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Abstract

This study aims to derive solitons and other traveling wave solutions for the pKP-BKP equation, which integrates
the potential Kadomtsev–Petviashvili (pKP) and B-type Kadomtsev–Petviashvili (BKP) equations in three spatial

dimensions. This equation is used to describe long water waves in oceans, impoundments, and estuaries, as well
as to predict tsunamis, analyze river, tidal, and irrigation flows, and simulate weather patterns. The modified

extended direct algebraic approach is employed to obtain various types of exact solutions, including dark solitons,

combo dark-singular solitons, singular solitons, hyperbolic solutions, singular periodic solutions, exponential so-
lutions, rational solutions, and Jacobi elliptic solutions. The derived solutions are visualized using Mathematica

software, with contour, 2D, and 3D graphical representations to illustrate their dynamic behavior.
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1. Introduction

Partial differential equations (PDEs) are essential tools for modeling complex physical and engineering phenomena,
including wave propagation, energy transport, and system dynamics. Recent advancements in PDE-based modeling
have contributed to various fields, such as seismic analysis for estimating compressional wave attenuation in carbonate
reservoirs [6, 7], and adaptive control strategies for unmanned submarines [3]. Additionally, PDEs have been widely
used in Internet of Things (IoT) and cloud computing optimization [8], field-Programmable Gate Array (FPGA)-based
encryption systems [25], and photovoltaic energy modeling with improved Maximum Power Point Tracking (MPPT)
algorithms [18]. In power generation, PDEs aid in optimizing maintenance and repair strategies for combined cycle
power plants [5, 26]. These applications highlight the versatility of PDEs in solving real-world challenges and their
importance in deriving exact solutions for nonlinear evolution equations.

Numerous physical applications, including atmospheric systems, optics, plasma physics, nonlinear fiber optics,
and fluid dynamics, involve the study of solitons. Many researchers have introduced new solutions for higher-order
integrable equations. For instance, Lakestani et al. [17] established novel soliton solutions for nonlinear fifth-order
integrable equations. Manafian and Lakestani [23] explored the interaction among a lump, periodic waves, and kink
solutions in the fractional generalized CBS-BK equation. Manafian [24] derived new exact multi-soliton solutions
for a higher-order nonlinear equation. Ma [19] obtained soliton solutions for a higher-dimensional integrable system
using the bilinear approach. El-Shamy et al. [9] investigated new solitons in optical media incorporating higher-order
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dispersive and nonlinear effects. Ahmed et al. [2] established soliton solutions for the generalized Kundu-Eckhaus
equation with additional dispersion.

The potential Kadomtsev–Petviashvili (pKP) equation and the B-type Kadomtsev–Petviashvili (BKP) equation
were combined to create the nonlinear pKP–BKP equation [1, 4, 10–12, 15, 16, 20–22, 29–37]. Adding more terms
to the suggested model resulted in a new (3+1)-dimensional integrable equation with interesting properties. During
its brief building period, this model underwent intensive investigation. In [7], certain terms were removed from the
original model to provide two reduced equation representations. The integrability of these equations was verified in
[35].

For the last time, in [20], a linear mixing of the prospective KP equation and the BKP equation was published
using the Hirota bilinear approach [13], which was designed for generating soliton and lump solutions. The technique
relies heavily on Hirota bilinear derivatives [14].

An interesting method for comprehending nonlinear wave dynamics in complex systems is to examine the prospective
KP (Korteweg-de Vries-Poisson) equation using the B-KP (Bilinear Korteweg-de Vries-Poisson) equation. With its
capacity to analyse wave interactions and stability, the B-KP equation offers a reliable tool that helps to clarify how
nonlinearity and dispersion impact wave behaviour. This approach advances our understanding of nonlinear events
and their management by improving prediction skills and providing creative answers to practical problems involving
dynamic systems. The (3+ 1)-dimensional mixed pKP-BKP issue is examined in this paper as [34, 36].

In contrast to prior studies that primarily focused on breather wave solutions and Hirota’s bilinear approach, this
study systematically derives a more diverse range of exact solutions using the Modified Extended Direct Algebraic
(MEDA) technique. By doing so, we provide new insights into the complex wave structures of the (3+1)-dimensional
pKP–BKP equation, with potential applications in nonlinear optics, fluid mechanics, and plasma physics.

The governing equation for the (3+1)-dimensional pKP–BKP equation is given by:

Wxt + µ1

(
15WxWxxx + 15(Wx)

3 +Wxxxxx

)
x
+ µ2 (6WxWxx +Wxxxx) + µ3

(
Wxxxy + 3 (WxWy)x

)
+ µ4 Wxx + µ5 Wxy + µ6 Wxz −

µ2
3

5µ1
Wyy = 0.

(1.1)

where W represents the potential function of the independent variables x, y, z, and the temporal variable t, and the
coefficients (µi, i = 1, 2, 3, 4, 5, 6) are real constants. This equation describes the nonlinear wave dynamics in a
(3+1)-dimensional framework and incorporates multiple physical effects, including nonlinearity, dispersion, and cross-
interactions between spatial dimensions. Where, W (x, y, z, t) represents the wave potential, dependent on three spatial
coordinates (x, y, z) and time t, Wxt is a mixed derivative term captures the temporal evolution of wave propagation
along the x-direction, µ1

(
15WxWxxx + 15(Wx)

3 +Wxxxxx

)
x
is a nonlinear and dispersive term, 15WxWxxx represents

nonlinear wave interactions, 15(Wx)
3 denotes the self-interaction effects of the wave profile, Wxxxxx is a higher-order

dispersion term that influences wave stability and shape and the entire expression is differentiated concerning x,
emphasizing its spatial evolution. Additional nonlinear-dispersive term µ2(6WxWxx +Wxxxx) and 6WxWxx describes
the interplay between wave amplitude and curvature, Wxxxx is a fourth-order dispersion term that regulates the wave
steepness and stability. Coupled cross-dimensional effects in µ3 (Wxxxy + 3(WxWy)x), and Wxxxy represents mixed
spatial derivatives coupling the x- and y-directions and 3(WxWy)x indicates nonlinear interaction effects between wave
propagation in x and disturbances in y.

Our study’s novelty is the way we applied the modified extended direct algebraic (MEDA) technique to the (3+1)-
dimensional integrable pKP–BKP equation. This allowed us to derive different classes of exact solutions, such as
Jacobi elliptic solutions, hyperbolic solutions, singular periodic solutions, dark solitons, combo dark-singular solitons,
and singular solitons. These findings add significantly to the body of literature in the following areas: Diversity of
solutions, in contrast to earlier research like [36] and [34], which mostly concentrated on breather wave solutions and
Hirota’s bilinear approach for reduced versions of the equation, our study methodically builds and categorises a wider
range of wave solutions. In particular, the explicit derivation of Jacobi elliptic solutions is a substantial expansion
that has not been covered in previous studies. Methodological advancements, our work uses the MEDA methodology,
which enables a systematic balance between the nonlinear and highest-order derivative components, resulting in a
richer set of precise solutions than [36] and [34], which used the simplified Hirota’s method and other transformations.



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-24 3

This methodological enhancement not only provides new solutions but also improves the interpretability of wave struc-
tures in physical contexts. Graphical and analytical representation, in this study incorporates an extensive graphical
analysis using Mathematica, illustrating the different solution types in 2D and 3D visualizations. This step enhances
the understanding of wave dynamics, which is less emphasized in previous works [36] and [34]. Physical insights, by
examining the (3+1)-dimensional pKP–BKP equation with extended solution classes, we offer new insights into non-
linear wave propagation in oceanography, plasma physics, and fluid mechanics. The ability to capture various solution
behaviors, including periodic and singular structures, presents a more comprehensive picture of wave interactions in
complex systems compared to prior studies. The structure of this research article is organized as follows: Section
1 introduction pKP–BKP equation. Section 2 presents the methodology of the modified extended direct algebraic
method. Section 3 discusses the obtained results, while section 4 provides graphical representations, including 3D, 2D,
and contour simulations. Section 5 offers a detailed analysis of the results and discussions. Section 6 concludes the
study, summarizing key findings. Finally, section 7 outlines potential directions for future research.

