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Abstract
In this study, a two-point composite block method based on the backward differentiation formula (CBBDF) is

introduced to solve stiff ordinary differential equations. The CBBDF method incorporates an additional interme-

diate point among the interpolating points, developed in two stages: the first stage employs the Euler’s method
as a fundamental building block, while the second stage utilizes CBBDF of order three. A key distinction of the

method with the classical block method is the introduction of an independent parameter γ, which eliminates the

need for an external startup calculation, while maintaining the accuracy and stability of numerical solutions. The
theoretical analysis verifies that the proposed method is convergent and A-stable. It fulfills the essential properties

of consistency and zero-stability, and it lies within the A-stability region. To demonstrate the effectiveness of

the proposed approach, several stiff initial value problems of linear and non-linear are solved. For validation, the
results are compared with existing literature. While approximating the solution at multiple points simultaneously,

the composite block method offers the ability to use larger step sizes for solution approximation. The CBBDF
method shows promising results, achieving a reliable degree of accuracy as indicated by its maximum error and

average error measurements.
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1. Introduction

Differential equations are mathematical representations that play a crucial role in various fields of physical sciences
and engineering worldwide over a significant period. Practical applications across various technological disciplines,
including modeling electrical flow, analyzing pendulum dynamics, studying chemical reactions, and examining vibra-
tions, among others. To gain a deeper insight into the underlying principles, scientists and engineers frequently analyze
the changes of variables within a system of differential equations for a better understanding of physical phenomena.
Among the most prominent types of differential equations that rely on a single independent variable are ordinary
differential equations (ODEs), represented by the general form

yn = F
(
x, y, y′, y′′, . . . , y(n−1)

)
, (1.1)

where F represents a specified function of x, y and the derivatives of y, and n denotes the order of ODEs. The order
of ODEs is determined by the highest derivative, n present in the equation. Eq. (1.1) is classified as linear if the
dependent variable, y(x), and its derivatives do not appear in any multiplicative form. If such products are present,
the equation is referred to as non-linear. However, many of these ODEs are classified as stiff, which are difficult or
impossible to solve analytically. This difficulty stems from their inherent complexities and the coexistence of transient
and steady-state solutions, which makes finding analytical solutions challenging [1, 31]. The concept of stiffness in
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ODEs is described in multiple ways in the literature, as there is no singular definition that is universally acknowledged.
Generally, stiffness occurs when the equations exhibit significantly different time scales, meaning that some parts of
the solution decay at a much faster rate than others [1, 24]. This results in a situation where solutions change slowly
in certain regions while nearby solutions change rapidly. This disparity requires numerical methods to use very small
time steps to maintain accuracy, leading to computational inefficiencies [4, 22]. For simplicity, the definition of a stiff
problem provided by Lambert [15] is referred to, as many authors cite this definition to understand the concept of
stiffness in ODEs.

Definition 1.1. Eq. (1.1) is classified as stiff if

• Re (λt) < 0, t = 1, 2, . . . ,m, and

• maxt |Reλt| � mint |Reλt| where λt are the eigenvalues of the Jacobian matrix, J =
(
∂f
∂y

)
.

Otherwise, it is defined as non-stiff.

From Definition 1.1, stiffness can be measured by the ratio of the largest to the smallest eigenvalue of the Jacobian
matrix associated with the system [4, 24, 27]. A larger ratio signifies a stiffer system, which complicates the stability
conditions for explicit methods. As a result, explicit methods are often impractical for stiff systems. Although these
methods typically incur lower computational costs, they require extremely small time steps to maintain numerical
stability due to their stringent stability conditions.

To overcome this challenge, the employment of implicit methods becomes essential for effectively estimating solutions
to stiff problems. There is a strong preference for implicit methods as they offer optimal stability. While implicit
methods are well-suited for stiff systems, they demand greater computational effort for each step. Alternatively,
numerical methods for solving ODEs are typically classified as either single-step or multi-step methods. The single-
step method utilizes information from a single initial point to produce an approximation at a new point. In contrast,
the multi-step method relies on a sequence of prior solution and derivative values [20].

One of the most widely used implicit multi-step methods in the literature is the backward differentiation formula
(BDF), acclaimed for its efficacy in addressing stiff problems due to its A-stability region [22, 28]. Although these
methods offer better accuracy, they often entail higher computing costs [20]. This is due to the utilization of more
steps which leads to increased computational complexity and longer execution times. To address these issues, many
studies have shifted from solving (1.1) at a single point per step to adopting a strategy that employs two or more
points per step, commonly referred to as the block method. The essence of the block method lies in its ability to
generate a block of approximations yn+1, yn+2, . . . , yn+N simultaneously, where N indicates the number of points in
the block formula [6, 18]. The number of points is determined by the configuration of the block method. As a result,
utilizing these methods can lead to faster solutions and reduce both computational time and the overall number of
steps, while achieving the desired level of accuracy. Among the notable block-based methods for solving stiff problems
is the block backward differentiation formula (BBDF) introduced by [7], which offers the advantage of approximating
the solution at multiple points simultaneously in each step by incorporating backward values from previous blocks,
resulting in efficient computations. Numerous enhancements and extensions have been developed for the conventional
multi-step block methods (see [1, 5, 8, 21, 24]).

A recently emerging category of multi-step methods, gaining notable attention, is the multi-sub-step method, also
recognized as composite time integration method. The fundamental concept of the composite method involves breaking
down each time step into several smaller sub-steps and employing different numerical integration schemes for each
sub-step [10, 26, 34]. One of the pioneering composite methods is the Bathe method, introduced by [2]. This method
develops a direct time integration technique that utilizes a composite single-step strategy. It uniquely combines the
trapezoidal rule for the initial sub-step and the three-point backward difference method for subsequent sub-steps.
This combination significantly enhances the precision of lower-frequency modes while providing improved damping for
higher-frequency modes. Its strong dissipation and reliable accuracy make it effective for transient analysis. Since then,
further studies have developed extended implicit composite methods (see [9, 12, 13, 17, 25, 33]). [30] developed the
trapezoidal rule and second-order BDF (TR-BDF2) composite scheme, which is equivalent to specific singly diagonally
implicit Runge-Kutta methods. This scheme provides a high-order one-step analogue of multi-step methods and is
self-starting. Past few years, [3] introduced two fully implicit methods: backward Euler and composite backward
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differentiation formula (CBDF2), used for solving bidomain equations. CBDF2 offers better accuracy and efficiency
with larger timesteps, unlike backward Euler, which requires smaller steps. Meanwhile, [11] proposed the established
composite method by combining the Eulers method and BDF for solving stiff ODEs.

