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Abstract
The article focuses on investigating Lie symmetry analysis of time-fractional Zeldovich-Frank-Kamenetskii equa-

tion with Riemann-Liouville derivative. The fractional reaction-diffusion equation describes how planar laminar
premixed flames spread in combustion theory. The use of Lie method is also illustrated to obtain Lie symmetry

generators, symmetry reduction solutions, invariant properties, and conservation laws. Furthermore, we con-

vert time-fractional Zeldovich-Frank-Kamenetskii equation to a nonlinear fractional ordinary differential equation
(ODE) with Erdélyi-Kober derivative using its Lie point symmetries. This decreased fractional ODE is investigated

by explicit power series. In addition, some figures for obtained explicit solution are presented.
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1. Introduction

In recent years, fractional differential equations (FDEs), as a generalization of partial differential equations (PDEs),
have been applied in physics, engineering, chemistry, biology, blood flow phenomena, quantum mechanics, etc. In fact,
many physical and natural phenomena may depend on their current and historical situations that can be formulated
by the theory of fractional derivatives and integrals. Fractional calculus is the most suitable tool for describing
long-memory processes. The most popular models of this calculus are differential equations with fractional-order
derivatives. Also, there are numerous methods available in the literature for solving FDEs. Both mathematicians and
physicists have made many efforts to discover effective methods to find exact solutions to FDEs. For example, see
analytical methods like unified model, extended unified model and variational model [1, 20], or numerical methods
like Chebyshev series method, Tikhonov regularization method and ABC-fractional technique [3, 7, 21, 23]. However,
Lie symmetry analysis, as an analytic method which is introduced by Lie, provides an effective way to derive exact
solutions for PDEs and FDEs. Finding explicit solutions is a great and interesting problem while dealing with a
problematic system of PDEs or FDEs.

The Lie symmetry group of a system of differential equations has many numerous practical applications. One
of the most important efforts is its ability to generate new solutions from known ones. This is achieved by applying
defined properties of symmetry group. Additionally, a Lie symmetry group provides a method for categorizing different
classes of symmetrical solutions. Two solutions are considered equivalent if one can be converted to the other with a
group element. Moreover, these symmetry groups can be used to classify set of differential equations based on given
parameters or functions. Another valuable application of Lie group theory is to identify the conservation laws of
equations, playing a pivotal role in examining solution properties, including their existence, uniqueness and stability
[4].
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In the present article, we show that Lie symmetry techniques can also be applied to discover solutions of a reaction-
diffusion equation, named Zeldovich-Frank-Kamenetskii (ZFK). Further, we concentrate on one of the easiest variants
of ZFK equation [5]. However, we envisage applying our method to more complex patterns for planar flame propagation
away from flammability limits explained by a system of reaction-diffusion equations for which an Arrhenius law with
high activation energy determines reaction rate. There are very few papers that have dealt with equation ZFK equation
in fractional form, and among them, almost all of them have solved this equation with numerical methods and have
provided approximate solutions for it ([17], [27]). In this paper, however, an attempt has been made to solve this
equation with the Lie method and obtain exact solutions. Also, for the first time, we have obtained the conservation
laws of this fractional equation.

The time-fractional differential equation is defined by

∂ηt θ = θxx +
β2

2
θ(1− θ)e−β(1−θ), (1.1)

in which t ≥ 0, x ∈ R, β is Zeldovich number, and θ is a non-dimensional variable that quantifies the ratio of
burnt to unburnt gas in a easy reaction including two modes and is called reduced temperature. The term ω(θ, β) =
β2

2 θ(1−θ)e
−β(1−θ) is called reaction term which depends on Zeldovich number β � 1 [5]. The focus of the article is on

investigating Lie point symmetries, similarity reduction, formal Lagrangian, and conservation laws for time-fractional
ZFK equation.