Future research can explore stability properties and interactions of these solutions in complex environments. Fur-
thermore, by linking the graphical illustrations with physical interpretations, our study enhances the understanding of
how different wave structures manifest in real-world applications, such as energy transport in plasmas, nonlinear wave
modulation in optical fibers, and fluid dynamics modeling. These findings provide valuable insights into controlling
and predicting nonlinear wave behavior in practical scenarios.

2. Methodology

To demonstrate the fundamental principles of the modified extended direct algebraic (MEDA) approach [27, 28].
Consider a PDE with four independent variables, given by:

G (W, Wt, ,Wx ,Wxx ,Wyy ,Wzz ,Wxt ,Wxy ,Wxz... ) = 0. (2.1)

As long as G is a polynomial of W and its partial derivatives for time t and space (x, y, z). Currently, the primary
steps of the suggested technique are as follows:

Step I: Using the resulting transformation:

W (x, y, z, t) = P (ξ), ξ = β1 x+ β2 y + β3 z − ρ t, ρ ̸= 0, (2.2)

where the wave numbers and soliton frequency are shown by β1, β2, β3, and ρ.
Step II: So, Eq. (2.1) turns into:

G(P, P ′, P ′′, P ′′′, P (4), P (5) . . .) = 0. (2.3)

The key concept behind this technique is that the solution to Eq. (2.3) can be expressed as follows:

P (ξ) =
N∑

i=−N

ri R
i(ξ). (2.4)

The differential equation above has an explicit solution given by P (ξ), provided that r2N+r2−N ̸= 0, where ri represents
real-valued constants that must be considered.

R′(ξ) =
√
j0 + j1 R(ξ) + j2 R2(ξ) + j3 R3(ξ) + j4 R4(ξ) + j6 R6(ξ), (2.5)

the constant real values jn, (n = 0, 1, 2, 3, 4, 6) determine the probable outcomes of the applied technique.
Step III: Homogeneous balance condition:
In this step, I calculate the values of jn to make sure that the modified equation’s highest-order derivatives and non-
linear terms stay balanced. Using the homogeneous balance condition, we determine the largest exponent N in the
expansion of P (ξ).
Step V: Coefficient Matching:
To determine the constants jn, we substitute the polynomial expansion of P (ξ) into the transformed ordinary differen-
tial equation along with the Riccati equation. This substitution results in an algebraic equation where terms involving
different powers of R(ξ) appear. By setting the coefficients of these terms to zero, we derive a system of algebraic
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constraints on jn. Solving these constraints provides explicit values for jn, ensuring consistency with the governing
equation and enabling the classification of various exact solutions.

Step VI: Computation and classification of solutions for Eq. (2.5):
The algebraic equations obtained from the coefficient matching step are solved to find explicit values for jn. These
values determine different classes of solutions, such as Jacobi elliptical solutions, solitons, (dark, combo dark-singular,
singular), hyperbolic, periodic, exponential, and rational solutions. Graphical representations of the solutions are
provided for various parameter values to illustrate their behavior. The constants jn are not arbitrarily chosen but are
derived through a systematic mathematical framework involving transformations, balance principles, and coefficient
matching. This structured approach ensures that the obtained solutions satisfy the given PDE and align with the
physical properties of wave dynamics in the (3+1)-dimensional pKP–BKP equation.
Case 1: When j0 = j1 = j3 = j6 = 0, then:

A1.1(ξ) =

√
−j2
j4

sech
[
ξ
√
j2

]
, j2 > 0 and j4 < 0,

A1.2(ξ) =

√
−j2
j4

sec
[
ξ
√
−j 2

]
, j2 < 0 and j4 > 0.

Case 2: If j0 =
j22
4j4

, j1 = j3 = j6 = 0, then:

A2.1(ξ) =

√
− j2
2j4

tanh

[
ξ

√
−j2

2

]
, j2 < 0 and j4 > 0,

A2.2(ξ) =

√
j2
2j4

tan

[
ξ

√
j2
2

]
, j2 > 0 and j4 > 0.

Case 3: If j3 = j4 = j6 = 0, then:

A3.1(ξ) =
j1
2j2

[
sinh

[
2ξ
√

j2

]
− 1
]
, j2 > 0 and j0 = 0,

A3.2(ξ) =
j1
2j2

[
sin
[
2 ξ
√
−j2

]
− 1
]
, j2 < 0 and j0 = 0,

A3.3(ξ) = exp(ξ
√
j2) − j1

2j2
, j0 =

j21
4j2

and j2 > 0.

Case 4: If j0 = j1 = j2 = j6 = 0, then:

A4.1(ξ) =
4j3

j23 ξ
2 − 4j4

.

Case 5: If j0 = j1 = j6 = 0, then:

A5.1(ξ) = −j2
j3

[
tanh

[
ξ

2

√
j2

]
+ 1

]
, j2 > 0, and j2 =

4j4
j23

,

A5.2(ξ) = −j2
j3

[
coth

[
ξ

2

√
j2

]
+ 1

]
, j2 > 0, and j2 =

4j4
j23

,

A5.3(ξ) =
j2 sech

2
[
ξ
√
j2

2

]
2
√
j2j4 tanh

[
ξ
√
j2

2

]
− j3

, j23 ̸= 4j2 j4, j2 > 0, and j4 > 0,

A5.4(ξ) =

j2 sec2
[
ξ
√

−j2
2

]
2
√
−j 2j4 tan

[
ξ
√

−j2
2

]
+ j3

, j23 ̸= 4j2 j4, j2 < 0, and j4 > 0.
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Case 6: If j2 = j4 = j6 = 0, then:

A6.1(ξ) = ℘

(
ξ
√
j3

2
;−4j1

j3
,−4j0

j3

)
, j3 > 0.

Case 7: If j1 = j3 = 0, then:

A7.1(ξ) =

√√√√ 2j2sech
2
(
ξ
√
j2
)

2
√
j24 − 4j2 j6 −

(√
j24 − 4j2j6 + j4

)
sech2

[
ξ
√
j2
] , j2 > 0,

A7.2(ξ) =

√√√√ 2j2 sec2 [ξ
√
−j 2]

2
√
j24 − 4j2s6 −

(√
j24 − 4j2j6 − j4

)
sec2 [ξ

√
−j 2]

, j2 < 0,

A7.3(ξ) =

√√√√√√√
8j2 tanh

2

[
ξ
√
− j2

3

]
3j4

(
tanh2

[
ξ
√
− j2

3

]
+ 3

) , j2 < 0,

A7.4(ξ) =

√√√√√√√
8j2 tan

2

[
ξ
√

j2
3

]
3j4

(
3− tan2

[
ξ
√

j2
3

]) , j2 > 0.

Case 8: If j1 = j3 = j6 = 0, then:

No. j0 j2 j4 A( ξ )

1 1 −(ω2 + 1) ω2 sn (ξ, ω) or cd (ξ, ω)

2 ω2 − 1 −(ω2 − 2) -1 dn (ξ, ω)

3 −ω2 2ω2 − 1 1− ω2 nc (ξ, ω)

4 - 1 2− ω2 ω2 − 1 nd (ξ, ω)

5 1 2− 4ω2 1 dn(ξ, ω) nc(ξ, ω) sn(ξ, ω)

6 ω4 − 2ω3 + ω2 − 4
ω −ω2 + 6ω − 1 j cn(ξ,ω) dn(ξ,ω)

1+ j sn2(ξ,ω)

7 1
4

ω2

2 − 1 ω4

4
sn(ξ,ω)

1+dn(ξ,ω) or cn(ξ,ω)√
1−j2 + dn(ξ,ω)

Subsequently, by inserting the obtained constants ri into Eq. (2.4) along with the general solutions of Eq. (2.5),
several exact wave solutions to Eq. (1.1) can be obtained.