To the best of the author’s knowledge, no existing study has integrated the standard BBDF with composite schemes,
highlighting a significant research gap in applying composite block methods for stiff ODEs. This study fills this gap
by introducing the novel composite block backward differentiation formula (CBBDF), aiming to improve accuracy and
optimize stability in numerical solutions. Both the standard BBDF and CBBDF methods compute solutions at two
points simultaneously, but the CBBDF offers two key advantages: it is self-starting, eliminating the need for external
startup computations, and it allows for larger integration steps while maintaining accuracy. This ultimately reduces
computational costs for solving stiff ODEs.

The structural framework of this study unfolds as follows: First, the fundamentals of composite block schemes are
introduced, and the formulation of the proposed method is derived in section 2. Subsequently, section 3 delves into a
comprehensive analysis of the method’s order, error constants, convergence behavior, and stability properties of the
derived method. Next, section 4 provides an in-depth exploration of the implementation of the proposed method uti-
lizing Newton’s iteration. To demonstrate the accuracy and applicability of composite block scheme algorithm, various
numerical examples for simulating linear and non-linear, single and system of first-order stiff ODEs are considered in
section 5. Finally, the results and potential future research are discussed in section 6.

2. Derivation of the method

In this section, the CBBDF scheme is developed with two sub-steps by Eulers method serves as a fundamental
building block in the first stage and a two-point CBBDF of order three in the second stage as illustrated in Figure
1. The step size for the first point is divided into two segments, [xn, xn+γ ] and [xn+γ , xn+1] in which h represents

Figure 1. The interpolating points of the CBBDF.

the size of the integration step and parameter γ functions as an independent parameter in the intermediate point,
xn+γ . The contribution of this newly developed method is the introduction of intermediate point, which serves as
an effective strategy to refine future solutions, which enhance both accuracy and stability in the numerical solution
process. This point is not included in the main sequence of calculated points; rather, it serves as an additional
step that improves the overall approximation of (1.1). By evaluating the function at this intermediate point, the
algorithm can adjust its subsequent steps based on more accurate information. The incorporation of this intermediate
point with an independent parameter enhances the iterative process that refines the subsequent values to achieve
better approximations. Subsequently, the following point uses constant step size for the interval, [xn+1, xn+2]. To
approximate the solutions of ODEs, the known value yn and the intermediate value yn+γ serve as the preceding block
values, with the intermediate value calculated in the first stage. These two values are then employed to simultaneously
compute the future values yn+1 and yn+2 in the second stage. The CBBDF scheme to be derived is a k-step linear
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multi-sub-step method (LMM), defined as follows:

k−2∑
j=0

Ajyn+j +Aγyn+γ = h

k−2∑
j=0

Bjfn+j +Bγfn+γ

 . (2.1)

The local approximation of CBBDF will be obtained using the Lagrange interpolation polynomial, Pk (x) of degree k by
considering one intermediate point in the interpolating points. The general expression for the Lagrange interpolation
polynomial is presented below:

Pk (x) =
k−2∑
j=0

Lk,j (x) y (xn+2−j) + Lk,γ (x) y (xn+γ) , (2.2)

whereas

Lk,j (x) =
k−2∏

i=0,i6=j

(x− xn+2−i)

(xn+2−j − xn+2−i)
· (x− xn+γ)

(xn+2−j − xn+γ)
,

Lk,γ (x) =
k−2∏
i=0

(x− xn+2−i)

(xn+γ − xn+2−i)
,

for j = 0, . . . , k − 2.

2.1. Derivation of the method for stage one. In the first stage, the set of interpolation points consists of xn and
xn+γ . The polynomial that results from this process is expressed as follows:

P (x) =
(x− xn+γ)

(xn − xn+γ)
yn +

(x− xn)

(xn+γ − xn)
yn+γ . (2.3)

Replace x = sh + xn+γ into (2.3) and differentiate the coefficients of interpolation polynomial with respect to s will
achieve

P ′ (sh+ xn+γ) = −
(

1

γ

)
yn +

(
1

γ

)
yn+γ . (2.4)

Evaluate s = −γ in (2.4) and consider hfn = P ′ (xn) yields

yn+γ = yn + γhfn. (2.5)

2.2. Derivation of the method for stage two. In the second stage, the set of interpolation points includes xn,
xn+γ , xn+1 and xn+2. The polynomial generated from these points is expressed as follows:

P (x) =
(x− xn+γ) (x− xn+1) (x− xn+2)

(xn − xn+γ) (xn − xn+1) (xn − xn+2)
yn

+
(x− xn) (x− xn+1) (x− xn+2)

(xn+γ − xn) (xn+γ − xn+1) (xn+γ − xn+2)
yn+γ

+
(x− xn) (x− xn+γ) (x− xn+2)

(xn+1 − xn) (xn+1 − xn+γ) (xn+1 − xn+2)
yn+1

+
(x− xn) (x− xn+γ) (x− xn+1)

(xn+2 − xn) (xn+2 − xn+γ) (xn+2 − xn+1)
yn+2.

(2.6)
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Substitute x = sh+xn+γ into (2.6) and differentiate it once with respect to s. Then, substitute s = 1−γ and s = 2−γ
in succession to obtain the following equations:

P ′ (xn+1) =

(
1− γ

2γ

)
yn +

(
1

γ (1− γ) (γ − 2)

)
yn+γ

+

(
1

1− γ

)
yn+1 +

(
1− γ
4− 2γ

)
yn+2,

P ′ (xn+2) =

(
γ − 2

2γ

)
yn +

(
2

γ (γ − 1) (γ − 2)

)
yn+γ

+

(
4− 2γ

γ − 1

)
yn+1 +

(
8− 3γ

4− 2γ

)
yn+2.

(2.7)

Consider hfn+1,n+2 = P ′ (xn+1,n+2) in (2.7) will obtain

yn+1 =

(
(γ − 1) (1− γ)

2γ

)
yn +

(
1− γ

γ (γ − 1) (γ − 2)

)
yn+γ

+

(
(γ − 1) (1− γ)

4− 2γ

)
yn+2 + (1− γ)hfn+1,

yn+2 =

(
(2− γ) (4− 2γ)

2γ (8− 3γ)

)
yn +

(
2 (2γ − 4)

γ (γ − 1) (γ − 2) (8− 3γ)

)
yn+γ

+

(
(4− 2γ) (4− 2γ)

(1− γ) (8− 3γ)

)
yn+1 +

(
4− 2γ

8− 3γ

)
hfn+2.