The continuation of this paper is 7 sections including a conclusion. Section 2 recalls some primary definitions and
features of fractional calculus. Section 3 explains how to determine Lie point symmetries of FDEs. In section 4, Lie
point symmetries of time-fractional ZFK equation are found. Next section is devoted to applying Lie symmetries to
construct novel invariant solutions for this equation. In Section 6, we obtain the power series solutions of (1.1). Section
7 explains how by using Lie symmetry generators conservation laws can be constructed to fractional ZFK equation.
Some conclusions are also presented in last section.

2. Preliminaries

First, some preliminary notations and definitions of fractional calculus are presented. We should mention that there
are various definitions for fractional derivative like Caputo, Riemann-Liouville, Riesz, Grünwald-Letnikov, Miller-Ross,
Hadamard and Erdélyi-Kober fractional derivatives. Here, we employ Riemann-Liouville and Erdélyi-Kober fractional
derivative to obtain symmetries and exact solutions of system (1.1) (see [2, 8, 26]).

Definition 2.1. [6, 22] Presume f(x) is an integrable function and −∞ < a < b <∞. Then left-sided and right-sided
fractional Riemann-Liouville integrals of order η > 0 will be

aI
η
t f(t) =

1

Γ(η)

∫ t

a

f(s)

(t− s)1−η ds, x > a,

tI
η
b f(t) =

1

Γ(η)

∫ b

t

f(s)

(s− t)1−η ds, x < b,

(2.1)

respectively, in which Γ(x) =
∫∞

0
e−ttx−1 is Gamma function [6].

Definition 2.2. [6, 22] On [a, b],

aD
η
t f(t) = Dn

t (aI
n−η
t f(t)) =

1

Γ(n− η)

(
d

dt

)n ∫ t

a

f(r)

(t− r)η−n+1
dr,

tD
η
b f(t) = (−1)nDn

t (tI
n−η
b f(t)) =

(−1)n

Γ(n− η)

(
d

d

)n ∫ b

t

f(r)

(r − t)η−n+1
dr,

(2.2)

are left and right Riemann-Liouville fractional partial derivatives of order η > 0 for f(x), where n = [η] + 1.

Some applicable features of Riemann-Liouville partial derivative are as follows [22]:

• Dη
tC =

Ct−η

Γ(1− η)
, C is a constant;
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• Dη
t t
β =

Γ(1 + β)

Γ(1 + β − η)
tβ−η;

• Dη
t [h(t)g(t)] =

∞∑
m=0

(
η
m

)
Dη−m
t h(t)Dm

t g(t), η > 0.

The third feature refers to generalized Leibnitz rule in which(
η

m

)
=

(−1)m−1ηΓ(m− η)

Γ(1− η)Γ(m+ 1)
.

Further, we need the Erdélyi-Kober fractional integral operator

(Kτ,ηδ h)(z) =


1

Γ(η)

∫ ∞
1

(s− 1)η−1s−(τ+η)h(zs
1
δ )ds, η > 0,

h(z), η = 0.
(2.3)

Using this notion, we can define the extended left-hand side of this operator with

(Pτ,ηδ h) (z) =
n−1∏
j=0

(
τ + j − 1

δ
z
∂

∂z

)
(Kτ+η,n−η

δ h)(z), (2.4)

where z > 0, δ > 0, η > 0 and

n =

{
[η] + 1, η /∈ N,
η, η ∈ N.

3. Finding lie symmetries of time-fractional PDEs regarding Riemann-Liouville derivative

Lie symmetries for FDEs is first proposed by Gazizov et al. [11] and then many authors considered Lie group theory
for analyzing FDEs in [10, 24] and references therein. This section presents several short points of Lie symmetry analysis
for time-fractional PDEs with over independent variables. This procedure can be extended to other time-fractional
PDEs or systems with more independent variables. Consider a scaler time-fractional PDE involving independent
variables t and x and a dependent variable θ as follows:

