
تعداد نشریات | 45 |
تعداد شمارهها | 1,386 |
تعداد مقالات | 17,000 |
تعداد مشاهده مقاله | 54,686,891 |
تعداد دریافت فایل اصل مقاله | 17,248,579 |
Genetic diversity of seven-spotted ladybug populations in Iran using cytochrome oxidase gene analysis | ||
پژوهش های کاربردی در گیاهپزشکی | ||
دوره 14، شماره 1، فروردین 1404، صفحه 57-69 اصل مقاله (941.05 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/arpp.2025.19829 | ||
نویسندگان | ||
فاطمه السادات حسینی1؛ مجید کزازی* 1؛ فاطمه عبدالاحدی2 | ||
1گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
2گروه تاکسونومی حشرات، موسسه تحقیقات گیاهپزشکی کشور، تهران | ||
چکیده | ||
Lady beetles, particularly the seven-spotted lady beetle, play an essential role as biological control agents against aphids and other pests in agricultural ecosystems. Studying their molecular biology can provide insights into their adaptation, behavior, and potential for pest control. Recent progress in genomic technologies has led to a better understanding of the molecular mechanisms involved in these processes. In this study, we examined the genetic structure of Iranian populations of this species by sequencing the cytochrome oxidase gene. Analysis of thirty-three genetic sequences (positions 1-576) showed a haplotype diversity of 0.945, with 25 distinct haplotypes identified. The nucleotide diversity was relatively low (π = 0.00658), revealing a discrepancy between haplotype diversity and nucleotide diversity. This pattern suggests the presence of a genetically diverse population with conserved genomic regions, likely resulting from recent population expansion or selective pressures. Our findings provide important information about population dynamics and offer valuable insights for conservation strategies and ecological planning. | ||
کلیدواژهها | ||
Ecological management؛ Haplotype؛ Nucleotide diversity؛ Population genetics | ||
مراجع | ||
Abdolahadi F, Mirmoayedi A, Zaraei L, 2022. Genetic diversity study of Chrysoperla carnea (Neuroptera: Chrysopidae) populations via molecular markers. Genetika 54(3): 1295–1312. DOI: 10.2298/GENSR2203295A. Babu TR, Azam K, 1987. Biology of Cryptolaemus montrouzieri Mulsant (Coccinellidae: Coleoptera) in relation with temperature. Entomophaga 32: 381–386. Cantrell C, 2011. Seven-spotted Lady Beetle (Coleoptera: Coccinellidae). World Wide Web electronic publication. Available from: http://ninnescahlife.wichita.edu/node/378. [Accessed on 7 August 2012]. Castro Paz FP, Batista JdS, Port JIR, 2014. DNA barcodes of rosy tetras and allied species (Characiformes: Characidae: Hyphessobrycon) from the Brazilian Amazon basin. PLoS ONE 9(5): e98603. https://doi.org/10.1371/journal.pone.0098603. Chan AHE, Chaisiri K, Saralamba S, Morand S, Thaenkham U, 2021. Assessing the suitability of mitochondrial and nuclear DNA genetic markers for molecular systematics and species identification of helminths. Parasites & Vectors 14 (1): 233. Clausen CP, 1978. Introduced parasites and predators of arthropod pests and weeds: A world review. United States Department of Agriculture Agricultural Handbook 480: 259–276. Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P, 2014. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters 10 (9): 20140562. Dlugosch KM, Parker IM, 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 17(1): 431–449. Dunbar HE, Wilson ACC, Ferguson NR, Moran NA, 2007. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biology 5(5): e96. Excoffier L, Lischer HEL, 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567. Gassmann AJ, Onstad DW, Pittendrigh BR, 2009. Evolutionary analysis of herbivorous insects in natural and agricultural environments. Pest Management Science 65 (11): 1174–1181. Graves CJ, Weinreich DM, 2017. Variability in fitness effects can preclude selection of the fittest. Annual Review of Ecology, Evolution, & Systematics 48(1): 399–417. Guillemaud T, Ciosi M, Lombaert E, Estoup A, 2011. Biological invasions in agricultural settings: Insights from evolutionary biology and population genetics. Comptes Rendus Biologies 334 (3): 237–246. Gurr G, Wratten S, 1999. Integrated biological control: A proposal for enhancing success in biological control. International Journal of Pest Management 45(2): 81–84. Gurr G, Wratten S, Barbosa P, 2000. Success in conservation biological control of arthropods. Biological Control: Measures of Success: 105–132. Gutierrez AP, Caltagirone L, Meikle W, 1999. Evaluation of results: economics of biological control. In: Bellows TS, Fisher TW (eds). Handbook of Biological Control. Elsevier, Amsterdam. Pp. 243–252. Heuertz M, Carvalho SB, Galindo J, Rinkevich B, Robakowski P, et al., 2023. The application gap: Genomics for biodiversity and ecosystem service management. Biological Conservation 278: 109883. Hebert PDN, Penton EH, Burns JM, et al. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101:14812e14817. https://doi.org/10.1073/pnas.0406166101. Hodek I, Michaud J, 2013. Why is Coccinella septempunctata so successful? (A point-of-view). European Journal of Entomology 105(1): 1–12. Honek A, Martinková Z, 2005. Long term changes in abundance of Coccinella septempunctata (Coleoptera: Coccinellidae) in the Czech Republic. European Journal of Entomology 102(3): 443. Honek A, Martinkova Z, Pekar S, 2007. Aggregation characteristics of three species of Coccinellidae (Coleoptera) at hibernation sites. European Journal of Entomology 104(1): 51. Javonillo R, Malabarba LR, Weitzman SH, Burns JR, 2010. Relationships among major lineages of characid fishes (Teleostei: Ostariophysi: Characiformes), based on molecular sequence data. Molecular Phylogenetics & Evolution 54(2): 498–511. Kadono-Okuda K, Sakurai H, Takeda S, Okuda T, 1995. Synchronous growth of a parasitoid, Perilitus coccinellae, and teratocytes with the development of the host, Coccinella septempunctata. Entomologia Experimentalis et Applicata 75(2): 145–149. Kajita Y, Takano F, Yasuda H, Evans EW, 2006. Interactions between introduced and native predatory ladybirds (Coleoptera, Coccinellidae): factors influencing the success of species introductions. Ecological Entomology 31(1): 58–67. Kolbe JJ, Glor RE, Rodríguez Schettino L, Lara AC, Larson A, et al., 2004. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431(7005): 177–181. Krafsur ES, Obrycki JJ, Harwood JD, 2005. Comparative genetic studies of native and introduced Coccinellidae in North America. European Journal of Entomology 102(3): 469–474. https://doi.org/10.14411/eje.2005.067. Kumar S, Stecher G, Tamura K, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology & Evolution 33 (7): 1870–1874. Leit JW, Bryant D, 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology & Evolution 6(9): 1110–1116. Librado P, Rozas J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. Lombaert E, Estoup A, Facon B, Joubard B, Grégoire JC, et al., 2014. Rapid increase in dispersal during range expansion in the invasive ladybird Harmonia axyridis. Journal of Evolutionary Biology 27(3): 508–517. Magoga G, Forni G, Brunetti M, Meral A, Spada A, et al., 2022. Curation of a reference database of COI sequences for insect identification through DNA metabarcoding: COins. Database 00: 1–7. Majerus MEN, 2002. The ant-associations and diet of the ladybird Coccinella magnifica (Coleoptera: Coccinellidae). European Journal of Entomology 99: 565–569. Mathur S, Mason AJ, Bradburd GS, Gibbs HL, 2023. Functional genomic diversity is correlated with neutral genomic diversity in populations of an endangered rattlesnake. Proceedings of the National Academy of Sciences 120(43): e2303043120. Murrell EG, Barton BT, 2017. Warming alters prey density and biological control in conventional and organic agricultural systems. Integrative & Comparative Biology 57(1): 1–13. Nei M, 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70(12): 3321–3323. Omkar, Srivastava SS, 2002. The reproductive behaviour of an aphidophagous ladybeetle, Coccinella septempunctata (Coleoptera: Coccinellidae). European Journal of Entomology 99(4): 465–470. https://doi.org/10.14411/eje.2002.060. Phillips C, Baird D, Iline I, McNeill M, Proffitt J, et al., 2008. East meets west: adaptive evolution of an insect introduced for biological control. Journal of Applied Ecology 45(3): 948–956. Porter TM, Hajibabaei M, 2018. Over 2.5 million COI sequences in GenBank and growing. PLoS ONE 13(9): e0200177. Rius M, Bourne S, Hornsby HG, Chapman MA, 2015. Applications of next-generation sequencing to the study of biological invasions. Current Zoology 61(3): 488–504. Rodríguez-Verdugo A, Carrillo-Cisneros D, González-González A, Gaut BS, Bennett AF, 2014. Different tradeoffs result from alternate genetic adaptations to a common environment. Proceedings of the National Academy of Sciences 111(33): 12121–12126. Roy H, Brown P. Field guide to the ladybirds of Great Britain and Ireland. Bloomsbury Publishing; 2018 Nov 29. Roy H, Brown P, 2018. Field Guide to the Ladybirds of Great Britain and Ireland. 1st edition, Bloomsbury Wildlife Guides series, Bloomsbury Press. 160 pp. Sayed SM, 2016. Molecular diversity of the lady beetles, Coccinella undecimpunctata L. and Hippodamia variegate (Goeze) (Coleoptera: Coccinellidae) in Saudi Arabia. Egyptian Journal of Biological Pest Control 26(2): 351. Sethuraman A, Janzen FJ, Weisrock DW, Obrycki JJ, 2020. Insights from population genomics to enhance and sustain biological control of insect pests. Insects 11(8): 462. Singh N, Singh D, Kesavan AK, Alabdallah NM, Alshehri MA, et al., 2022. Cytochrome Oxidase Subunit II: Potential Marker for the Identification of Forensically Significant Species of Coleoptera—A Preliminary Study. Diversity 14(5): 369. Sloggett JJ, 2021. Aphidophagous ladybirds (Coleoptera: Coccinellidae) and climate change: a review. Insect Conservation & Diversity 14(6): 709–722. Völkl W, 1995. Behavioral and morphological adaptations of the coccinellid, Platynaspis luteorubra for exploiting ant-attended resources (Coleoptera: Coccinellidae). Journal of Insect Behavior 8: 653–670. Webster MT, Beaurepaire A, Neumann P, Stolle E, 2023. Population genomics for insect conservation. Annual Review of Animal Biosciences 11(1): 115–140. | ||
آمار تعداد مشاهده مقاله: 76 تعداد دریافت فایل اصل مقاله: 9 |