(2.8)

The algorithm is implemented in PECE mode, where P denotes predictor, E refers to the evaluation of (1.1), and C
represents corrector, as derived in (2.8). The predictor formula is formulated similarly to the corrector formula, but
without the differentiation step. The interpolation points used are xn and xn+γ , and the Lagrange polynomial can be
expressed as shown in (2.3). Consequently, the predictor formulas for simultaneously calculating the predicted values
of yn+1 and yn+2 in stage two are obtained:

yn+1 =

(
γ − 1

γ

)
yn +

(
1

γ

)
yn+γ ,

yn+2 =

(
γ − 2

γ

)
yn +

(
2

γ

)
yn+γ .

(2.9)

3. Properties of the method

This section analyzes the fundamental properties of the proposed method by determining its order and error
constants, examining its convergence properties, which include consistency and zero-stability, and illustrating the
absolute stability region.

3.1. Order and error constant.

Definition 3.1 (Order of the method). A linear difference operator, L(y(x)) and the associated LMM are classified
as having order q if the coefficients C0 = C1 = . . . = Cq are all zero, while the error constant, Cq+1 is non-zero.

As stated in [15], the order of a numerical method, along with its associated error constant, is often assessed by
examining the local truncation error, which is associated with (2.1). To facilitate this assessment, the linear difference
operator, denoted as L(y(x)), can be described in the following manner:

L [y (x) ;h] =
∑
j

Ajy(x+ jh)− hBjy′(x+ jh), (3.1)
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where j = 0, γ, 1, 2. By applying Taylor series expansions to (3.1) for y (x+ jh) and its derivative y′ (x+ jh) around
the point x, the following results will be obtained:

L [y (x) ;h] =
∑
j

Aj

[
y (x) +

(
jh

1!

)
y′ (x) +

(
(jh)2

2!

)
y′′ (x) +

(
(jh)3

3!

)
y′′′ (x) + . . .

]

−
∑
j

hBj

[
y′ (x) +

(
jh

1!

)
y′′ (x) +

(
(jh)2

2!

)
y′′′ (x) +

(
(jh)3

3!

)
y(4) (x) + . . .

]

=
∑
j

[Aj ] y (x) +
∑
j

[(jAj)− (Bj)]hy
′ (x) +

∑
j

[
1

2

(
j2Aj

)
− (jBj)

]
h2y′′ (x)

+
∑
j

[
1

6

(
j3Aj

)
− 1

2

(
j2Bj

)]
h3y′′′ (x) +

∑
j

[
1

24

(
j4Aj

)
− 1

6

(
j3Bj

)]
h4y(4) (x)

+ . . . .

(3.2)

The common terms from the series expansions in (3.2) can be combined as follows:

L [y (x) ;h] = C0y (x) + C1hy
′ (x) + . . .+ Cqh

qy(q) (x) + . . . , (3.3)

where Cq are constants given by

C0 =
∑
j

Aj ,

Cq =
∑
j

(
1

q!
jqAj −

1

(q − 1)!
jq−1Bj

)
, q = 1, 2, . . . ,

where j = 0, γ, 1, 2. To ascertain the order of the method, (2.8) can be expressed as follows:

yn+1 −
[

(γ − 1) (1− γ)

2γ

]
yn −

[
1− γ

γ (γ − 1) (γ − 2)

]
yn+γ −

[
(γ − 1) (1− γ)

4− 2γ

]
yn+2 = [1− γ]hfn+1, (3.4)

yn+2 −
[

(2− γ) (4− 2γ)

(2γ) (8− 3γ)

]
yn −

[
2 (2γ − 4)

γ (γ − 1) (γ − 2) (8− 3γ)

]
yn+γ −

[
(4− 2γ) (4− 2γ)

(1− γ) (8− 3γ)

]
yn+1 =

[
4− 2γ

8− 3γ

]
hfn+2.

The matrix form of (3.4) is given by[
− (γ−1)(1−γ)

2γ − 1−γ
γ(γ−1)(γ−2)

− (2−γ)(4−2γ)
(2γ)(8−3γ) − 2(2γ−4)

γ(γ−1)(γ−2)(8−3γ)

] [
yn
yn+γ

]
+

[
1− (γ−1)(1−γ)

4−2γ

− (4−2γ)(4−2γ)
(1−γ)(8−3γ) 1

] [
yn+1

yn+2

]
= h

[
0 0
0 0

] [
fn
fn+γ

]
+ h

[
1− γ 0

0 4−2γ
8−3γ

] [
fn+1

fn+2

]
,

(3.5)

where

A0 =

[
− (γ−1)(1−γ)

2γ

− (2−γ)(4−2γ)
(2γ)(8−3γ)

]
, Aγ =

[
− 1−γ
γ(γ−1)(γ−2)

− 2(2γ−4)
γ(γ−1)(γ−2)(8−3γ)

]
,

A1 =

[
1

− (4−2γ)(4−2γ)
(1−γ)(8−3γ)

]
, A2 =

[
− (γ−1)(1−γ)

4−2γ

1

]
, B0 =

[
0
0

]
,

Bγ =

[
0
0

]
, B1 =

[
1− γ

0

]
, B2 =

[
0

4−2γ
8−3γ

]
.
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The associated set of coefficients from (3.5) is implemented to achieve

C0 =A0 +Aγ +A1 +A2 =

[
0
0

]
,

C1 = ((0 ·A0) + (γ ·Aγ) + (1 ·A1) + (2 ·A2))

− (B0 +Bγ +B1 +B2) =

[
0
0

]
,

C2 =
1

2

((
02 ·A0

)
+
(
γ2 ·Aγ

)
+
(
12 ·A1

)
+
(
22 ·A2

))
− ((0 ·B0) + (γ ·Bγ) + (1 ·B1) + (2 ·B2)) =

[
0
0

]
,

C3 =
1

6

((
03 ·A0

)
+
(
γ3 ·Aγ

)
+
(
13 ·A1

)
+
(
23 ·A2

))
− 1

2

((
02 ·B0

)
+
(
γ2 ·Bγ

)
+
(
12 ·B1

)
+
(
22 ·B2

))
=

[
0
0

]
,

C4 =
1

24

((
04 ·A0

)
+
(
γ4 ·Aγ

)
+
(
14 ·A1

)
+
(
24 ·A2

))
− 1

6

((
03 ·B0

)
+
(
γ3 ·Bγ

)
+
(
13 ·B1

)
+
(
23 ·B2

))
=

[
γ2−2γ+1

24
(γ−2)2

18γ−48

]
.