∂ηt θ(t, x) = F (t, x, θ, θx, θxx, · · · ), (3.1)

for the order 0 < η < 1, where ∂ηt indicates Riemann-Liouville fractional derivative and indexes are partial derivatives.
According to Lie group theory, if (3.1) is invariant under a one-parameter Lie group of point transformations, it remains
unchanged under invertible transformations of variables t, x, θ, and the derivatives of θ for independent variables are

t̄ = t+ ετ(t, x, θ) +O(ε2), x̄ = x+ εξ(t, x, θ) +O(ε2),

θ̄ = θ + εΦ(t, x, θ) +O(ε2),
∂θ̄

∂x̄
=
∂θ

∂x
+ εΦx(t, x, θ) +O(ε2), (3.2)

∂2θ̄

∂x̄2
=
∂2θ

∂x2
+ εΦxx(t, x, θ) +O(ε2),

∂η θ̄

∂t̄η
=
∂ηθ

∂tη
+ εΦ(η,t)(t, x, θ) +O(ε2),

in which τ, ξ and Φ are called infinitesimal and Φx, Φxx, and Φ(η,t) are called generalized infinitesimals of order 1, 2,
and η, respectively. The set of all these transformations for continuous parameter ε is called a Lie group transformation
G. Like properties of groups, G has identity transformation. This group is known as admitted symmetry group by
(2.3), too. The associated infinitesimal generator for these group transformations is defined as:

X = τ
∂

∂t
+ ξ

∂

∂x
+ Φ

∂

∂θ
, (3.3)

where

dt̄

dε

∣∣∣
ε=0

= τ,
dx̄

dε

∣∣∣
ε=0

= ξ,
dθ̄

dε

∣∣∣
ε=0

= Φ.
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Based the invariance criterion of Lie theory, (3.1) accepts Lie group transformation (3.2) and Lie symmetry vector
field (3.3) as generator iff prolonged vector field Pr(η,t)X annihilates (3.1) on its solution; that is,

Pr(η,t)X(∆)
∣∣∣
δ=0

= 0, ∆ = ∂ηt θ(t, x)− F (t, x, θ, θx, θxx, · · · ).

This equation is named determining equation. By keeping essential terms, the prolongation of operator Pr(η,t)X is

Pr(η,t)X = X + Φx∂θx + Φxx∂θxx + Φ(η,t)∂∂ηt θ. (3.4)

The explicit expression for Φx and Φxx, coming from classical prolongation formula for PDEs, are expressed by [19]:

Φx = DxΦ− θtDxτ − θxDxξ = Φx + Φθθx − τxθt − ξxθx − τθθtθx − ξθθ2
x,

Φxx = DxΦx − θtxDxτ − θxxDxξ = Φxx + (2Φxθ − ξxx − 2τxθθt − 3ξθθxx)θx

− τxxθt + (Φθθ − τθθθt − 2ξxθ)θ
2
x − 2(τx + τθθx)θxt − (τθθt − Φθ + 2ξx)θxx − ξθθθ3

x,

(3.5)

in which Di stands for total differentiation in related to independent variable i. Also, extended infinitesimal Φ(η,t)

corresponding to time-fractional Riemann-Liouville derivative is [12]:

Φ(η,t) = Dη
t Φ + ξDη

t θx −D
η
t (ξθx) + τDη

t θt +Dη
t (θDtτ)−Dη+1

t (τθ),

where Dη
t is total fractional derivative operator of order η in related to t. Applying Leibnitz rule presented in previous

section, the generalized infinitesimal Φ(η,t) is

Φ(η,t) = Dη
t Φ− η.Dtτ.

∂ηθ

∂tη
−
∞∑
n=1

(
η

n

)
.Dn

t ξ.D
η−n
t θx −

∞∑
n=1

(
η

n+ 1

)
Dn+1
t τ.Dη−n

t θ.

Now, we state generalized chain rule for combination two function as below:

dmg(h(t))

dtm
=

m∑
k=0

k∑
l=0

(
k

l

)
1

k!
[−h(t)]l

dm

dtm
[h(t)k−l]

dkg(h)

dhk
.