3. Analysis of (3+1)-dimensional pKP-BKP equation

The wave transformation in Eq. (2.2) reduces Eq. (1.1) to the following ordinary differential equation (ODE):

β6
1µ1P

(6) + 15β5
1µ1P

′P (4) +
(
β4
1µ2 + β2β

3
1µ3

)
P (4) + 15β5

1µ1P
′′P (3) +

(
6β3

1µ2 + 6β2β
2
1µ3

)
P ′P ′′

+ 45β4
1µ1 (P

′)
2
P ′′ +

(
β2
1µ4 + β2β1µ5 + β3β1µ6 −

β2
2µ

2
3

5µ1
− β1ρ

)
P ′′ = 0.

(3.1)
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Integrating Eq. (3.1) concerning ξ and setting the constant of integration to zero, yields the following ordinary differ-
ential equation (ODE):

µ1β
6
1P

(5) +
(
µ2β

4
1 + µ3β2β

3
1

)
P (3) +

(
β2
1µ4 + β2β1µ5 + β3β1µ6 −

β2
2µ

2
3

5µ1
− β1ρ+ 15β5

1µ1P
(3)

)
P ′

+
(
3β3

1µ2 + 3β2β
2
1µ3

)
(P ′)

2
+ 15β4

1µ1 (P
′)
3
= 0.

(3.2)

Assuming P ′ = Q, then, Eq. (3.2) can be reduced to:

β6
1 Q

(4) +
(
β4
1µ2 + β2β

3
1µ3

)
Q′′ +

(
β2
1µ4 + β2β1µ5 + β3β1µ6 −

β2
2µ

2
3

5µ1
− β1ρ+ 15β5

1µ1Q
′′
)
Q

+
(
3β3

1µ2 + 3β2β
2
1µ3

)
Q2 + 15β4

1µ1 Q
3 = 0.

(3.3)

Writing the general answer for Eq. (3.3) using the suggested method in Sect. 2 as follows under constraint β1 µ1 ̸= 0:

Q = r0 + r1R(ξ) + r2R
2(ξ) + r−1

(
1

R(ξ)

)
+ r−2

(
1

R2(ξ)

)
, (3.4)

where the constants r0, r1, r−1, r2, and r−2 are those that will be computed so long as r2 or r−2 ̸= 0. By entering
Eqs. (3.4) and (2.5) into Eq. (3.3), grouping coefficients of comparable powers, and setting them all to zero, one may
generate a system of NLAEs. These can be solved using the Mathematica program to obtain the results shown below:

Case 1: j0 = j1 = j3 = j6 = 0.
In this situation, we identify the following solution sets:

(1.1) µ5 =
5β1µ1 (ρ− β3µ6)− 5β2

1µ1µ4 + β2
2µ

2
3 − 80β6

1j
2
2µ

2
1 − 20β4

1j2µ1µ2 − 20β2β
3
1j2µ1µ3

5β1β2µ1
,

r2 = −2j4β1, and r0 = r1 = r−1 = r−2 = 0.

(1.2) µ5 =
1

5β2µ1 (4β1j2 + 3r0) 2
(
16β2

1 j22
(
β1 µ2

2 + µ1

(
−5β1 µ4 − 5β3µ6 + 8β3

1j2µ2 + 5ρ
)
+ 16β5

1 j22 µ2
1

)
+r20

(
9 β1 µ2

2 + 15 µ1

(
−3β1µ4 − 3β3µ6 + 40β3

1j2µ2 + 3ρ
)
+ 7680β5

1j
2
2µ

2
1

)
+ 24β1j2r0

(
β1µ

2
2 + µ1(

−5β1µ4 − 5β3µ6 + 24β3
1j2µ2 + 5ρ

)
+ 120β5

1j
2
2µ

2
1

)
+ 180β2

1µ1r
3
0

(
35β2

1j2µ1 + µ2

)
+ 1575β3

1µ
2
1r

4
0

)
,

µ3 =
β1

(
−2β1µ1

(
8β2

1j
2
2 + 30β1j2r0 + 15r20

)
− µ2 4β1j2 + 3r0

)
β2 (4β1j2 + 3r0)

,

r2 = −2j4β1, r1 = r−1 = 0, and r−2 = 0.

(1.3) µ5 =
β1 µ2

2 + 5 µ1

(
−β1 µ4 − β3 µ6 + 8 β3

1j2µ2 + ρ
)
+ 720β5

1 j22 µ2
1

5β2µ1
, µ3 = −

β1

(
20β2

1j2µ1 + µ2

)
β2

,

r2 = −4β1j4, and r0 = r1 = r−1 = r−2 = 0.

(1.1) The matching solutions of Eq. (1.1) from the previous set (1.1) are either a dark soliton solution or a singular
periodic solution, which is elevated when j2 > 0 or j2 < 0.

W1.1,1(x, y, z, t) = 2β1

√
j2 tanh

(
(β1x+ β2y + β3z − ρt)

√
j2

)
, (3.5)

or

W1.1,2(x, y, z, t) = −2β1

√
−j2 tan

(
(β1x+ β2y + β3z − ρt)

√
−j2

)
, (3.6)

W1.1,3(x, y, z, t) = 2β1

√
−j2 cot

(
(β1x+ β2y + β3z − ρt)

√
−j2

)
. (3.7)
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(1.2) The matching solutions of Eq. (1.1) from the previous set (1.2) are either a dark soliton solution or a singular
periodic solution, which is elevated when j2 > 0 or j2 < 0.

W1.2,1(x, y, z, t) = r0 (β1x+ β2y + β3z − ρt) + 2β1

√
j2 tanh

(
(β1x+ β2y + β3z − ρt)

√
j2

)
, (3.8)

or

W1.2,2(x, y, z, t) = r0 (β1x+ β2y + β3z − ρt)− 2β1

√
−j2 tan

(
(β1x+ β2y + β3z − ρt)

√
−j2

)
, (3.9)

W1.2,3(x, y, z, t) = r0 (β1x+ β2y + β3z − ρt) + 2β1

√
−j2 cot

(
(β1x+ β2y + β3z − ρt)

√
−j2

)
. (3.10)

(1.3) The matching solutions of Eq. (1.1) from the previous set (1.3) are either a dark soliton solution or a singular
periodic solution, which is elevated when j2 > 0 or j2 < 0.

W1.3,1(x, y, z, t) = 4β1

√
j2 tanh

(
(β1x+ β2y + β3z − ρt)

√
j2

)
, (3.11)

or

W1.3,2(x, y, z, t) = 4β1

√
−j2 tan

(
(β1x+ β2y + β3z − ρt)

√
−j2

)
, (3.12)

W1.3,3(x, y, z, t) = 4β1

√
−j2 cot

(
(β1x+ β2y + β3z − ρt)

√
−j2

)
. (3.13)

Case 2: j0 =
j22
4j4

, and j1 = j3 = j6 = 0.

In this situation, we identify the following solution sets:

(2.1) µ4 =
5β1 µ1 (−β2µ5 − β3µ6 + ρ) + β2

2µ
2
3 − 20β6

1j
2
2µ

2
1 + 10β4

1j2µ1µ2 + 10β2β
3
1j2µ1µ3

5β2
1µ1

,

r2 = −2j4β1, r0 = −j2β1, and r1 = r−1 = r−2 = 0.

(2.2)µ4 =
1

5β2
1µ1 (β1j2 + 3r0)

(
β1j2

(
β2
2µ

2
3 − 5β1µ1

(
β2µ5 + β3µ6 + 3β5

1j
2
2µ1 − ρ

))
+ 3r0

(
β2
2µ

2
3

+5β1µ1

(
−β2µ5 − β3µ6 + 9β5

1j
2
2µ1 + ρ

))
+ 375β5

1 j2µ
2
1r

2
0 + 225 β4

1 µ2
1r

3
0

)
, r2 = −2β1j4,

µ2 =
−2β2

1µ1

(
2β2

1j
2
2 + 15β1j2r0 + 15r20

)
− β2µ3 (β1j2 + 3r0)

β1 (β1j2 + 3r0)
, and r1 = r−1 = r−2 = 0.