According to Definition 3.1, C0 = C1 = C2 = C3 = [0, 0, 0, 0]
T

and C4 6= 0. Therefore, this proves that the derived
method has the order of three.

3.2. Convergence. The convergence of numerical methods, particularly LMM, is a critical aspect that ensures that
the numerical solutions approximate the exact solutions of differential equations as the step size approaches zero. The
relevant definition regarding the characteristics of convergence properties of the LMM is as follows [24]:

Definition 3.2 (Convergence of the method). For the LMM to converge, it is essential and sufficient that the method
is both consistent and zero-stable.

3.2.1. Consistency.

Definition 3.3 (Consistency). The LMM is said to be consistent if and only if∑
j

Aj =0,

∑
j

jAj =
∑
j

Bj ,

(3.6)

where j = 0, γ, 1, 2.

The consistency of the CBBDF is determined by substituting the set of coefficients from (3.5) into the conditions
in Definition 3.3. This process leads to∑

j

Aj = A0 +Aγ +A1 +A2 =

[
0
0

]
.

Hence, the first condition in (3.6) is satisfied.∑
j

jAj = (0 ·A0) + (γ ·Aγ) + (1 ·A1) + (2 ·A2) =

[
1− γ
4−2γ
8−3γ

]
,
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∑
j

Bj = B0 +Bγ +B1 +B2 =

[
1− γ
4−2γ
8−3γ

]
.

Hence,
∑
j

jAj =
∑
j

Bj . Consequently, the second condition in (3.6) is fulfilled as well. As a result, the consistency

criteria are satisfied, confirming that the CBBDF is consistent.

3.2.2. Zero-stability.

Definition 3.4 (Zero-stability). The LMM is said to be zero-stable if and only if no root of the first characteristic
polynomial has a modulus greater than 1, and that every root with modulus 1 is simple.

The zero-stability of the CBBDF is conducted by utilizing the standard linear test differential equation expressed
in the following form:

y′ = λy, (3.7)

where λ < 0 is complex. By substituting (3.7) into (2.8) produces

yn+1 −
(

(γ − 1) (1− γ)

4− 2γ

)
yn+2 − ((1− γ)λh) yn+1

=

(
(γ − 1) (1− γ)

2γ

)
yn +

(
1− γ

γ (γ − 1) (γ − 2)

)
yn+γ ,

yn+2 −
(

(4− 2γ) (4− 2γ)

(1− γ) (8− 3γ)

)
yn+1 −

((
4− 2γ

8− 3γ

)
λh

)
yn+2

=

(
(2− γ) (4− 2γ)

2γ (8− 3γ)

)
yn +

(
2 (2γ − 4)

γ (γ − 1) (γ − 2) (8− 3γ)

)
yn+γ .

(3.8)

Consider h̄ = λh, (3.8) can be represented in matrix form as follows:[
1− (1− γ) h̄ − (γ−1)(1−γ)

4−2γ

− (4−2γ)(4−2γ)
(1−γ)(8−3γ) 1−

(
4−2γ
8−3γ

)
h̄

] [
yn+1

yn+2

]
=

[
(γ−1)(1−γ)

2γ
1−γ

γ(γ−1)(γ−2)
(2−γ)(4−2γ)

2γ(8−3γ)
2(2γ−4)

γ(γ−1)(γ−2)(8−3γ)

] [
yn
yn+γ

]
. (3.9)

Eq. (3.9) is equivalent to

αYm = βYm−1,

where

α =

[
1− (1− γ) h̄ − (γ−1)(1−γ)

4−2γ

− (4−2γ)(4−2γ)
(1−γ)(8−3γ) 1−

(
4−2γ
8−3γ

)
h̄

]
, β =

[
(γ−1)(1−γ)

2γ
1−γ

γ(γ−1)(γ−2)
(2−γ)(4−2γ)

2γ(8−3γ)
2(2γ−4)

γ(γ−1)(γ−2)(8−3γ)

]
.

The computation of R
(
t, h̄, γ

)
= det (αt− β) leads to the stability polynomial of the CBBDF, which is given by

R
(
t, h̄, γ

)
=

1

γ (8− 3γ)

 2t2γ3 + 2γ3t2h̄2 + γ3th̄− 2tγ3 − 3γ3t2h̄+ 9tγ2 + 13γ2t2h̄

− 9t2γ2 − 6γ2t2h̄2 − 4γ2th̄+ 5γth̄+ 4γt2h̄2 + 12t2γ − 12γt

− 12γt2h̄− 1 + t− 6th̄

 . (3.10)

Letting h̄ = 0 in (3.10) to obtain the first characteristics polynomial given by

R (t, γ) =
1

γ (8− 3γ)

(
− 2tγ3 + 2t2γ3 + 9tγ2 − 9t2γ2 + 12t2γ − 12tγ + t− 1

)
. (3.11)

The following roots of the first characteristic polynomial are obtained after solving (3.11) as

t1 = 1, t2 =
1

γ (−2γ2 + 9γ − 12)
.
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Figure 2. Graph of t2 versus γ for CBBDF.

Since γ is included in t2, it is required that the graph of t2 be illustrated over a certain interval of γ to meet the
criteria of Definition 3.4. For a clearer representation of the graph, the values of γ within the range of [−5, 5] will
be considered. Figure 2 shows that when γ ≤ 0.1, then t2 = 1. According to Definition 3.4, a method is considered
zero-stable if all roots on the unit circle are simple, which means they have a multiplicity of one. However, in this
case, when γ ≤ 0.1, there are two roots, t1 and t2, both equal to 1, indicating that the method lacks zero-stability.
Therefore, it can be concluded that the CBBDF method exhibits zero-stable when γ ∈ (0.1,∞), as none of the roots
have a modulus exceeding 1, and the root t = 1 is simple, thereby satisfying the stability conditions. Hence, the
parameter γ is expected to lie within the range γ ∈ (0.1,∞) to ensure that the underlying splitting ratio of the
CBBDF meets the necessary condition for stiff stability.