Giving both generalized chain and Leibniz rules, we have Dη
t Φ in Φ(η,t) as follows:

Dη
t (Φ) =

∂ηΦ

∂tη
+ Φθ

∂ηθ

∂tη
− θ∂

ηΦθ
∂tη

+
∞∑
n=1

(
η

n

)
∂nΦθ
∂tn

Dη−n
t θ + µ,

in which µ is expressed as

µ =
∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
l=0

(
η

n

)(
n

m

)(
k

l

)
tn−η(−θ)l

k!Γ(n+ 1− η)

∂mθk−l

∂tm
∂n−m+kΦ

∂tn−m∂θk
.

The explicit model of infinitesimal Φ(η,t) will also be

Φ(η,t) =
∞∑
n=1

[(
η

n

)
∂nt Φθ −

(
η

n+ 1

)
Dn+1
t τ

]
∂η−nt θ −

∞∑
n=1

(
η

n

)
Dn
t ξ.∂

η−n
t θx

+ ∂ηt Φ + (Φθ − ηDtτ)∂ηt θ − θ∂
η
t Φθ + µ.

(3.6)

The lower limit of (2.2) is constant in t = a and will also be invariant in regard of group transformations (3.2). Then
invariance condition yields as follows:

τ(t, x, θ)
∣∣
t=0

= 0. (3.7)
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4. Application of Lie symmetry method to time-fractional ZFK equation

Here, presented Lie symmetry theory is employed to get the symmetry group (1.1) with independent variables (t, x)
being invariant under a one-parameter (ε) Lie group of (3.2) on an open set M ⊂ X × U ' R(2+1). Using the second
prolongation of generator Pr(η,t)X introduced in (3.4) for (1.1), we can obtain invariance criterion as follows:[

Φ(η,t) − Φxx + β2(θ − 1

2
)e−β(1−θ)Φ +

β3

2
θ(θ − 1)e−β(1−θ)Φ

]
(1.1)

= 0, (4.1)

where Φxx is infinitesimal presented in (3.5) and Φ(η,t) is generalized infinitesimal of order η expressed in (3.6). By
inserting Φxx and Φ(η,t) into invariance criterion (4.1) and making equal the coefficients of partial derivatives of θ in
related to t and x, we have an over-determined system of linear PDEs and FDEs. By solving this system, infinitesimals
can be derived as below:

τ = 4c2t+ c4, ξ = 2c2ηx+ c1, Φ = 3c2ηθ + c3θ − 2c2θ + F (x, t),

where ci for i = 1, ..., 4 and F (x, t) are arbitrary constant and function, respectively. Regarding condition (3.7), the
Lie symmetry group of time-fractional ZFK equation is spanned by

X1 =
∂

∂x
, X2 = 4t

∂

∂t
+ 2ηx

∂

∂x
+ θ(3η − 2)

∂

∂θ
, X3 = θ

∂

∂θ
, XF = F (x, t)

∂

∂θ
. (4.2)

In order to find symmetries of FDEs and perform lengthy calculations, one can utilize MAPLE symbolic computing
platform. FracSym symmetry package [16], used together with MAPLE symmetry packages DESOLVII [15] and ASP
[14], can assist in calculating infinitesimal generators and determining equations for the symmetries of FDEs.

5. Similarity reductions

In this section, we consider similarity reduction method and describe how it can be used to find exact solutions
for FDEs. This approach entails finding ways to simplify PDEs and FDEs by reducing the number of independent
variables. A solution is considered invariant if it equates zero after applying infinitesimal generators of symmetries of
equation [25]. By solving characteristic equations of obtained vector fields, one can find the similarity reduction of the
equation.

Case 1. For symmetry X1, integrating the following characteristic equation

dt

0
=
dx

1
=
dθ

0
,

yields invariant solution θ = ψ(t). Inserting this solution into (1.1) reduces ordinary FDE ∂ηt ψ(t) = 0, connoting
ψ(t) = c1t

η−1 in which c1 is arbitrary real constant.
Case 2. Similarity variables for infinitesimal generator X2 can be concluded by integrating characteristic equation

dt

4t
=

dx

2ηx
=

dθ

θ(3η − 2)
,

which causes the following similarity variable:

θ = t
3η−2

4 ψ(ω), ω = xt
−η
2 . (5.1)

Thus, by above similarity transformation, (1.1) can be reduced into an ordinary FDE. This process is presented in
next theorem.

