR, Samtani NC, “Design of mechanically stabilized earth walls and reinforced soil slopes-volume I”, FHWA. National Highway Institute Federal Highway Administration U.S. Department of Transportation, Washington, D.C, 2009a. Berg RR, Christopher BR, Samtani NC, “Design of mechanically stabilized earth walls and reinforced soil slopes-volume II”, FHWA. National Highway Institute Federal Highway Administration U.S. Department of Transportation, Washington, D.C, 2009b. Chen HT, Hung WY, Chang CC, Chen YJ, Lee CJ, “Centrifuge modeling test of a geotextile-reinforced wall with a very wet clayey backfill”, Geotextiles and. Geomembranes, 2007, 25 (6), 346-359. https://doi.org/10.1016/j.geotexmem.2007.01.003 Christopher BR, Zornberg JG, Mitchell JK, “Design guidance for reinforced soil structures with marginal soil backfills”, Proceedings of the Sixth International Conference on Geosynthetics, Atlanta, Georgia, 1998, 797-804. Damians IP, Bathurst RJ, Olivella S, Lloret A, Josa A, “3D modelling of strip reinforced MSE walls”, Acta Geotechnica, 2021, 16 (3), 711-730. https://doi.org/10.1007/s11440-020-01057-w Durukan Z, Tezcan SS, “Cost analysis of reinforced soil walls”, Geotextiles and Geomembranes, 1992, 11 (1), 29-43. https://doi.org/10.1016/0266-1144(92)90011-X Esfandiari J, Selamat M, “Laboratory investigation on the effect of transverse member on pull out capacity of metal strip reinforcement in sand”, Geotextiles and Geomembranes, 2012, 35, 41-49. https://doi.org/10.1016/j.geotexmem.2012.07.002 Fei J, Jie Y, Wu H, Zhou T, “Laboratory pullout test study on the influence zone of geosynthetics”, Journal of Engineered Fibers and Fabrics, 2020, 15, 1-11. https://doi.org/10.1177/1558925020906674 FHWA, “Mechanically Stabilized Earth Walls and Reinforced Soil Slopes: Design and Construction Guidelines”, Federal Highway Administration and National Highway Institute, Washington DC. FHWA NHI-00-43, 2010. Koerner RM, Koerner GR, “The importance of drainage control for geosynthetic reinforced mechanically stabilized earth walls”, Journal of Geoengineering, 2011, 6 (1), 3-13. Koerner RM, “Designing with Geosynthetics”, sixth ed., vol. 1. Xlibris Corporation, Bloomington. USA, 2012. Koerner RM, Koerner GR, “An extended data base and recommendations regarding 320 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls”, Geotextiles and Geomembranes, 2018, 46, 904-912. https://doi.org/10.1016/j.geotexmem.2018.07.013 Ladd RS, “Preparing test specimens using undercompaction”, Geotechnical Testing Journal, 1978, 1 (1), 16-23. https://doi.org/10.1520/GTJ10364J Malek Ghasemi S, Binesh SM, Tabatabaie Shourijeh P, “Improving clay-geogrid interaction: Enhancing pullout resistance with recycled concrete aggregate encapsulation”, Geotextiles and Geomembranes, 2024, 52 (6), 1145-1160. https://doi.org/10.1016/j.geotexmem.2024.07.010 Mitchell JK, Zornberg JG, “Reinforced soil structures with poorly draining backfills part II: case histories and applications”, Geosynthetics International, 1995, 2 (1), 265-307. https://doi.org/10.1680/gein.2.0011 Naresh CS, Edward AN, “Mechanically stabilized earth (MSE) wall fills a Framework for Use of local available sustainable resources (LASR)”, Federal High-Way Administration, FHWA Wash. DC USA, 2021. NCMA, “Design Manual for Segmental Retaining Walls”, third ed. National Concrete Masonry Association, VA, USA, 2010. Palmeira EM, “Soil-geosynthetic interaction: modelling and analysis”, Geotextiles and Geomembranes, 2009, 27, 368-90. https://doi.org/10.1016/j.geotexmem.2009.03.003 Panah AK, Eftekhari Z, “Shaking table tests on polymeric-strip