(2.3) µ4 =
5β1µ1 (−β2µ5 − β3µ6 + ρ) + β2

2µ
2
3 − 20β6

1j
2
2µ

2
1 + 10β4

1j2µ1µ2 + 10β2β
3
1j2µ1µ3

5β2
1µ1

,

r−2 = −β1j
2
2

2j4
, r0 = −j2 β1, and r1 = r−1 = r2 = 0.

(2.4) µ4 =
5β1µ1 (−β2µ5 − β3µ6 + ρ) + β2

2µ
2
3 − 320β6

1j
2
2µ

2
1 + 40β4

1j2µ1µ2 + 40β2β
3
1j2µ1µ3

5β2
1µ1

,

r0 = −2j2 β1, r2 = −2j4β1, r−2 = −β1j
2
2

2j4
, and r1 = r−1 = r2 = 0.

(2.5) µ4 = − 1

5β2
1µ1 (2β1j2 − 3r0)

(
−2β1j2

(
β2
2µ

2
3 + 5β1µ1

(
−β2µ5 − β3µ6 + 108β5

1j
2
2µ1 + ρ

))
+3r0

(
β2
2µ

2
3 − 5β1µ1

(
β2µ5 + β3µ6 + 76β5

1j
2
2µ1 − ρ

))
+ 150β5

1j2µ
2
1r

2
0 + 225β4

1µ
2
1r

3
0

)
,

µ2 =
2β1µ1

(
15r20 − 28β2

1j
2
2

)
2β1j2 − 3r0

− β2µ3

β1
, r−2 = −β1j

2
2

2j4
, r2 = −2j4β1, r1 = r−1 = 0.
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(2.6) µ4 =
5β1 (−β2µ5 − β3µ6 + ρ) +

β2
2 µ2

3

µ1
+ 80 β6

1 j22µ1

5β2
1

, µ2 =
10β3

1 j2µ1 − β2µ3

β1
,

r0 = −2j2β1, r2 = −4j4β1, and r1 = r−1 = r−2 = 0.

(2.7) µ4 =
β2
2µ

2
3 + 5β1µ1

(
−β2µ5 − β3µ6 + 256β5

1j
2
2µ1 + ρ

)
5β2

1µ1
, µ2 =

40β3
1j2µ1 − β2µ3

β1
,

r0 = −4j2β1, r2 = −4j4β1, r−2 = −β1j
2
2

j4
, and r1 = r−1 = 0.

(2.1) The corresponding solutions to Eq. (1.1) from the preceding set (2.1) are either a dark soliton solution or a
singular periodic solution, which is elevated when j2 < 0 or j2 > 0.

W2.1,1(x, y, z, t) = β1

√
−2j2 tanh

(
(β1x+ β2y + β3z − ρt)

√
−j2

2

)
, (3.14)

or

W2.1,2(x, y, z, t) = −β1

√
2j2 tan

(
(β1x+ β2y + β3z − ρt)

√
j2
2

)
. (3.15)

(2.2) The corresponding solutions to Eq. (1.1) from the preceding set (2.2) are either a dark soliton solution or a
singular periodic solution, which is elevated when j2 < 0 or j2 > 0.

W2.2,1(x, y, z, t) = β1

(
j2 (β1x+ β2y + β3z − ρt) +

√
−2j2 tanh

(
(β1x+ β2y + β3z − ρt)

√
−j2

2

))
+ r0 (β1x+ β2y + β3z − ρt) ,

(3.16)

or

W2.1,2(x, y, z, t) = β1

√
2j2 tan

(
(β1x+ β2y + β3z − ρt)

√
j2
2

)
− r0 (β1x+ β2y + β3z − ρt)

− j2β1 (β1x+ β2y + β3z − ρt) .

(3.17)

(2.3) The corresponding solutions to Eq. (1.1) from the preceding set (2.3) are either a singular soliton solution or a
singular periodic solution, which is elevated when j2 < 0 or j2 > 0.

W2.3,1(x, y, z, t) = −β1

√
−2j2 coth

(
(β1x+ β2y + β3z − ρt)

√
−j2

2

)
, (3.18)

or

W2.3,2(x, y, z, t) = β1

√
2j2 cot

(
(β1x+ β2y + β3z − ρt)

√
j2
2

)
. (3.19)

(2.4) The corresponding solutions to Eq. (1.1) from the preceding set (2.4) are either a singular soliton solution or a
singular periodic solution, which is elevated when j2 < 0 or j2 > 0.

W2.4,1(x, y, z, t) = β1

√
−8j2 coth

(
(β1x+ β2y + β3z − ρt)

√
−2 j2

)
, (3.20)

or

W2.4,2(x, y, z, t) = β1

√
8j2 cot

(
(β1x+ β2y + β3z − ρt)

√
2j2

)
. (3.21)

(2.5) The corresponding solutions to Eq. (1.1) from the preceding set (2.5) are either a singular soliton solution or a
singular periodic solution, which is elevated when j2 < 0 or j2 > 0.

W2.5,1(x, y, z, t) = 2β1

√
−2j2 coth

(
(β1x+ β2y + β3z − ρt)

√
−2j2

)
+ r0 (β1x+ β2y + β3z − ρt)

+ 2j2 β1 (β1x+ β2y + β3z − ρt) ,
(3.22)
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or

W2.5,2(x, y, z, t) = 2β1

√
2j2 cot

(
(β1x+ β2y + β3z − ρt)

√
2j2

)
. (3.23)

(2.6) The corresponding solutions to Eq. (1.1) from the preceding set (2.6) are either a dark soliton solution or a
singular periodic solution, which is elevated when j2 < 0 or j2 > 0.

W2.6,1(x, y, z, t) = β1

√
−8j2 tanh

(
(β1x+ β2y + β3z − ρt)

√
−j2

2

)
, (3.24)

or

W2.6,2(x, y, z, t) = −β1

√
8j2 tan

(
(β1x+ β2y + β3z − ρt)

√
j2
2

)
. (3.25)

(2.7) The corresponding solutions to Eq. (1.1) from the preceding set (2.7) are either a singular soliton solution or a
singular periodic solution, which is elevated when j2 < 0 or j2 > 0.

W2.7,1(x, y, z, t) = β1

√
−32 j2 coth

(
(β1x+ β2y + β3z − ρt)

√
−2j2

)
, (3.26)

or

W2.7,2(x, y, z, t) = β1

√
32 j2 cot

(
(β1x+ β2y + β3z − ρt)

√
2 j2

)
. (3.27)

Case 3: j3 = j4 = j6 = 0.
In this situation, we identify the following solution sets:

(3.1) µ4 =
5β1µ1 (−β2µ5 − β3µ6 + ρ) + β2

2µ
2
3 − 80β6

1j
2
2µ

2
1 − 20β4

1j2µ1µ2 − 20β2β
3
1j2µ1µ3

5β2
1µ1

, r−2 = −2j0β1,

r0 = r1 = r−1 = r2 = 0, and j1 = 0.

(3.2) µ4 =
β2
2 µ2

3 + 5β1µ1

(
−β2µ5 − β3µ6 + 64β5

1j
2
2µ1 + ρ

)
5β2

1µ1
, µ2 = −β2µ3 + 20β3

1j2µ1

β1
, r−2 = −4j0β1,

r0 = r1 = r−1 = r2 = 0, and j1 = 0.

(3.3) µ4 =
5β1µ1 (−β2µ5 − β3µ6 + ρ) + β2

2µ
2
3 − 5β6

1j
2
2µ

2
1 − 5β4

1j2µ1µ2 − 5β2β
3
1j2µ1µ3

5β2
1µ1

, r−2 = −β1j
2
1

2j2
,

r−1 = −j1 β1, r0 = r1 = r2 = 0, and j0 =
j21
4j2

.

Therefore, the answers to Eq. (1.1) are as follows:
(3.1) The corresponding solutions to Eq. (1.1) from the preceding set (3.1) are either a singular soliton solution or a
singular periodic solution, which is elevated when j2 > 0 or j2 < 0.