Theorem 5.1. The similarity transformation (5.1) for η > 0 transforms time-fractional ZFK Equation (1.1) to the
following nonlinear ordinary FDE:(

P1+ 3η−2
4 ,η

2
η

ψ
)

(ω) = ψ′′(ω) +
β2

2
ψ(ω)(1− ψ(ω))e−β(1−ψ(ω)), (5.2)

where ψ′′(ω) = dψ(ω)
dω and (Pτ,ηδ ψ) indicates extended left-hand sided Erdélyi-Kober fractional differential operator

introduced by (2.3) and (2.4).



Unco
rre

cte
d Pro

of

6 P. KABI-NEJAD

Proof. Suppose that n− 1 < η < n for n = 1, 2, · · · . Applying Riemann-Liouville fractional derivative, we will obtain

∂ηθ

∂tη
=

∂n

∂tn

[
1

Γ(n− η)

∫ t

0

(t− s)n−η−1s
3η−2

4 ψ
(
xs−

η
2

)
ds

]
. (5.3)

Assume that ν = t
s . One can get ds = −t

ν2 dν and then (5.3) can be considered below:

∂ηθ

∂tη
=

∂n

∂tn

[
tn−η+ 3η−2

4
1

Γ(n− η)

∫ ∞
1

(ν − 1)n−η−1ν−(n−η+1+ 3η−2
4 )ψ(ων

η
2 )dν

]
.

Regarding (2.3), we obtain

∂ηθ

∂tη
=

∂n

∂tn

[
tn−η+ 3η−2

4

(
K1+ 3η−2

4 ,n−η
2
η

ψ
)

(ω)
]
.

Taking into consideration ω = xt
−η
2 and applying chain rule for differentiable functions, we get

t
∂

∂t
F (ω) = tx(−η

2
)t−

η
2−1F ′(ω) = −η

2
ω
∂

∂ω
F (ω).

So,

∂ηθ

∂tη
=

∂n−1

∂tn−1

[
∂

∂t

(
tn−η+ 3η−2

4

(
K1+ 3η−2

4 ,n−η
2
η

ψ
)

(ω)
)]

=
∂n−1

∂tn−1

[
tn−η+ 3η−2

4

(
n− η +

3η − 2

4
− η

2
ω
∂

∂ω

)(
K1+ 3η−2

4 ,n−η
2
η

ψ
)

(ω)

]
.

By continuing n− 1 times same process, we get

∂ηθ

∂tη
= tn−η+ 3η−2

4

n−1∏
j=0

(
1− η +

3η − 2

4
+ j − η

2
ω
∂

∂ω

)(
K1+ 3η−2

4 ,n−η
2
η

ψ
)

(ω)

= t−η+ 3η−2
4

(
P1+ 3η−2

4 ,η
2
η

ψ
)

(ω). (5.4)

Using (5.4) and substituting the phrase of partial derivative of θxx, it can be derived that ZFK Equation (1.1) reduces
to nonlinear ordinary FDE (5.2) and the proof ends. �

6. Exact power series solutions

Here, we address the exact solutions of (5.2) with power series. This method is used to find a power series solution
to ODEs. In fact, such solutions are considered as power series with unknown coefficients, substituting these solutions
into differential equation to find a recursive expression for coefficients. Let

ψ(ω) =

∞∑
n=0

anω
n. (6.1)

Thus, we have

ψ′(ω) =
∞∑
n=0

nanω
n−1, ψ′′(ω) =

∞∑
n=0

n(n− 1)anω
n−2. (6.2)

Putting (6.1) and (6.2) in (5.2), we get

∞∑
n=0

Γ(2 + ( 3η−2
4 ) + nη

2 )

