
تعداد نشریات | 45 |
تعداد شمارهها | 1,370 |
تعداد مقالات | 16,844 |
تعداد مشاهده مقاله | 54,231,878 |
تعداد دریافت فایل اصل مقاله | 16,943,527 |
ارزیابی پایداری بوم نظام مکانیزه و سنتی تولید گل محمدی بر اساس تحلیل امرژی در شهرستان نهبندان | ||
دانش کشاورزی وتولید پایدار | ||
دوره 35، شماره 1، اردیبهشت 1404، صفحه 237-253 اصل مقاله (1.89 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/saps.2023.56810.3050 | ||
نویسندگان | ||
فاطمه نخعی1؛ سید احمد قنبری2؛ محمدرضا اصغری پور* 3؛ اسماعیل سید آبادی4 | ||
1دانشجوی دکتری، گروه زراعت، دانشکده کشاورزی، دانشگاه زابل | ||
2استاد گروه زراعت دانشکده کشاورزی، دانشگاه زابل | ||
3گروه زراعت، دانشکده کشاورزی، دانشگاه زابل | ||
4گروه زراعت دانشکده کشاورزی، دانشگاه زابل | ||
چکیده | ||
مقدمه و اهداف: استفاده از رویکرد تحلیل امرژی در ارزیابی پایداری نظامهای زراعی، منجر به اعمال مدیریت صحیح در راستای افزایش پایـداری تولیـد در ایـن نظامها میشود. توسعه کشت گل محمدی با نام علمی Rosa damascene Mill. از خانواده Rosaceace در مناطق گرم خشک کشور باعث تحول اقتصادی این مناطق میگردد. به همین دلیل ضرورت تولید این گیاه در نظامهای زراعی نواحی گرم و خشک کشور ایجاد شده است. این مطالعه با هدف تبیین وضعیت پایداری بومنظامهای مکانیزه و سنتی تولید گل محمدی در نهبندان اجرا شد. مواد و روشها: این مطالعه در سال 1401 در دو بومنظام مکانیزه و سنتی تولید گل محمدی در شهرستان نهبندان، استان خراسان جنوبی، بر اساس تحلیل ساختار ورودیها و شاخصهای مبتنی بر امرژی انجام گردید. برای جمعآوری دادهها، از پرسشنامهها و اندازهگیریهای میدانی نهادهها و خروجیهای تولیدی در هر دو نظام استفاده شد. همچنین، تحلیل امرژی با استفاده از ضرایب تبدیل استاندارد و نرمافزارهای محاسباتی انجام گرفت. یافتهها: کل ورودی امرژی نظام مکانیزه و سنتی گل محمدی، در این مطالعه بهترتیب 1016 × 17/7 و 1016 × 11/5 امژول خورشیدی در هکتار در سال محاسبه شد. مقادیر شاخصهای نسبت عملکرد امرژی (EYR) نسبت بار محیط زیستی استاندارد (ELR) و اصـلاح شـده (ELR*) و شاخص پایداری محیطی اسـتاندارد (ESI) و اصلاح شده (ESI*) نشاندهنده این است که بومنظام سنتی در مقایسه با بوم نظام مکانیزه دارای راندمان اکولوژیکی بالاتر بوده و به شرایط بهینه نزدیکتر است نتیجه گیری: در نظام مکانیزه تولید گل محمدی، توجه به راهکارهای عملی در مدیریت جامع بومنظام تولیدی به ویژه حفاظت از مواد آلی خاک و جلوگیری از تلفات آن، میتواند در پایداری اکولوژیکی این نظام تاثیر چشمگیری داشته باشد. در نظام تولید سنتی، ارتقاء دانش فنی بهرهبردار جهت بهبود پایداری اقتصادی در این نظام توصیه میشود. | ||
کلیدواژهها | ||
بار زیست محیطی؛ بوم نظام زراعی؛ تحلیل امرژی؛ قوانین ترمودینامیک؛ کشاورزی پایدار | ||
مراجع | ||
Agostinho F, Diniz G, Siche R, and Ortega E. 2008. The use of emergy assessment and the geographical information system in the diagnosis of small family farms in Brazil. Ecological Modelling, 210: 37-57. DOI: 10.1016/j.ecolmodel.2007.07.007 Altieri MA. 1988. Beyond Agroecology: Making Sustainable Agriculture Part of a Political Agenda. American Journal o f Alternative Agriculture, 3:142- 143. DOI: 10.1017/S0889189300002340 Amiri Z, Asgharipour MR, Campbell DE and Armin M. 2019. A sustainability analysis of two rapeseed farming ecosystems in Khorramabad, Iran, based on emergy and economic analyses. Journal of Cleaner Production, 229: 1051–1066. DOI: 10.1016/j.jclepro.2019.05.091 Amiri Z, Asgharipour MR, Campbell DE, and Sabaghi MA. 2020 b. Comparison of the sustainability of mechanized and traditional rapeseed production systems using an emergy-based production function: A case study in Lorestan Province, Iran. Journal of Cleaner Production, 258: 120891. DOI: 10.1016/j.jclepro.2020.120891 Amiri Z, Asgharipour MR, Campbell DE, Azizi K, Kakolvand E, and Hassani Moghadam E. 2021. Conservation agriculture, a selective model based on emergy analysis for sustainable production of shallot as a medicinal-industrial plant. Journal of Cleaner Production, 292: 1-19. DOI: 10.1016/j.jclepro.2021.126008 Artuzo FD, Allegretti G, Santos OIB, da Silva LX and Talamini E. 2021. Emergy unsustainability index for agricultural systems assessment: a proposal based on the laws of thermodynamics. Sci Total Environ, 759:143524. DOI: 10.1016/j.scitotenv.2020.143524 Asgharipour MR, Amiri, Z, and Campbell DE. 2020. Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics. Ecological Modelling, 424: 1-17. DOI: 10.1016/j.ecolmodel.2020.109021 Asgharipour MR, Shahgholi H, Campbell DE, Khamari I and Ghadiri A. 2019. Comparison of the sustainability of bean production systems based on emergy and economic analyses. Environmental Monitoring and Assessment, 191(1): 2. DOI: 10.1007/s10661-018-7129-8 Brandt-Williams SL. 2002. Handbook of Emergy Evaluation: Folio #4dEmergy of Florida Agriculture. Center for Environmental Policy, University of Florida, Gainesville, FL, USA. Brentrup F, Küsters J, Lammel J, Barraclough P and Kuhlmann H. 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. European Journal Agronomy, 20: 265–279. DOI: 10.1016/S1161-0301(03)00039-X Brown MT and Ulgiati S. 2004. Energy quality, emergy, and transformity: H.T. Odum's contributions to quantifying and understanding systems. Ecological Modelling, 178: 201–213. DOI: 10.1016/j.ecolmodel.2004.03.002 Brown MT, Brandt-Williams S, Tilley D and Ulgiati S. 2000. Emergy synthesis: an introduction, in: Brown, M.T. (Ed.), Emergy Synthesis: Theory and Applications of the Emergy Methodology. In: Proceedings from the First Biennial Emergy Analysis Research Conference. Centre for Environmental Policy. Gainesville, FL. pp: 1–14. Campbell C and Laherrere J. 1998. The end of cheap oil. J. Sci. Am, 278 (3): 78–83. DOI: 10.1038/scientificamerican0398-78 Campbell DE and Erban L. 2017. A reexamination of the emergy input to a system from the wind. Emergy Synthesis 9: 13-20. Campbell DE, Brandt-Williams SL and Meisch MEA. 2005. Environmental Accounting Using Emergy: Evaluation of the State of West Virginia. First Edition, USA: Washington, Office of Research and Development, Washington, DC, p: 116. Campbell DE, Lu HF, Knox GA and Odum HT. 2009. Maximizing empower on a human-dominated planet: the role of exotic Spartina. Ecological Engineering, 35: 463–486. DOI: 10.1016/j.ecoleng.2008.11.006 Campbell DE. 2008. Emergy and its Importance. Narragansett, Rhode Island. First Edition, USA: Environmental Protection Agency, National Health and Environmental Effects Research Laboratory. Atlantic Ecology Division, PP: 265-272. Cavalett O and Ortega E .2009. Emergy, nutrients balance, and economic assessment of soybean production and industrialization in Brazil. Journal Cleaner Production, 17:762–771. DOI: 10.1016/j.jclepro.2008.11.022 Chen GQ and Chen B. 2009. Extended-exergy analysis of the Chinese society. Energy, 34: 1127–1144. DOI: 10.1016/j.energy.2009.04.030 Chen GQ, Jiang MM, Chen B, Yang ZF and Lin C. 2006. Emergy analysis of Chinese agriculture. Agriculture Ecosystems Environment, 115:161–173. DOI: 10.1016/j.agee.2006.01.005 Cheng H, Chen C, Wu S, Mirza ZA and Liu Z. 2017. Emergy evaluation of cropping, poultry rearing, and fish raising systems in the drawdown zone of Three Gorges Reservoir of China. Journal of Cleaner Production, 144: 559-571. DOI: 10.1016/j.jclepro.2016.12.053 Cohen MJ, Brown MT and Shepherd KD. 2006. Estimating the environmental costs of soil erosion at multiple scales in Kenya using emergy synthesis. Agriculture, Ecosystems and Environment, 114(2–4): 249–269. DOI: 10.1016/j.agee.2005.10.021 Conant RT, Ryan MG, A˚gren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM and Hyvo¨nen R . 2011. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Glob Change Biol, 17(11):3392–3404. DOI: 10.1111/j.1365-2486.2011.02496.x Cuadra M and Rydberg T. 2006. Emergy evaluation on the production, processing and export of coffee in Nicaragua. Ecological Modelling, 196: 421- 433. DOI: 10.1016/j.ecolmodel.2006.02.010 De Barros JM, Blazy GS, Rodrigues R and Tournebize JP. 2009. Emergy evaluation and economic performance of banana cropping systems in Guadeloupe (French West Indies). Agriculture, Ecosystems and Environment, 129: 437–449. DOI: 10.1016/j.agee.2008.10.015 Ebrahimabadi, A. 2013. Production of rose oil in compliance with ISO 9842. Available at: WWW. Medplant.ir. Ghaley BB and Porter JR. 2013. Emergy synthesis of a combined food and energy production system compared to a conventional wheat (Triticum aestivum) production system. Ecological Indicators, 24: 534-542. DOI: 10.1016/j.ecolind.2012.08.009 Giannetti BF, Ogura Y, Bonilla SH, Almeida CMVB. 2011. Emergy assessment of a coffee farm in Brazilian Cerrado considering in a broad form the environmental services, negative externalities and fair price. Agricultural Systems, 104: 679-688. DOI: 10.1016/j.agsy.2011.07.001 Gupta MJ and Chandra P. 2002. Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control. Energy, 27: 777–794. DOI: 10.1016/S0360-5442(02)00030-0 Jafari M, Asgharipour MR, Ramroudi M, Galavi M and Hadarbadi G. 2018. Sustainability assessment of date and pistachio agricultural systems using energy, emergy and economic approaches. Journal Cleaner Production, 193: 642-651. DOI: 10.1016/j.jclepro.2018.05.089 Kazemi NajafAbadi M. 2009. Feasibility study of olive cultivation in Isfahan province using GIS, M.S. Thesis, Tehran University. Faculty of Geography. Natural Geography Group. Natural geography and geomorphology, Iran. Khodaeii MB, Samadi V, Selahshour H. 2006. Examining the products from the Iranian flower market in Asia. Scientific-research quarterly of medicinal and aromatic plants in Iran, 22(4): 385-373. (In Persian with English Abstract). . Kohkan SA, Ghanbari A, Asgharipour MR and Fakheri B. 2017. Emergy evaluation of Yaghuti grape of Sistan. Arid Biome Scientific and Research Journal, 7: 73–84. La Rosa AD, Siracusa G and Cavallaro R. 2008. Emergy evaluation of Sicilian red orange production. A comparison between organic and conventional farming. Journal of Cleaner Production, 16:1907–1914. DOI: 10.1016/j.jclepro.2008.02.003 Lan SF, Qin P and Lu HF. 2002. Emergy Assessment of Ecological Systems. Chemical Industry Press, Beijing, China, 76: 406–412. Lefroy E and Rydberg T. 2003. Emergy evaluation of three cropping systems in southwestern Australia. Ecological Modelling, 161: 195-211. DOI: 10.1016/S0304-3800(02)00341-1 Lu HF and Campbell D E. 2009. Ecological and economic dynamics of the Shunde agricultural system under China's small city development strategy. Journal of Environmental Management, 90: 2589-2600. DOI: 10.1016/j.jenvman.2009.02.006 Lu HF, Bai Y, Ren H and Campbell DE. 2010. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: Implications for agricultural policy in China. Journal of Environmental Management, 91: 2727-2735. DOI: 10.1016/j.jenvman.2010.07.025 Lu HF, Cai CJ, Zeng XS, Campbell DE, Fan SH and Liu GL. 2018. Bamboo vs. crops: an integrated emergy and economic evaluation of using bamboo to replace crops in south Sichuan Province, China. Journal of Cleaner Production, 177: 464-473. DOI: 10.1016/j.jclepro.2017.12.193 Milà i Canals L, Burnip GM and Cowell SJ. 2006. Evaluation of the environmental impacts of apple production using life cycle assessment (LCA): case study in New Zealand. Agriculture, Ecosystems and Environment, 114: 226–238. DOI: 10.1016/j.agee.2005.10.023 Mohammadzadeh A, Damghani AM, Vafabakhsh J and Deihimfard R. 2017. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province. Environmental Science and Pollution Research, 24: 16971-16984. DOI: 10.1007/s11356-017-9299-7 Odum HT, Brown MT and Brandt-Williams S. 2000. Introduction and Global Budget, Handbook of Emergy Evaluation. First Edition, USA: University of Florida, Gainesville Center for Environmental Policy, PP: 1-17. Odum HT. 1983. Systems Ecology. Wiley, New York. Odum HT. 1986. Emergy in ecosystems. In N. Polunin (Ed.), Ecosystem theory and application, pp: 142–194. New York: Wiley. Odum HT. 1996. Environmental Accounting: Emergy and Environmental Decision Making. John Wiley & Sons, New York. USA. Odum HT. 2007. Environment, Power, and Society for the Twenty-First Century. The Hierarchy of Energy. Columbia University Press, New York. Ortega E, Anami MH and Diniz G. 2002. Certification of food products using emergy analysis. In: Proceedings of III International Workshop Advances in Energy Studies. Florida, USA. Citeseer, pp: 227-237. Papizadeh A and Bosshaq MR. 2014. Identifying of effective factors on agricultural sustainability of growers maize in Doroud, Iran. Bulletin of Environment, Pharmacology and Life Sciences, 3 (4): 55-59. Pelliciardi V, Varvaro L and Maria Pulselli F. 2014. Emergy evaluation of a traditional farming system.Case study: Leh District (Ladakh - Indian Trans-Himalaya). European Journal of Sustainable Development, 3(4): 1- 16. DOI: 10.14207/ejsd.2014.v3n4p1 Singh RJ, Ghosh BN, Sharma NK, Patra S, Dadhwal KS and Mishra PK. 2016. Energy budgeting and emergy synthesis of rainfed maize–wheat rotation system with different soil amendment applications. Ecological Indicators, 61: 753–765. DOI: 10.1016/j.ecolind.2015.10.029 Snedecor GW and Cochran WG. 1980. Statistical Methods, seventh ed. Lowa State Unv. Press, Ames., Lowa, USA, p: 476. Tabaei-Aghdaei SR, Babaei A, Khosh-Khui M, Jaimand K, Rezaee MB, Assareh MH and Naghavi MR .2007. Morphological and oil content variations amongst Damask rose (Rosa damascena Mill.) landraces from different regions of Iran. Scientia Horticulturae, 113(1): 44-48. DOI: 10.1016/j.scienta.2007.01.010 Ting YI and Ping-an XIANG. 2016. Emergy analysis of paddy farming in Hunan Province, China: a new perspective on sustainable development of agriculture. Journal of Integrative Agriculture, 10: 2426–2436. Ulgiati S and Brown MT. 1998. Monitoring patterns of sustainability in natural and man-made ecosystems. Ecological Modelling, 108(1-3): 23-36. DOI: 10.1016/S2095-3119(16)61379-9 Ulgiati S, Odum HT and Bastianoni S.1994. Emergy use, environmental loading and sustainability an emergy analysis of Italy. Ecological Modeling, 73:215–268. DOI: 10.1016/S0304-3800(98)00016-7 Wang X, Chen Y, Sui P, Gao W, Qin F, Wu X and Xiong J. 2014a. Efficiency and sustainability analysis of biogas and electricity production from a large-scale biogas project in China: an emergy evaluation based on LCA. Journal of Cleaner Production, 65: 234–245. DOI: 10.1016/j.jclepro.2013.09.001 Wu XH, Wu FQ, Tong XG and Jiang B. 2013. Emergybased sustainability assessment of an integrated production system of cattle, biogas, and greenhouse vegetables: insight into the comprehensive utilization of wastes on a large-scale farm in Northwest China. Ecological Engineering, 61: 335– 344. DOI: 10.1016/j.ecoleng.2013.09.022 Zhan Ch, Zhao R and Hu Sh. 2020. Emergy-based sustainability assessment of forest ecosystem with the aid of mountain eco-hydrological model in Huanjiang County, China. Journal of Cleaner Production, 251: 119- 638. DOI: 10.1016/j.jclepro.2019.119638 Zhang G and Long W. 2010. A key review on emergy analysis and assessment of biomass resources for a sustainable future. Energy Policy, 29:4111–4129. DOI: 10.1016/j.enpol.2010.03.051 Zhang LX, Song B, Chen B. 2012. Emergy-based analysis of four farming systems: insight into agricultural diversification in rural China. Journal of Cleaner Production, 28: 33-44. DOI: 10.1016/j.jclepro.2011.10.042 Zhang LX, Yang ZF and Chen GQ. (2007). Emergy analysis of cropping–grazing system in Inner Mongolia Autonomous Region, China. Energ Policy, 35: 3843–3855. DOI: 10.1016/j.enpol.2006.12.009 | ||
آمار تعداد مشاهده مقاله: 39 تعداد دریافت فایل اصل مقاله: 43 |