reinforced-soil walls adjacent to a rock slope”, Geotextiles and Geomembranes, 2021, 49 (3), 737-756. https://doi.org/10.1016/j.geotexmem.2020.12.005 Portelinha FHM, Zornberg JG, Pimentel V, “Field performance of retaining walls reinforced with woven and nonwoven geotextiles”, Geosynthetics International, 2014, 21 (4), 270-284. https://doi.org/10.1680/gein.14.00014 Razeghi HR, Ensani A, “Clayey sand soil interactions with geogrids and geotextiles using large-scale direct shear tests”, International Journal of Geosynthetics and Ground Engineering, 2023, 9 (24), 1-15. https://doi.org/10.1007/s40891-023-00443-0 Razzazan R, Keshavarz A, Mosallanezhad M, “Large-scale pullout testing and numerical evaluation of U-shape polymeric straps”, Geosynthetics International, 2018, 26 (3), 237-250. https://doi.org/10.1680/jgein.19.00001 Sridharan A, Murthy BS, Bindumadhava, Revanasiddappa K, “Technique for using fine-grained soil in reinforced earth”, Journal of Geotechnical Engineering (ASCE), 1991, 117 (8), 1174-1190. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:8(1174) Tajabadipour M, Lajevardi SH, “Laboratory large-scale pullout investigation of a new reinforcement of composite geosynthetic strip”, Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13 (5), 1147-1159. https://doi.org/10.1016/j.jrmge.2021.03.014 Tatlisoz N, Edil TB, Benson CH, “Interaction between reinforcing geosynthetics and soil-tire chip mixtures”, Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (11), 1109-1119. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1109) Tavakoli S, Aminfar MH, “Study of nail group efficiency on sandy soil using large scale pull-out box”, Journal of Rehabilitation in Civil Engineering, 2022, 10 (1), 69-87. https://doi.org/10.22075/JRCE.2021.22026.1463 Thuo JN, Yang KH, Huang CC, “Infiltration into unsaturated reinforced slopes with nonwoven geotextile drains sandwiched in sand layers”, Geosynthetics International, 2015, 22 (6), 457-474. https://doi.org/10.1680/jgein.15.00026 Wu J, Pham T, “Load-carrying capacity and required reinforcement strength of closely spaced soil-geosynthetic composites”, Journal of Geotechnical and Geo-environmental Engineering, 2013, 139 (9), 1468-1476. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000885 Wu J, Tung C, Adams M, “Analysis of stress deformation behavior of soil-geosynthetic composites in plane strain condition”, Transportation Infrastructure Geotechnology, 2018, 5 (3), 1-21. https://doi.org/ 10.1007/s40515-018-0057-y Yako MA, Christopher BR, “Polymerically reinforced retaining walls and slopes in North America”, In: Jarrett, PM, McGown A, (eds), The Application of Polymeric Reinforcement in Soil Retaining Structures, NATO ASI Series, Springer, Dordrecht, 1988, 147, 239-283. https://doi.org/10.1007/978-94-009-1405-6_8 Yang KH, Huynh VDA, Nguyen TS, Portelinha FHM, “Numerical evaluation of reinforced slopes with various backfill-reinforcement-drainage systems subject to rainfall infiltration”, Computers and. Geotechnics, 2018, 96, 25-39. https://doi.org/10.1016/j.compgeo.2017.10.012 Yang KH, Wu HM, Tseng TL, Yoo C, “Model tests of geosynthetic reinforced soil walls with marginal backfill subjected to rainfall”, Geotextiles and Geomembranes, 2023, 51 (2), 342-359. https://doi.org/10.1016/j.geotexmem.2022.12.002 Yünkül K, Gürbüz A, “Shaking table study on seismic behavior of MSE wall with inclined backfill soils reinforced by polymeric geostrips”, Geotextiles and Geomembranes, 2022, 50 (1), 116-136. https://doi.org/10.1016/j.geotexmem.2021.09.005 | ||
آمار تعداد مشاهده مقاله: 95 تعداد دریافت فایل اصل مقاله: 84 |