Γ(2− η + ( 3η−2
4 ) + nη

2 )
anω

n =
∞∑
n=0

(n+ 2)(n+ 1)an+2ω
n +

β2

2

∞∑
n=0

anω
ne−β(1−

∑∞
n=0 anω

n)

− β2

2

∞∑
n=0

anω
n
∞∑
n=0

anω
ne−β(1−

∑∞
n=0 anω

n). (6.3)
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Setting n = 0 in (6.3) and comparing coefficients, we conclude

a2 =
1

2

(
Γ
(
2 + ( 3η−2

4 )
)

Γ
(
2− η + ( 3η−2

4 )
)a0 −

β2

2
e−β(1−a0)a0 +

β2

2
e−β(1−a0)a2

0

)
, (6.4)

For n ≥ 1, we have

an+2 =
1

(n+ 2)(n+ 1)

 Γ
(
2 + ( 3η−2

4 ) + nη
2

)
Γ
(
2− η + ( 3η−2

4 ) + nη
2

)an − β2

2
e−β(1−an)

an − n∑
j=0

ajan−j

 . (6.5)

Hence, each coefficient an for n ≥ 1 in (6.1) is found by given constants ai for i = 0, 1, 2, i.e. exact power series
solution for ODE (5.2) exists by coefficients depending on (6) and (6.5). Hence, exact power series solution for (5.2) is

ψ(ω) = a0 + a1ω + a2ω
2 +

∞∑
n=1

an+2ω
n+2

= a0 + a1ω +
1

2

(
Γ
(
2 + ( 3η−2

4 )
)

Γ
(
2− η + ( 3η−2

4 )
)a0 −

β2

2
e−β(1−a0)a0 +

β2

2
e−β(1−a0)a2

0

)
ω2

+

∞∑
n=1

1

(n+ 2)(n+ 1)

 Γ
(
2 + ( 3η−2

4 ) + nη
2

)
Γ
(
2− η + ( 3η−2

4 ) + nη
2

)an − β2

2
e−β(1−an)

an − n∑
j=0

ajan−j

ωn+2.

As a result, we can obtain exact power series solution for (1.1) as

θ(t, x) = a0t
3η−2

4 + a1xt
η−2
4 + a2x

2t
−η−2

4 +
∞∑
n=1

an+2x
n+2t−

2ηn+η+2
4

= a0t
3η−2

4 + a1xt
η−2
4 +

1

2

(
Γ
(
2 + ( 3η−2

4 )
)

Γ
(
2− η + ( 3η−2

4 )
)a0 −

β2

2
e−β(1−a0)(a0 − a2

0)

)
x2t

−η−2
4 (6.6)

+
∞∑
n=1

1

(n+ 2)(n+ 1)

 Γ
(

2 + ( 3η−2
4 ) + nη

2

)
Γ
(

2− η + ( 3η−2
4 ) + nη

2

)an − β2

2
e−β(1−an)

(
an −

n∑
j=0

ajan−j

) .xn+2t−
2ηn+η+2

4 .

6.1. Physical explanation of power series for solution (6.6). A graphical display of (6.6) for various values of η
is presented in Figure 1((a) and (b)). Additionally, Figure 2 shows connection between θ and a0 and a1 for t ∈ [−10, 10]
in (6.6).

7. Conservation laws for time-fractional ZFK equation

One of the significant roles of Lie symmetries in analysis of PDEs and FDEs is building conservation laws. From
a physical viewpoint, they state the total amount of a specific physical quantity doesn’t change during the evolution
of an isolated system and stays constant. In mathematics, conservation laws provide conserved quantities for each
solution, can perform integrability, describe linearization, and demonstrate the existence and uniqueness. In FDEs,
conservation laws display a powerful concept of their integrability.