W3.1,1(x, y, z, t) = 2β1

√
j2 coth

(
(β1x+ β2y + β3z − ρt)

√
j2

)
, (3.28)

or

W3.1,2(x, y, z, t) = 2β1

√
−j2 cot

(
(β1x+ β2y + β3z − ρt)

√
−j2

)
. (3.29)

(3.2) The corresponding solutions to Eq. (1.1) from the preceding set (3.2) are either a singular soliton solution or a
singular periodic solution, which is elevated when j2 > 0 or j2 < 0.

W3.2,1(x, y, z, t) = 4β1

√
j2 coth

(
(β1x+ β2y + β3z − ρt)

√
j2

)
, (3.30)

or

W3.2,2(x, y, z, t) = 4β1

√
−j2 cot

(
(β1x+ β2y + β3z − ρt)

√
−j2

)
. (3.31)
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(3.3) The matching solutions of Eq. (1.1) from the previous set (3.3) is an exponential solution, which is elevated

when j2 > 0 and j1 ̸= 2j2e
√
j2(β1x+β2y+β3z−ρt).

W3.3(x, y, z, t) = − 2j1β1

√
j2

j1 − 2j2e(β1x+β2y+β3z−ρt)
√
j2
. (3.32)

Case 4: j0 = j1 = j2 = j6 = 0.
In this situation, we identify the following solution set:

µ4 =
5β1µ1 (−β2µ5 − β3µ6 + ρ) + β2

2µ
2
3

5β2
1µ1

, µ2 = −β2µ3

β1
, r1 = −j3β1, r2 = −2β1j4,

r0 = r−1 = r−2 = 0.

The matching answers of Eq. (1.1) from the set above is the rational solution, which is elevated when j4 ̸=
1
4j

2
3 (β1x+ β2y + β3z − ρt) 2.

W4.1(x, y, z, t) =
4β1j

2
3 (β1x+ β2y + β3z − ρt)

(j3(β1x+ β2y + β3z − ρt)) 2 − 4j4
. (3.33)

Case 5: j0 = j1 = j6 = 0.
In this situation, we identify the following solution set:

µ6 =
β2
2µ

2
3 + 5β1µ1

(
−β1µ4 − β2µ5 + 4β5

1j
2
2µ1 + ρ

)
5β1β3µ1

, µ2 =
−β2µ3 − 5β3

1j2µ1

β1
, r1 = −j3β1, r2 = −2j4β1,

r0 = r−1 = r−2 = 0.

(5.1) The matching solutions of Eq. (1.1) from the set above are either a dark soliton solution or a singular soliton
solution, both of which are elevated in Eqs. (3.34) or (3.35) with j2 > 0 and j23 = 4 j2 j4.

W5.1,1(x, y, z, t) = β1

√
j2 tanh

(
1

2
(β1x+ β2y + β3z − ρt)

√
j2

)
, (3.34)

or

W5.1,2(x, y, z, t) = β1

√
j2 coth

(
1

2
(β1x+ β2y + β3z − ρt)

√
j2

)
, (3.35)

(5.2) The matching solutions of Eq. (1.1) from the set above are either a hyperbolic solution when j2 > 0, or a
periodic solution when j2 < 0, both of which are elevated in Eqs. (3.36) or (3.37) with j23 ̸= 4 j2 j4.

W5.1,3(ξ) =
2β1

√
j2
(
2j3

√
j2j4 −

(
j23 − 4j2 j4

)
sinh

(
ξ
√
j2
)
− 4j2 j4 tanh

(
1
2ξ

√
j2
))

4j2j4
(
cosh

(
ξ
√
j2
)
− 1
)
− j23

(
cosh

(
ξ
√
j2
)
+ 1
) , (3.36)

or

W5.1,4(ξ) = −
2β1j2

(
2j3

√
−j2j4 −

(
j23 − 4j2 j4

)
sin
(
ξ
√
−j2

)
− 4j2 j4 tan

(
1
2ξ

√
−j2

))
√
−j2

(
(j23 − 4j2j4) cos

(
ξ
√
−j2

)
+ j23 + 4j2j4

) ,

where ξ = β1x+ β2y + β3z − ρt.

(3.37)

Case 6: j1 = j3 = j6 = 0.
In this situation, we identify the following solution sets:

(6.1) µ4 =
5β1 (−β2µ5 − β3µ6 + ρ) +

β2
2µ

2
3

µ1
− 60β6

1j0j4µ1

5β2
1

, µ2 = −β2µ3 + 4β3
1j2µ1

β1
, r2 = −2j4 β1,

r0 = r1 = r−1 = r−2 = 0.

(6.2) µ4 =
5β1 (−β2µ5 − β3µ6 + ρ) +

β2
2µ

2
3

µ1
− 60β6

1j0j4µ1

5β2
1

, µ2 = −β2µ3 + 4β3
1j2µ1

β1
, r−2 = −2j0β1,

r0 = r1 = r−1 = r2 = 0.
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(6.3) µ4 =
β2
2µ

2
3 + 5β1µ1

(
−β2µ5 − β3µ6 + 48β1

(
2j22 + j0j4

)
+ ρ
)

5β2
1µ1

, r−2 = −2j0β1, r2 = −2j4 β1,

µ2 = −β2µ3 + 28β3
1j2µ1

β1
, and r0 = r1 = r−1 = 0.

(6.4) µ4 =
−β2µ5 − β3µ6 − 12β5

1j0j4µ1 + ρ

β1
, µ3 = 0, µ2 = −4j2µ1β

2
1 , r2 = −2j4 β1, r0 = r1 = 0,

r−1 = r−2 = 0.

(6.5) µ4 =
−β2µ5 − β3µ6 − 12β5

1j0j4µ1 + ρ

β1
, µ3 = 0, µ2 = −4j2µ1β

2
1 , r−2 = −2j0 β1, r0 = r1 = 0,

r−1 = r2 = 0.

(6.6) µ4 =
−β2µ5 − β3µ6 + 96β5

1j
2
2µ1 + 48β5

1j0j4µ1 + ρ

β1
, µ3 = 0, µ2 = −28j2µ1β

2
1 , r−2 = −2j0 β1,

r2 = −2j4 β1, r0 = r1 = r−1 = 0.

The collection of response set (6.1) demonstrates that Eq. (1.1) has exact solutions, which are given by:
Case (6.1,1): If j0 = 1, j2 = −1 − ω2, j4 = ω2, and 0 < ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1)

are as follows:

W6.1,1(x, y, z, t) = −2β1ω((β1x+ β2y + β3z − ρt)− JacobiEpsilon(β1x+ β2y + β3z − ρt)). (3.38)

or

W6.1,2(ξ) = −2β1 ω (ω cn(ξ) sn(ξ) + (ξ − JacobiEpsilon(ξ)) dn(ξ))

dn(ξ)
, (3.39)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 1, then Eq. (3.38) reduces to the dark soliton solution:

W6.1,1.1(x, y, z, t) = −2β1 ((β1x+ β2y + β3z − ρt)− tanh (β1x+ β2y + β3z − ρt)) . (3.40)

Case (6.1,2): If j0 = ω2 − 1, j2 = 2− ω2, j4 = −1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to
Eq. (1.1) is as follows:

W6.1,3(x, y, z, t) = 2β1 JacobiEpsilon (β1x+ β2y + β3z − ρt) . (3.41)

If ω = 1, then Eq. (3.41) reduces to the dark soliton solution:

W6.1,3.1(x, y, z, t) = 2β1 − tanh (β1x+ β2y + β3z − ρt) . (3.42)

Case (6.1,3): If j0 = −ω2, j2 = 2ω2 − 1, j4 = 1 − ω2, and 0 ≤ ω < 1, thus, The Jacobi elliptic solution to Eq.
(1.1) is as follows:

W6.1,4(ξ) =
2β1 (ω + 1)(cn(ξ) (JacobiEpsilon(ξ) + ξ (ω − 1))− dn(ξ) sn(ξ))

cn(ξ)
, (3.43)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0, then Eq. (3.43) reduces to the singular periodic solution:

W6.1,4.1(x, y, z, t) = −2β1 tan (β1x+ β2y + β3z − ρt) . (3.44)

Case (6.1,4): If j0 = −1, j2 = 2− ω2, j4 = ω2 − 1, and 0 ≤ ω < 1, thus, The Jacobi elliptic solution to Eq. (1.1)
is as follows:

W6.1,5(ξ) =
2β1 (ω + 1) (dn(ξ) JacobiEpsilon(ξ)− ω cn(ξ) sn(ξ))

dn(ξ)
, (3.45)
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where ξ = β1x+ β2y + β3z − ρt.
Case (6.1,5): If j0 = 1, j2 = 2 − 4ω2, j4 = 1, and 0 ≤ ω ≤ 1, thus, The Jacobi elliptic solution to Eq. (1.1) is as
follows:

W6.1,6(ξ) = −2β1

(
dn(ξ) sn(ξ)

cn(ξ)
− 2JacobiEpsilon(ξ) + ξ

)
, (3.46)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0, or ω = 1, then Eq. (3.46) reduce to either a singular periodic solution or a dark soliton solution:

W6.1,6.1(x, y, z, t) = 2β1 ((β1x+ β2y + β3z − ρt)− tan (β1x+ β2y + β3z − ρt)) , (3.47)

or,

W6.1,6.2(x, y, z, t) = −2β1 ((β1x+ β2y + β3z − ρt)− tanh (β1x+ β2y + β3z − ρt)) . (3.48)

Case (6.1,6): If j0 = 1
4 , j2 =

(ω2−2)
2 , j4 = ω4

4 , and 0 < ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) is as
follows:

W6.1,7(ξ) = β1ω
2

(
(cs(ξ)(dn(ξ)− 1) + JacobiEpsilon(ξ) +

1

2
ξ(ω − 2)

)
, (3.49)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 1, then Eq. (3.49) reduces to a dark soliton solution:

W6.1,7.1(x, y, z, t) = −β1

(
1

2
(β1x+ β2y + β3z − ρt)− tanh

(
1

2
(β1x+ β2y + β3z − ρt)

))
. (3.50)

The collection of response set (6.2) demonstrates that Eq. (1.1) has exact solutions, which are given by:
Case (6.2,1): If j0 = 1, j2 = −1 − ω2, j4 = ω2, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) are
as follows:

W6.2,1.1(ξ) = −2β1

(
ξ − JacobiEpsilon(ξ)− cn(ξ) dn(ξ)

sn(ξ)

)
, (3.51)

or,

W6.2,1.2(ξ) = −2β1

(
ξ − JacobiEpsilon(ξ) +

dn(ξ) sn(ξ)

cn(ξ)

)
, (3.52)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0, or ω = 1, then Eq. (3.51) reduces to either a singular periodic solution or a singular soliton solution.
Additionally, if ω = 0, then Eq. (3.52) reduces to a singular periodic solution:

W6.2,1.1(x, y, z, t) = 2β1 cot (β1x+ β2y + β3z − ρt) , (3.53)

or,

W6.2,1.2(x, y, z, t) = −2β1 ((β1x+ β2y + β3z − ρt)− coth (β1x+ β2y + β3z − ρt)) . (3.54)

W6.2,2.1(x, y, z, t) = −2β1 tan (β1x+ β2y + β3z − ρt) . (3.55)

Case (6.2,2): If j0 = ω2 − 1, j2 = 2− ω2, j4 = −1, and 0 ≤ ω < 1, thus, the Jacobi elliptic solution to
Eq. (1.1) is as follows:

W6.2,3(x, y, z, t) =
2β1 (ω + 1) (dn(ξ) JacobiEpsilon(ξ)− ω cn(ξ) sn(ξ))

dn(ξ)
, (3.56)

where ξ = β1x+ β2y + β3z − ρt.
Case (6.2,3): If j0 = −ω2, j2 = 2ω2− 1, j4 = 1−ω2, and 0 ≤ ω < 1, thus, The Jacobi elliptic solution to Eq. (1.1)
is as follows:

W6.2,4(ξ) = 2β1 ω (JacobiEpsilon(ξ) + ξ(ω − 1)) , (3.57)
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where ξ = β1x+ β2y + β3z − ρt.
If ω = 0, then Eq. (3.57) reduces to a dark soliton solution:

W6.2,4.1(x, y, z, t) = −2β1 tanh (β1x+ β2y + β3z − ρt) . (3.58)

Case (6.2,4): If j0 = −1, j2 = 2− ω2, j4 = ω2 − 1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to
Eq. (1.1) is as follows:

W6.2,5(x, y, z, t) = 2β1 JacobiEpsilon(β1x+ β2y + β3z − ρt). (3.59)

If ω = 1, then Eq. (3.59) reduces to a dark soliton solution:

W6.2,5.1(x, y, z, t) = 2β1 tanh (β1x+ β2y + β3z − ρt) . (3.60)

Case (6.2,5): If j0 = 1, j2 = 2 − 4ω2, j4 = 1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) is as
follows:

W6.2,6(ξ) = −
2β1

((
−2ωcn2(ξ) + 2ω − 1

)
cs(ξ) + dn(ξ)(ξ − 2JacobiEpsilon(ξ))

)
dn(ξ)

, (3.61)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0 or ω = 1, then Eq. (3.61) reduces to either a singular periodic solution or a singular soliton solution:

W6.2,6.1(x, y, z, t) = 2β1 ((β1x+ β2y + β3z − ρt) + cot (β1x+ β2y + β3z − ρt)) , (3.62)

or

W6.2,6.2(x, y, z, t) = −2β1 ((β1x+ β2y + β3z − ρt)− coth (β1x+ β2y + β3z − ρt)) . (3.63)

Case (6.2,6): If j0 = 1
4 , j2 =

(ω2−2)
2 , j4 = ω4

4 , and 0 < ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) is as
follows:

W6.2,7(ξ) =
β1

2
(2cs(ξ) (1 + dn(ξ)) + 2JacobiEpsilon(ξ) + ξ (ω − 2)), (3.64)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0or ω = 1, then Eq. (3.64) reduces to either a singular periodic or a combo dark-singular solution:

W6.2,7.1(x, y, z, t) = 2β1 cot (β1x+ β2y + β3z − ρt) , (3.65)

or

W6.2,7.2(ξ) = β1

(
1− ξ

2
+ tanh(ξ) + csc(ξ)

)
. (3.66)

where ξ = β1x+ β2y + β3z − ρt.
Combo dark-singular solitons provide a broader class of exact solutions, extending our understanding of nonlinear

wave phenomena. Their unique structural features make them particularly useful in analyzing extreme wave events
and energy localization in complex media.
The collection of response set (6.3) demonstrates that Eq. (1.1) has exact solutions, which are given by:
Case (6.3,1): If j0 = 1, j2 = −1 − ω2, j4 = ω2, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) are
as follows:

W6.3,1(ξ) = −2β1

(
−cn(ξ)dn(ξ)

sn(ξ)
− (ω + 1)(JacobiEpsilon(ξ)− ξ)

)
, (3.67)

or

W6.3,2(ξ) = −
2β1

(
ω2 cn(ξ) sn(ξ) + (1 + ω) dn(ξ) (ξ − JacobiEpsilon(ξ)) + dn2(ξ) sc(ξ)

)
dn(ξ)

. (3.68)
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where ξ = β1x+ β2y + β3z − ρt.
If ω = 0 or ω = 1, then Eq. (3.67) reduces to either a singular periodic solution or a singular soliton solution.
Additionally, if ω = 0, then Eq. (3.68) reduces to a singular periodic solution:

W6.3,1.1(x, y, z, t) = 2β1 cot (β1x+ β2y + β3z − ρt) , (3.69)

or,

W6.3,1.2(x, y, z, t) = −4β1

(
(β1x+ β2y + β3z − ρt)− coth

(
(β1x+ β2y + β3z − ρt)

√
2
))

. (3.70)

W6.3,2.1(x, y, z, t) = −4β1 tan (β1x+ β2y + β3z − ρt) . (3.71)

Case (6.3,2): If j0 = ω2 − 1, j2 = 2− ω2, j4 = −1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to
Eq. (1.1) is as follows:

W6.3,3(ξ) = 2β1

(
(ω + 2) JacobiEpsilon(ξ)− ω (ω + 1) cn(ξ) sn(ξ)

dn(ξ)