3.2.3. Stability region.

Definition 3.5 (A-stable). The LMM is said to be A-stable (often referred to as stiffly stable) when the stability
region encompasses the entire left half of the complex plane.

The stability region is defined as the area bounded by the set of points where |t| = 1. To delineate the boundary
of this region, one can substitute t = eiθ for 0 ≤ θ ≤ 2π into the stability polynomial. The resulting graphs of the
stability region are generated using MAPLE software. Figure 3 presents the stability regions for the CBBDF method
with parameters γ = 20, 50, 100. In these graphs, the stable region is located outside the circular symbol line, while the
unstable region is enclosed within it. Figure 4 shows the stability regions for BBDF and CBBDF with γ = 20, 50, 100
to compare their stability behavior.

The figures demonstrate that the CBBDF method has a smaller unstable region in comparison to the BBDF method.
According to Definition 3.5, the CBBDF method exhibits A-stability, as its stability regions extend across the entire
left half-plane. Therefore, this method is A-stable and well-suited for solving stiff problems. For the implementation
of the method, it is important to choose an appropriate value of γ without sacrificing accuracy or A-stability, since γ
influences the error constant C4, which might affects the magnitude of the truncation errors.

4. Implementation of the method

The CBBDF method is implemented within a predictor-corrector computation framework and is self-starting,
meaning it does not require an external startup calculation to initiate the predictor-corrector scheme. This method
is structured in two stages. In the first stage, the known value at point xn is utilized to calculate the intermediate
value at xn+γ using the Euler method. Once this initial sub-step is completed, the values at both yn and yn+γ are
established. Following this, the approximate solutions at points xn+1 and xn+2 can be determined using the data from
these two points. This is done by initially employing the predictor formula outlined in (2.9) to estimate the values.
Subsequently, these predicted values are refined using the corrector formula presented in (2.8). The implementation
of the corrector formula is carried out through Newton’s iteration technique. Therefore, this section presents the
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Figure 3. The graphs of stability re-
gions for CBBDF.

Figure 4. The graphs of stability re-
gions for BBDF and CBBDF.

formulation of the Newton’s iteration method to concurrently obtain the approximate solutions for yn+1 and yn+2

during stage two at each step. The corrector formula associated with the CBBDF method can be written in a general
equation as follows:

yn+1 = φ1yn+2 + ω1fn+1 + ψ1,

yn+2 = φ2yn+1 + ω2fn+2 + ψ2,
(4.1)

with ψ1 and ψ2 are the previous values. Then, (4.1) is transformed into a matrix-vector form in the following manner:

[
1 0
0 1

] [
yn+1

yn+2

]
=

[
0 φ1

φ2 0

] [
yn+1

yn+2

]
+ h

[
ω1 0
0 ω2

] [
fn+1

fn+2

]
+

[
ψ1

ψ2

]
. (4.2)

Simplifying (4.2) yields (I − Φ)Yn+1,n+2 = hΩFn+1,n+2 + Ψ with

I =

[
1 0
0 1

]
, Φ =

[
0 φ1

φ2 0

]
, Yn+1,n+2 =

[
yn+1

yn+2

]
,

Ω =

[
ω1 0
0 ω2

]
, Fn+1,n+2 =

[
fn+1

fn+2

]
, Ψ =

[
ψ1

ψ2

]
.

Eq. (4.2) is written in the form of

F̂ = (I − Φ)Yn+1,n+2 − hΩFn+1,n+2 −Ψ. (4.3)

Therefore, the formula for generalized Newton’s iteration is expressed as

y
(i+1)
n+1,n+2 = y

(i)
n+1,n+2 −

 F̂1,2

(
y

(i)
n+1,n+2

)
F̂ ′1,2

(
y

(i)
n+1,n+2

)
 , (4.4)

where the indices (i) and (i+ 1) denote the previous and current iterations, respectively. The equation of (4.4) can
be rearranged as follows:

F̂ ′1,2

(
y

(i)
n+1,n+2

)
·
[
y

(i+1)
n+1,n+2 − y

(i)
n+1,n+2

]
= −F̂1,2

(
y

(i)
n+1,n+2

)
. (4.5)

By substituting (4.3) into (4.5), the following equation will achieve[
(I − Φ)− hΩ

∂F

∂Y

(
Y

(i)
n+1,n+2

)]
·
[
y

(i+1)
n+1,n+2 − y

(i)
n+1,n+2

]
= −

[
(I − Φ)Y

(i)
n+1,n+2 − hΩF

(
Y

(i)
n+1,n+2

)
−Ψ

]
, (4.6)
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where ∂F
∂Y

(
Y

(i)
n+1,n+2

)
represents the Jacobian matrix of F with respect to Y . The following notation will be used:

e
(i+1)
n+1,n+2 = y

(i+1)
n+1,n+2 − y

(i)
n+1,n+2, (4.7)

where e
(i+1)
n+1,n+2 indicates the differences between the values of yn+1,n+2 at the (i)

th
and (i+ 1)

th
iterations. Substi-

tuting (4.7) into (4.6) transforms the Newton’s iteration formula into the following form:

(I − Φ)− hΩ
∂F

∂Y

(
Y

(i)
n+1,n+2

)
·
[
e

(i+1)
n+1,n+2

]
= −

[
(I − Φ)Y

(i)
n+1,n+2 − hΩF

(
Y

(i)
n+1,n+2

)
−Ψ

]
. (4.8)

Thus, the estimated values of yn+1,n+2 are calculated using the formula y
(i+1)
n+1,n+2 = y

(i)
n+1,n+2 + e

(i+1)
n+1,n+2, where the

absolute error is defined as follows:

error(i+1) =
∣∣∣y(i+1)

exact − y
(i+1)
approximate

∣∣∣ .
The assessment of maximum error, MAXE is given by

MAXE = max
[
error(i+1)

]
.