The famous Notether theorem connects conservation laws and symmetries of Euler-Lagrange equations. A lot of
PDEs do not have fractional Lagrangians. There exist some approaches for acquiring conservation laws of PDEs, which
do not have a Lagrangian and one of the best theorem presented by Ibragimov [13], considering formal Lagrangian for
these equations. For equations with fractional derivatives, there is some literature that computes conservation laws
by Noether theorem. In [18], based on Ibragimove method, Lukashchuk has made a good investigation to discover
conservation laws for FDEs which do not have a fractional Lagrangian. Here, we apply Ibragimov method to construct
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Figure 1. (a) 3-D plot of effect of η on θ(t, x) in (6.6) with a0 = 0.5, a1 = 1, η = 0.75, β = 2. (b)
3-D plot of effect of η on θ(t, x) in (6.6) with a0 = 0.5, a1 = 1, η = 0.125, β = 2.

Figure 2. 3-D plot of effect of a0 and a1 on θ(t, x) in (6.6) with a0 = 5, a1 = 1, η = 0.75, β = 2.

conservation laws for (1.1). A conservation law for fractional PDE with variables x, t is a continuous equation

Dt(C
t) +Dx(Cx) ≡ 0

∣∣∣
Eq.(1.1)=0

. (7.1)

So, formal Lagrangian for (1.1) is

L = ν(t, x, θ)

[
∂ηt θ − θxx −

β2

2
θ(1− θ)e−β(1−θ)

]
, (7.2)

in which ν(t, x, θ) is new variable. Thus, the adjoint form of (1.1) will be

F∗ =
δL
δθ

= 0, (7.3)

in which δ/δθ, Euler-Lagrange operator for θ, is

δ

δθ
=

∂

∂θ
+ (Dη

t )∗
∂

∂(Dη
t θ)
−Dx

∂

∂θx
+Dxx

∂

∂θxx
− · · · , (7.4)
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where (Dη
t )∗ is the adjoint operator of Dη

t . For Riemann-Liouville derivative, adjoint operator is

(0D
η
t )∗ = (−1)ntI

n−η
T (Dn

t ) ≡ C
t D

η
T ,

where tI
n−η is right-sided Riemann-Liouville fractional integral operator defined by (2.1) and C

t D
η
θ is right-sided

Caputo time-fractional derivative by the following definition:

C
t D

η
b f(t) = (−1)ntI

n−η
b (Dn

t f(t)) =
(−1)n

Γ(n− η)

∫ b

t

f (n)(s)

(s− t)η−n+1
ds.

(1.1) is referred to a non-linearly self-adjoint equation if (7.3) is held for all solutions of (1.1) after substitution ν(t, x, θ)
provided that ν(t, x, θ) 6= 0. Substituting (7.2) into (7.4), we have the following adjoint fractional ZFK equation [9]:

F∗ = C
t D

η
T (ν) + (β2 − β3

2
)νθe−β(1−θ) − β2

2
νe−β(1−θ) +

β3

2
νθ2e−β(1−θ)

− νxx − 2νxθθx − νθθθ2
x − νθθxx = 0. (7.5)

We solve (7.5) to obtain ν(t, x) in order to investigate the self-adjointness of time-fractional ZFK equation and then
ν(t, x, θ) = χ(t)Υ(x, θ), in which function χ(t) is a consequence from

(0D
η
t )∗χ(t) = (Ct D

η
Tχ(t)) = 0 ⇒ χ(t) = c,

with given constant c. The substitution Υ(x, θ) resembles the substitution for partial differential ZFK equation [13].
Based on fundamental fractional Noether theorem [18], the elements of conserved vector are acquired by utilization

Noether operators in Lagrangian. Considering independent variables t and x and dependent variable θ(t, x), this
important identity can be expressed by

X̃ +Dt(τ)I +Dx(ξ)I = W
δ

δθ
+DtN t +DxN x, (7.6)

In above identity, we have X̃ as a proper prolongation of Lie point group generators (4.2). Here, I, N t and N x

represent identity and Noether operators, respectively. Furthermore, δ
δu denotes Euler-Lagrange operator and W will

be Lie characteristic for X introduced by W = Φ− τθt − ξθx. Also, fractional Noether operator N t is

N t = τI +Dη−1
t (W ).

