
تعداد نشریات | 45 |
تعداد شمارهها | 1,371 |
تعداد مقالات | 16,852 |
تعداد مشاهده مقاله | 54,248,792 |
تعداد دریافت فایل اصل مقاله | 16,958,492 |
A Multigrid Solver for Subdiffusion Equations | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 17 اردیبهشت 1404 اصل مقاله (1.14 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2025.65520.3017 | ||
نویسندگان | ||
Reza Mokhtari* 1؛ Mohadeseh Ramezani1؛ Gundolf Haase2 | ||
1Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran. | ||
2Department for Mathematics and Scientific Computing, University of Graz, Graz, Austria. | ||
چکیده | ||
In this paper, we investigate the S3-FD method for solving time-fractional diffusion equations in both one-dimensional (1D) and two-dimensional (2D) spatial domains, achieving high-order temporal accuracy. We leverage the S3 formula, which has a temporal accuracy of \(4 - \alpha\), to approximate the Caputo fractional derivative of order \(\alpha \in (0,1)\), and we employ the finite difference approach for spatial discretization. We develop a fully discrete scheme for both uniform and non-uniform spatial meshes. Our analysis begins with the 1D subdiffusion problem, where we employ the cyclic reduction method alongside OpenMP-based parallel programming to reduce computational costs. Leveraging this groundwork, we extend our technique to the 2D subdiffusion problem using a multigrid method and domain decomposition strategy paired with MPI programming. This innovative method yields an impressive temporal convergence order of \(\mathcal{O}(\Delta t^{4-\alpha})\). The performance and efficiency of the proposed S3-FD algorithm are demonstrated through numerical experiments, highlighting its potential for large-scale fractional diffusion problems. | ||
کلیدواژهها | ||
Subdiffusion equation؛ S3 formula؛ multigrid method؛ domain decomposition؛ parallel processing | ||
آمار تعداد مشاهده مقاله: 29 تعداد دریافت فایل اصل مقاله: 35 |