Rearranging the formula (2.8) into general form (4.3) yields

F1 = yn+1 −
(

(γ − 1) (1− γ)

4− 2γ

)
yn+2 − (1− γ)hfn+1 − ψ1,

F2 = yn+2 −
(

(4− 2γ) (4− 2γ)

(1− γ) (8− 3γ)

)
yn+1 −

(
4− 2γ

8− 3γ

)
hfn+2 − ψ2,

(4.9)

where ψ1 and ψ2 are the previous values. Substituting (4.9) into (4.8) will produce(
1− (1− γ)h

∂fn+1

∂yn+1

)
e

(i+1)
n+1 = −y(i)

n+1 +

(
(γ − 1) (1− γ)

4− 2γ

)
y

(i)
n+2 + (1− γ)hf

(i)
n+1 + ψ1,(

1−
(

4− 2γ

8− 3γ

)
h
∂fn+2

∂yn+2

)
e

(i+1)
n+2 = −y(i)

n+2 +

(
(4− 2γ) (4− 2γ)

(1− γ) (8− 3γ)

)
y

(i)
n+1 +

(
4− 2γ

8− 3γ

)
hf

(i)
n+2 + ψ2.

(4.10)

Eq. (4.10) are written in matrix form:1− (1− γ)h∂fn+1

∂yn+1
− (γ−1)(1−γ)

4−2γ

− (4−2γ)(4−2γ)
(1−γ)(8−3γ) 1−

(
4−2γ
8−3γ

)
h∂fn+2

∂yn+2

[e(i+1)
n+1

e
(i+1)
n+2

]
=

[
−1 (γ−1)(1−γ)

4−2γ
(4−2γ)(4−2γ)
(1−γ)(8−3γ) −1

][
y

(i)
n+1

y
(i)
n+2

]

+ h

[
1− γ 0

0 4−2γ
8−3γ

][
f

(i)
n+1

f
(i)
n+2

]
+

[
ψ1

ψ2

]
.

(4.11)

In this study, the computation follows a predict-evaluate-correct-evaluate, PE(CE)
r

mode to simultaneously approx-
imate the solutions of initial value problems (IVPs) at two distinct points. The power r = 2 denotes the number of
iterations required to converge the solutions of the corrector formulas. Therefore, the following steps are carried out:

Step 1: The predicted values are computed using the predictor formulas.

P : y
(p)
n+1,n+2.

Step 2: The predicted values are used to find the derivatives.

E : y′n+1,n+2 = f
(
xn+1,n+2, y

(p)
n+1,n+2

)
.

Step 3: The iteration matrices are applied to find the increments.

C : y
(c)
n+1,n+2.

Step 4: The corrected values are used to evaluate the values of derivatives.

E : y′n+1,n+2 = f
(
xn+1,n+2, y

(c)
n+1,n+2

)
.

For approximating the solutions of y
(c)
n+1,n+2, a two-stage Newton’s iteration scheme, as described in (4.11), is applied.

The iterative process proceeds as follows:
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Step 1: Initially, calculate the values for e
(i+1)
n+1,n+2 = J−1K, where in general;

J =

1− (1− γ)h∂fn+1

∂yn+1
− (γ−1)(1−γ)

4−2γ

− (4−2γ)(4−2γ)
(1−γ)(8−3γ) 1−

(
4−2γ
8−3γ

)
h∂fn+2

∂yn+2

 ,
K =

 −y(i)
n+1 +

(
(γ−1)(1−γ)

4−2γ

)
y

(i)
n+2 + (1− γ)hf

(i)
n+1 + ψ1

−y(i)
n+2 +

(
(4−2γ)(4−2γ)
(1−γ)(8−3γ)

)
y

(i)
n+1 +

(
4−2γ
8−3γ

)
hf

(i)
n+2 + ψ2

 .
Step 2: Determine the corrected value for y

(i+1)
n+1,n+2 using the result e

(i+1)
n+1,n+2 obtained in Step 1, as shown below:

y
(i+1)
n+1,n+2 = y

(i)
n+1,n+2 + e

(i+1)
n+1,n+2.

Step 3: Repeat the process from Step 1 to solve e
(i+1)
n+1,n+2 = J−1K for the second stage of iteration.

Step 4: Finally, obtain the values for y
(i+1)
n+1,n+2 by executing the calculations from the second stage iteration,

e
(i+1)
n+1,n+2.

The computation of matrices in both Step 1 and Step 3 is solved using lower-upper (LU) decomposition for computa-
tional efficiency and the potential for speedup in high-performance computing environments.

5. Results and discussions

In this section, six IVPs of linear and non-linear first order ODEs are solved to demonstrate the method’s
effectiveness. For the analysis of the numerical results, various step sizes are considered, specifically h =
10−1, 10−2, 10−3, 10−4, 10−5, 10−6. The independent parameters, γ = 20, 50, 100 are chosen due to the A-stability
characteristic. The numerical outcomes obtained from the CBBDF method are compared against those produced by
the conventional 2-point BBDF method. The computation of the tested problems is executed using C programming.
For Examples 5.1 to 5.6, the method’s performance is evaluated by examining both the maximum error and the av-
erage error. To present the results visually, graphs of log10 (MAXE) plotted against log (h) are created for each test
problem, as illustrated in Figures 5–10. The following notations are employed:

• h : Step size,
• γ : Independent parameter of CBBDF ,
• BBDF : 2-point block backward differentiation formula by [7],
• CBBDF : Composite block backward differentiation formula,
• MAXE : Maximum error,
• AVE : Average error.

Example 5.1. ([6]) Consider the linear differential equation given by

y′(x) = −20y + 20 sin (x) + cos (x) , for 0 ≤ x ≤ 2.

The initial condition for this problem is y (0) = 1. The corresponding eigenvalue for this equation is λ = −20. The
exact solution to the differential equation can be expressed as

y (x) = sin (x) + e−20x.

Example 5.2. ([23]) The non-linear differential equation is given by

y′(x) = y(1−y)
2y−1 , for 0 ≤ x ≤ 1.

The initial condition is set as y (0) = 5
6 , and the associated eigenvalue is identified as λ = −1. The exact solution is

expressed as

y (x) =
1

2
+

√(
1

4
− 5

36
e−x

)
.
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Figure 5. Accuracy curves of CBBDF for Example 5.1.

Example 5.3. ([1]) Another non-linear differential equation under consideration is

y′(x) = −y
3

2 , for 0 ≤ x ≤ 4.

The initial condition is specified as y (0) = 1, and the corresponding eigenvalue is determined to be λ = −1. The exact
solution to this equation is given by

y (x) =
1√

1 + x
.

Example 5.4. ([29]) In this test problem, a system of linear equations is analyzed, characterized as mildly stiff. The
equations are defined as follows:

y1
′(x) = 198y1 + 199y2, y2

′(x) = −398y1 − 399y2, for 0 ≤ x ≤ 5.