∂

∂(0D
η
t θ)

+ J

(
W,Dt

∂

∂(Dη
t θ)

)
,

where integral J defined by

J(h, `) =
1

Γ(n− η)

∫ t

0

∫ T

t

h(τ, x)`(µ, x)

(µ− τ)η+1−n dµdτ,

has the following feature:

DtJ(h, `) = htI
n−η
T `− ` 0I

n−η
t h.

Noether operator N x is also presented as follows:

N x = ξI +W.

(
∂

∂θx
−Dx

∂

∂θxx
+D2

x

∂

∂θxxx
− · · ·

)
+Dx(W )

(
∂

∂θxx
−Dx

∂

∂θxxx
+ · · ·

)
+D2

x(W )

(
∂

∂θxxx
−Dx

∂

∂θxxxx
+ · · ·

)
+ · · · .

By applying both sides of (7.6) on (7.2), for each symmetry generator X of (1.1) and any solution of attended equation,
the left-hand side of Noether identity equates to zero and the other side is given by

Dt(N tL) +Dx(N xL)
∣∣∣
(1.1)=0

= 0, (7.7)

It follows by comparing (7.1) and (7.7) that there is a conserved vector for any Lie symmetry generator of (1.1) with
components

Ct = N tL, Cx = N xL. (7.8)
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Thus, (7.8) causes conservation laws below:

Conservation laws for symmetry X1

For symmetry X1 in (4.2), the characteristic is W 1 = −θx. Thus, using (7.8), symmetry X1 gives the following
conserved vectors:

Ct = νDη−1
t (−θx) + J(−θx, Dt(ν)),

Cx = (−θx)(−Dx(ν)) +Dx(−θx)(ν) = θx(νx + νθθx)− θxxν.
Conservation laws for symmetry X2

For generator X2 in (4.2), the characteristic is W = θ(3η− 2)− 4tθt− 2ηxθx. Thus, using (7.8), conserved vectors are
given by

Ct = νDη−1
t (θ(3η − 2)− 4tθt − 2ηxθx) + J

(
θ(3η − 2)− 4tθt − 2ηxθx, Dt(ν)

)
,

Cx = (θ(3η − 2)− 4tθt − 2ηxθx)(−Dx(ν)) + (θx(3η − 2)− 4tθtx − 2ηθx − 2ηxθxx)(ν).

Conservation laws for symmetry X3

For Lie symmetry generator X3 in (4.2), the characteristic is W = θ. Therefore, conserved vectors are

Ct = νDη−1
t (θ) + J(θ,Dt(ν)),

Cx = (θ)(−Dx(ν)) +Dx(θ)(ν) = θ(νx + νθθx)− θxν.

8. Conclusion

This paper has presented a method to determine Lie point symmetries of time-fractional PDEs with Riemann-
Liouville fractional derivative. Furthermore, we showed the efficiency of Lie symmetry method for solving this type of
equations. The efficacy of this process was demonstrated via time-fractional Zeldovich-Frank-Kamenetskii equation.
Applying obtained Lie point symmetries showed that stated time-fractional PDE can be converted to a fractional
ODE. Exact solutions of Zeldovich-Frank-Kamenetskii equation were deduced wherever possible. In addition, power
series solutions of the resulting fractional ODE (5.2) have also been established by using this method. Ultimately,
we determined how conservation laws are derived for the proposed PDE by way of Ibragimov conservation theorem.
This method helps us establish conservation laws for FDEs with Riemann-Liouville derivatives of order η ∈ (0, 1)
which don’t have Lagrangian in classical form. To summarize, the emergence of nonlinear FDEs as models in fields
like mathematical medicine and biology necessitates an investigation into the methods of solving such equations. Our
research was a step in this direction and we hope it contributes towards the development of solutions for such equations.
Using Lie group analysis method can be favourably generalized to other FDEs and effectively employed to construct
exact solutions for them.
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