The initial conditions are specified as y1 (0) = 1 and y2 (0) = −1. The eigenvalues associated with this system are
given by λ1 = −1 and λ2 = −200. The exact solutions for the variables are expressed as

y1 (x) = e−x, y2 (x) = −e−x.

Example 5.5. ([8]) This test problem involves a system of linear equations that can be classified as highly stiff. The
equations are represented as follows:

y1
′(x) = −y1 + 95y2, y2

′(x) = −y1 − 97y2, for 0 ≤ x ≤ 10.

The initial conditions for this system are given by y1 (0) = 1 and y2 (0) = 1. The eigenvalues associated with this
system are λ1 = −1 and λ2 = −1000. The exact solutions for the variables can be expressed as:

y1 (x) = 1
47

(
95e−2x − 48e−96x

)
, y2 (x) = 1

47

(
48e−96x − e−2x

)
.

Example 5.6. ([19]) This test problem presents a system of non-linear equations that is also categorized as highly
stiff. The equations are formulated as follows:

y1
′(x) = −

(
ε−1 + 2

)
y1 + ε−1y2

2 , y2
′(x) = y1 − y2 (1 + y2) , for 0 ≤ x ≤ 20,

where ε = 10−5. The initial conditions are defined as y1 (0) = 1 and y2 (0) = 1. The eigenvalues associated with this
system are given by λ1 = −1 and λ2 = −100002. The exact solutions for the variables can be expressed as:

y1 (x) = e−2x, y2 (x) = e−x.
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Table 1. Numerical results for Example 5.1.

h Method γ MAXE AVE

10−1 BBDF - 2.67842e+000 1.01381e+000

CBBDF 20 1.04535e-001 6.08993e-003

50 1.11490e-001 6.58036e-003

100 1.13243e-001 6.70337e-003

10−2 BBDF - 7.82684e-002 5.01369e-003

CBBDF 20 2.98302e-004 2.77528e-005

50 1.76860e-003 1.04303e-004

100 2.17108e-003 1.25277e-004

10−3 BBDF - 1.40171e-002 9.91969e-004

CBBDF 20 2.06383e-004 1.47189e-005

50 5.53643e-005 4.02406e-006

100 1.35961e-005 1.06649e-006

10−4 BBDF - 1.46435e-003 1.05132e-004

CBBDF 20 2.30157e-005 1.65361e-006

50 7.81013e-006 5.61821e-007

100 3.60021e-006 2.59531e-007

10−5 BBDF - 1.47063e-004 1.05736e-005

CBBDF 20 2.32541e-006 1.67204e-007

50 8.03770e-007 5.78004e-008

100 3.82434e-007 2.75069e-008

10−6 BBDF - 1.47126e-005 1.05796e-006

CBBDF 20 2.32780e-007 1.67385e-008

50 8.06044e-008 5.79663e-009

100 3.84667e-008 2.76750e-009

Figure 6. Accuracy curves of CBBDF for Example 5.2.
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Table 2. Numerical results for Example 5.2.

h Method γ MAXE AVE

10−1 BBDF - 8.71737e-003 3.19499e-003

CBBDF 20 3.43593e-004 1.76087e-004

50 2.27808e-004 1.15068e-004

100 1.95675e-004 1.11630e-004

10−2 BBDF - 1.47086e-003 1.11270e-003

CBBDF 20 2.57766e-005 1.95330e-005

50 1.04460e-005 7.18930e-006

100 6.27701e-006 3.77272e-006

10−3 BBDF - 1.52651e-004 1.22148e-004

CBBDF 20 2.44049e-006 1.95375e-006

50 8.58168e-007 6.81865e-007

100 4.20518e-007 3.29694e-007

10−4 BBDF - 1.53220e-005 1.23268e-005

CBBDF 20 2.42688e-007 1.95303e-007

50 8.41784e-008 6.76942e-008

100 4.02879e-008 3.23596e-008

10−5 BBDF - 1.53277e-006 1.23380e-006

CBBDF 20 2.42542e-008 1.95236e-008

50 8.40206e-009 6.76277e-009

100 4.01359e-009 3.22997e-009

10−6 BBDF - 1.53301e-007 1.23404e-007

CBBDF 20 2.41680e-009 1.94629e-009

50 8.43666e-010 6.78621e-010

100 4.18106e-010 3.34428e-010

Figure 7. Accuracy curves of CBBDF for Example 5.3.
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Table 3. Numerical results for Example 5.3.

h Method γ MAXE AVE

10−1 BBDF - 2.50939e-002 1.86364e-002

CBBDF 20 1.60282e-003 1.19991e-003

50 1.36667e-003 9.94416e-004

100 1.30225e-003 9.38707e-004

10−2 BBDF - 3.53603e-003 2.77144e-003

CBBDF 20 6.71866e-005 5.55681e-005

50 3.16326e-005 2.65473e-005

100 2.25009e-005 1.85035e-005

10−3 BBDF - 3.66423e-004 2.88117e-004

CBBDF 20 5.90195e-006 4.68027e-006

50 2.10859e-006 1.69591e-006

100 1.06188e-006 8.69457e-007

10−4 BBDF - 3.67734e-005 2.89233e-005

CBBDF 20 5.82889e-007 4.58865e-007

50 2.02491e-007 1.59674e-007

100 9.71622e-008 7.68269e-008

10−5 BBDF - 3.67865e-006 2.89345e-006

CBBDF 20 5.82177e-008 4.57959e-008

50 2.01684e-008 1.58674e-008

100 9.63135e-009 7.57857e-009

10−6 BBDF - 3.67859e-007 2.89330e-007

CBBDF 20 5.83388e-009 4.59544e-009

50 2.01438e-009 1.58250e-009

100 9.45308e-010 7.32319e-010

Figure 8. Accuracy curves of CBBDF for Example 5.4.
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Table 4. Numerical results for Example 5.4.

h Method γ MAXE AVE

10−1 BBDF - 5.67155e-002 5.30550e-002

CBBDF 20 5.08253e-004 4.85707e-004

50 2.29216e-004 2.20454e-004

100 4.32265e-004 4.15048e-004

10−2 BBDF - 7.18323e-003 7.41994e-003

CBBDF 20 1.09804e-004 1.13736e-004

50 3.40025e-005 3.52230e-005

100 1.30253e-005 1.34931e-005

10−3 BBDF - 7.34012e-004 7.65072e-004

CBBDF 20 1.15755e-005 1.20687e-005

50 3.96879e-006 4.13792e-006

100 1.86262e-006 1.94199e-006

10−4 BBDF - 7.35584e-005 7.67399e-005

CBBDF 20 1.16351e-006 1.21386e-006

50 4.02568e-007 4.19988e-007

100 1.91864e-007 2.00166e-007

10−5 BBDF - 7.35741e-006 7.67632e-006

CBBDF 20 1.16411e-007 1.21458e-007

50 4.03131e-008 4.20608e-008

100 1.92407e-008 2.00750e-008

10−6 BBDF - 7.35747e-007 7.67643e-007

CBBDF 20 1.16542e-008 1.21574e-008

50 4.03394e-009 4.20679e-009

100 1.91571e-009 1.99671e-009

Figure 9. Accuracy curves of CBBDF for Example 5.5.
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Table 5. Numerical results for Example 5.5.

h Method γ MAXE AVE

10−1 BBDF - 2.97925e+012 2.60132e+011

CBBDF 20 4.92960e-002 1.64341e-003

50 5.35157e-002 2.13669e-003

100 5.43563e-002 2.25776e-003

10−2 BBDF - 3.62349e+001 4.41254e+000

CBBDF 20 4.88913e-002 2.02706e-004

50 5.53607e-002 1.77429e-004

100 5.70686e-002 1.70235e-004

10−3 BBDF - 5.62364e-002 6.83856e-004

CBBDF 20 5.24748e-004 8.97600e-006

50 2.00878e-004 3.21477e-006

100 3.99990e-004 3.09103e-006

10−4 BBDF - 7.04927e-003 7.92858e-005

CBBDF 20 1.07912e-004 1.23504e-006

50 3.35839e-005 4.06160e-007

100 1.30140e-005 1.76713e-007

10−5 BBDF - 7.19695e-004 8.04701e-006

CBBDF 20 1.13513e-005 1.27130e-007

50 3.89349e-006 4.38128e-008

100 1.82855e-006 2.07427e-008

10−6 BBDF - 7.21175e-005 8.05893e-007

CBBDF 20 1.14074e-006 1.27510e-008

50 3.94703e-007 4.41350e-009

100 1.88128e-007 2.10375e-009

Figure 10. Accuracy curves of CBBDF for Example 5.6.
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Table 6. Numerical results for Example 5.6.

h Method γ MAXE AVE

10−1 BBDF - 1.58887e+167 -

CBBDF 20 1.25834e-002 1.00091e-003

50 1.30889e-002 1.00962e-003

100 1.32314e-002 1.04871e-003

10−2 BBDF - 5.81600e+175 -

CBBDF 20 1.09807e-004 2.24160e-005

50 1.59882e-004 1.65663e-005

100 1.78720e-004 1.51610e-005

10−3 BBDF - 7.73254e+164 -

CBBDF 20 1.15757e-005 2.21828e-006

50 3.96886e-006 6.91611e-007

100 1.86265e-006 3.19438e-007

10−4 BBDF - 8.46176e+251 -

CBBDF 20 1.16353e-006 2.35789e-007

50 4.02573e-007 8.06667e-008

100 1.91866e-007 3.77321e-008

10−5 BBDF - 2.58326e+009 1.06691e+009

CBBDF 20 1.16413e-007 2.37217e-008

50 4.03136e-008 8.20719e-009

100 1.92410e-008 3.91108e-009

10−6 BBDF - 7.35764e-007 1.49999e-007

CBBDF 20 1.16543e-008 2.37533e-009

50 4.03401e-009 8.21764e-010

100 1.91573e-009 3.89904e-010

From Tables 1–6, the CBBDF demonstrate significant improvements in error reduction over the existing BBDF
method. The proposed method can achieve comparable or even better accuracy with larger step sizes, offering less
computational cost. It can even improve the maximum error with step sizes as large as 0.1. In contrast, classical
BBDF typically requires smaller step sizes to maintain accuracy. For instance, the BBDF is incapable of maintaining
accuracy with step sizes larger than 0.01, as shown in Tables 1, 5, and 6.

Remarkably, the CBBDF successfully generates better solutions by using a step size of 0.1 for highly stiff problems,
a feat that is considered nearly impossible for standard LMM like the BBDF, which typically require much smaller
step sizes to avoid instability or inaccuracies. For instance, in Tables 5 and 6, the BBDF struggles to achieve better
accuracy, which shows higher maximum errors when considering a larger step size of 10−3 and 10−6, respectively.
For the independent parameter, it is observed that as the step size decreases, the parameter γ = 100 yields superior
numerical results compared to γ = 20 and γ = 50. This suggests that as the value of γ increases, the accuracy of
the results tends to improve. However, while larger γ values may enhance certain aspects of accuracy and stability,
they can also increased truncation errors. This trade-off highlights the importance of carefully selecting γ to achieve
a balance between high accuracy, optimal stability, and minimal truncation errors in numerical computations.

The advantages of CBBDF are largely due to the incorporation of numerical dissipation in composite schemes, which
stabilizes the solution by damping high-frequency oscillations that arise in stiff or oscillatory problems [14, 32]. This
controlled dissipation enables the method to maintain accuracy even with larger step sizes by mitigating the numerical
instabilities that typically occur at higher frequencies. Moreover, the utilization of sub-stepping mechanisms allows
for capturing transient behaviors more accurately without requiring excessively small global time steps [16]. The
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flexibility in choosing sub-step sizes enhances the method’s ability to adapt to varying dynamics within the same time
frame.

6. Conclusion

In summary, a self-starting composite block scheme, namely CBBDF has been proposed for the purpose of solving
first-order stiff IVPs. Furthermore, it has been proven that the proposed method is of order three, A-stable, and
convergent. The numerical results demonstrate that CBBDF offers better accuracy than the traditional 2-point BBDF
method in both maximum and average error metrics. One significant implication of implementing composite block
schemes is their exceptional performance in effectively addressing linear and non-linear stiff problems with larger step
sizes. Another striking feature of CBBDF excels in solving highly stiff problems, where the existing method struggles.
Future research will concentrate on devising a strategy to improve the efficiency of the proposed method by addressing
higher-order stiff IVPs through a variable-order and variable-step formula.
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