)
, (3.72)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 1, then Eq. (3.72) reduces to a dark soliton solution:

W6.3,3.1(x, y, z, t) = 2β1 tanh (β1x+ β2y + β3z − ρt) . (3.73)

Case (6.3,3): If j0 = −ω2, j2 = 2ω2− 1, j4 = 1−ω2, and 0 ≤ ω ≤ 1, thus, The Jacobi elliptic solution to Eq. (1.1)
is as follows:

W6.3,4(ξ) = β1

(
(2ω + 1) (JacobiEpsilon(ξ) + ξ (ω − 1))− (ω + 1) dn(ξ) sn(ξ)

cn(ξ)

)
, (3.74)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0 or ω = 1, then Eq. (3.74) reduces to either a singular periodic solution or a dark soliton solution:

W6.3,4.1(x, y, z, t) = −2β1 tan (β1x+ β2y + β3z − ρt) , (3.75)

or

W6.3,4.2(x, y, z, t) = 2β1 tanh (β1x+ β2y + β3z − ρt) . (3.76)

Case (6.3,4): If j0 = −1, j2 = 2− ω2, j4 = ω2 − 1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to
Eq. (1.1) is as follows:

W6.3,5(ξ) = 2β1

(
(ω + 2) JacobiEpsilon(ξ)− ω (ω + 1) cn(ξ) sn(ξ)

dn(ξ)

)
, (3.77)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 1, then Eq. (3.77) reduces to a dark soliton solution:

W6.3,5.1(x, y, z, t) = 2β1 tanh (β1x+ β2y + β3z − ρt) . (3.78)

Case (6.3,5): If j0 = 1, j2 = 2− 4ω2, j4 = 1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to
Eq. (1.1) is as follows:

W6.3,6(ξ) = 2β1

((
2ω cn2(ξ)− 2ω + 1

)
cs(ξ)

dn(ξ)
− dn(ξ) sc(ξ) + 4 JacobiEpsilon(ξ)− 2 ξ

)
, (3.79)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0 or ω = 1, then Eq. (3.79) reduces to either a singular periodic or a singular soliton solution:

W6.3,6.1(x, y, z, t) = 4β1 (β1x+ β2y + β3z − ρt) + cot (2 (β1x+ β2y + β3z − ρt)) , (3.80)

or

W6.3,6.2(x, y, z, t) = −4β1 ((β1x+ β2y + β3z − ρt)− coth (2 (β1x+ β2y + β3z − ρt))) . (3.81)
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Case (6.3,6): If j0 = 1
4 , j2 =

(ω2−2)
2 , j4 = ω4

4 , and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) is as
follows:

W6.3,7(ξ) =
β1

2

(
2cs(ξ)

(
1− ω2 +

(
1 + ω2

)
dn(ξ) + (12 JacobiEpsilon(ξ) + ξ (ω − 2))

))
, (3.82)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0 or ω = 1, then Eq. (3.82) reduces to either a singular periodic solution or a singular soliton solution:

W6.3,7.1(x, y, z, t) = 2β1 cot (β1x+ β2y + β3z − ρt) , (3.83)

or

W6.3,7.2(x, y, z, t) = −β1 ((β1x+ β2y + β3z − ρt)− 2 coth (β1x+ β2y + β3z − ρt)) . (3.84)

The collection of response set (6.4) demonstrates that Eq. (1.1) has exact solutions, which are given by:
Case (6.4,1): If j0 = 1, j2 = −1−ω2, j4 = ω2, and 0 < ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) are

as follows:

W6.4,1(x, y, z, t) = −2β1ω((β1x+ β2y + β3z − ρt)− JacobiEpsilon(β1x+ β2y + β3z − ρt)), (3.85)

or

W6.4,2(ξ) = −2ω β1 (ω cn(ξ) sn(ξ) + dn(ξ) (ξ − JacobiEpsilon(ξ)))

dn(ξ)
, (3.86)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 1, then, the Eq. (3.85) reduces to a dark soliton solution:

W6.4,1.1(x, y, z, t) = −2β1 ((β1x+ β2y + β3z − ρt)− tanh (β1x+ β2y + β3z − ρt)) . (3.87)

Case (6.4,2): If j0 = ω2 − 1, j2 = 2− ω2, j4 = −1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) is
as follows:

W6.4,3(x, y, z, t) = 2β1 JacobiEpsilon(β1x+ β2y + β3z − ρt). (3.88)

If ω = 1, then Eq. (3.88) reduces to a dark soliton solition:

W6.4,3.1(x, y, z, t) = 2β1 tanh (β1x+ β2y + β3z − ρt) . (3.89)

Case (6.4,3): If j0 = −ω2, j2 = 2ω2− 1, j4 = 1−ω2, and 0 ≤ ω < 1, thus, The Jacobi elliptic solution to Eq. (1.1)
is as follows:

W6.4,4(ξ) =
2β1 (ω + 1)(cn(ξ) JacobiEpsilon(ξ) + ξ (ω − 1))− dn(ξ) sn(ξ))

cn(ξ)
, (3.90)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0, then Eq. (3.90) reduces to a singular periodic solution:

W6.4,4.1(x, y, z, t) = −2β1 tan (β1x+ β2y + β3z − ρt) . (3.91)

Case (6.4,4): If j0 = −1, j2 = 2− ω2, j4 = ω2 − 1, and 0 ≤ ω < 1, thus, the Jacobi elliptic solution to
Eq. (1.1) is as follows:

W6.4,5(ξ) =
2β1 (ω + 1) (dn(ξ) JacobiEpsilon(ξ)− ω cn(ξ) sn(ξ))

dn(ξ)
, (3.92)

where ξ = β1x+ β2y + β3z − ρt.
Case (6.4,5): If j0 = 1, j2 = 2− 4ω2, j4 = 1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to
Eq. (1.1) is as follows:

W6.4,6(ξ) = −2β1

(
dn(ξ) sn(ξ)

cn(ξ)
− 2 JacobiEpsilon(ξ) + ξ

)
, (3.93)
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where ξ = β1x+ β2y + β3z − ρt.
If ω = 0 or ω = 1, then, the Eq. (3.92) reduces to either a singular periodic solution or a dark soliton solution:

W6.4,6.1(x, y, z, t) = 2β1 ((β1x+ β2y + β3z − ρt)− tan (β1x+ β2y + β3z − ρt)) , (3.94)

or

W6.4,6.2(x, y, z, t) = −2β1 ((β1x+ β2y + β3z − ρt)− tanh (β1x+ β2y + β3z − ρt)) . (3.95)

Case (6.4,6): If j0 = 1
4 , j2 =

(ω2−2)
2 , j4 = ω4

4 , and 0 < ω ≤ 1, thus, the Jacobi elliptic solution to
Eq. (1.1) is as follows:

W6.4,7(ξ) =
β1ω

2

2
(2cs(ξ) (dn(ξ)− 1) + 2 JacobiEpsilon(ξ) + ξ (ω − 2)), (3.96)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 1, then Eq. (3.96) reduces to a dark soliton solution:

W6.4,7.1(x, y, z, t) =
−β1

2

(
(β1x+ β2y + β3z − ρt)− 2 tanh

(
1

2
(β1x+ β2y + β3z − ρt)

))
. (3.97)

The collection of response set (6.5) demonstrates that Eq. (1.1) has exact solutions, which are given by:
Case (6.5,1): If j0 = 1, j2 = −1 − ω2, j4 = ω2, and 0 < ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) are
as follows:

W6.5,1(ξ) = 2β1

(
cn(ξ) dn(ξ)

sn(ξ)
+ JacobiEpsilon(ξ)− ξ

)
, (3.98)

or

W6.5,2(ξ) = −2β1

(
dn(ξ) sn(ξ)

cn(ξ)
− JacobiEpsilon(ξ) + ξ

)
, (3.99)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0, or ω = 1, then Eq. (3.98) reduces to either a singular periodic solution or a singular soliton solution.
Additionally, if ω = 0, then Eq. (3.99) reduces to the singular periodic solution:

W6.5,1.1(x, y, z, t) = 2β1 cot (β1x+ β2y + β3z − ρt) , (3.100)

or

W6.5,1.2(x, y, z, t) = −2β1 ((β1x+ β2y + β3z − ρt)− coth (β1x+ β2y + β3z − ρt)) . (3.101)

W6.5,2.1(x, y, z, t) = −2β1 tan (β1x+ β2y + β3z − ρt) . (3.102)

Case (6.5,2): If j0 = ω2 − 1, j2 = 2− ω2, j4 = −1, and 0 ≤ ω < 1, thus, the Jacobi elliptic solution
for Eq. (1.1) is as follows:

W6.5,3(ξ) =
2β1(ω + 1)(dn(ξ) JacobiEpsilon(ξ)− ω cn(ξ) sn(ξ))

dn(ξ)
, (3.103)

where ξ = β1x+ β2y + β3z − ρt.
Case (6.5,3): If j0 = −ω2, j2 = 2ω2 − 1, j4 = 1− ω2, and 0 < ω ≤ 1, thus, the Jacobi elliptic solution
for Eq. (1.1) is as follows:

W6.5,4(x, y, z, t) = 2β1ω JacobiEpsilon(β1x+ β2y + β3z − ρt) + (β1x+ β2y + β3z − ρ) (ω − 1)). (3.104)

If ω = 1, then Eq. (3.104) reduces to a dark soliton solution:

W6.5,4.1(x, y, z, t) = −2β1 tanh (β1x+ β2y + β3z − ρt) . (3.105)
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Case (6.5,4): If j0 = −1, j2 = 2− ω2, j4 = ω2 − 1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution for Eq. (1.1)
is as follows:

W6.5,5(x, y, z, t) = 2β1 JacobiEpsilon(β1x+ β2y + β3z − ρt). (3.106)

If ω = 1, then Eq. (3.106) reduces to a dark soliton solution:

W6.5,5.1(x, y, z, t) = 2β1 tanh (β1x+ β2y + β3z − ρt) . (3.107)

Case (6.5,6): If j0 = 1, j2 = 2 − 4ω2, j4 = 1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) is as
follows:

W6.5,6(ξ) = −
2β1

((
−2ω cn2(ξ) + 2ω − 1

)
cs(ξ) + dn(ξ)(ξ − 2 JacobiEpsilon(ξ))

)
dn(ξ)

, (3.108)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0 or ω = 1, then Eq. (3.108) reduces to either a singular periodic solution or singular soliton solution:

W6.5,6.1(x, y, z, t) = 2β1 ((β1x+ β2y + β3z − ρt) + cot (β1x+ β2y + β3z − ρt)) , (3.109)

or

W6.5,6.2(x, y, z, t) = −2β1 ((β1x+ β2y + β3z − ρt)− coth (β1x+ β2y + β3z − ρt)) . (3.110)

Case (6.5,7): If j0 = 1
4 , j2 =

(ω2−2)
2 , j4 = ω4

4 , and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) is as
follows:

W6.5,7(ξ) =
β1

2
(2 cs(ξ) (1 + dn(ξ)) + 2 JacobiEpsilon(ξ) + ξ (ω − 2)), (3.111)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0 or ω = 1, then Eq. (3.111) reduces to either a singular periodic solution or a combo dark-singular soliton
solution:

W6.5,7.1(x, y, z, t) = 2β1 cot (β1x+ β2y + β3z − ρt) , (3.112)

or

W6.5,7.2(ξ) = β1

(
1− ξ

2
+ tanh (ξ) + csch (ξ)

)
. (3.113)

where ξ = β1x+ β2y + β3z − ρt.
The collection of response set (6.6) demonstrates that Eq. (1.1) has exact solutions, which are given by:

Case (6.6,1): If j0 = 1, j2 = −1−ω2, j4 = ω2, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) are
as follows:

W6.6,1(ξ) = 2β1 (ω + 1)

(
− cn(ξ) dn(ξ)

(ω + 1)sn(ξ)
− JacobiEpsilon(ξ) + ξ

)
, (3.114)

or

W6.6,2(ξ) = −
2β1

(
ω2cn(ξ) sn(ξ) + (ω + 1) dn(ξ) (ξ − JacobiEpsilon(ξ)) + dn2(ξ) sc(ξ)

)
dn(ξ)

, (3.115)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0, or ω = 1, then Eq. (3.114) reduces to either a singular periodic solution or a singular soliton solution.
Additionally, if ω = 0, then Eq. (3.115) reduces to a singular periodic solution:

W6.6,1.1(x, y, z, t) = 2β1 cot (β1x+ β2y + β3z − ρt) , (3.116)

or

W6.6,1.2(x, y, z, t) = −4β1 ((β1x+ β2y + β3z − ρt)− coth (β1x+ β2y + β3z − ρt)) . (3.117)

W6.6,2.1(x, y, z, t) = −2β1 tan (β1x+ β2y + β3z − ρt) . (3.118)



Unco
rre

cte
d Pro

of

18 N. M. ELSONBATY, H. M. AHMED, N. M. BADRA, W. B. RABIE, AND M. ESLAMI

Case (6.6,2): If j0 = ω2 − 1, j2 = 2− ω2, j4 = −1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution
for Eq. (1.1) is as follows:

W6.6,3(ξ) = 2β1

(
(ω + 2) JacobiEpsilon(ξ)− ω (ω + 1) cn(ξ) sn(ξ)

dn(ξ)

)
, (3.119)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 1, then Eq. (3.119) reduces to a dark soliton solution:

W6.6,3.1(x, y, z, t) = 2β1 tanh (β1x+ β2y + β3z − ρt) . (3.120)

Case (6.6,3): If j0 = −ω2, j2 = 2ω2 − 1, j4 = 1− ω2, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution
for Eq. (1.1) is as follows:

W6.6,4(ξ) = 2β1

(
(2ω + 1) JacobiEpsilon(ξ) + ξ (ω − 1))− (ω + 1) dn(ξ) sn(ξ)

cn(ξ)

)
, (3.121)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0, or ω = 1, then Eq. (3.121) reduces to either a singular periodic solution or a dark soliton solution:

W6.6,4.1(x, y, z, t) = −2β1 tan (β1x+ β2y + β3z − ρt) , (3.122)

or

W6.6,4.2(x, y, z, t) = 2β1 tanh (β1x+ β2y + β3z − ρt) . (3.123)

Case (6.6,4): If j0 = −1, j2 = 2− ω2, j4 = ω2 − 1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution
for Eq. (1.1) is as follows:

W6.6,5(ξ) = 2β1

(
(ω + 2) JacobiEpsilon(ξ)− ω (ω + 1) cn(ξ) sn(ξ)

dn(ξ)

)
, (3.124)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 1, then Eq. (3.124) reduces to a dark soliton solution:

W6.5,5.1(x, y, z, t) = 2β1 tanh (β1x+ β2y + β3z − ρt) . (3.125)

Case (6.6,5): If j0 = 1, j2 = 2− 4ω2, j4 = 1, and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to
Eq. (1.1) is as follows:

W6.6,6(ξ) = 2β1

(
−2ξ − dn(ξ) sc(ξ) + 4JacobiEpsilon(ξ) +

(
2ω cn2(ξ)− 2ω + 1

)
cs(ξ)

dn(ξ)

)
, (3.126)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0 or ω = 1, then Eq. (3.126) reduces to either a singular periodic solution or a singular soliton solution:

W6.6,6.1(x, y, z, t) = 4β1 ((β1x+ β2y + β3z − ρt) + cot (2 (β1x+ β2y + β3z − ρt))) , (3.127)

or

W6.6,6.2(x, y, z, t) = −4β1 ((β1x+ β2y + β3z − ρt)− coth (2 (β1x+ β2y + β3z − ρt))) . (3.128)

Case (6.6,6): If j0 = 1
4 , j2 =

(ω2−2)
2 , j4 = ω4

4 , and 0 ≤ ω ≤ 1, thus, the Jacobi elliptic solution to Eq. (1.1) is as
follows:

W6.6,7(ξ) =
β1

2

(
2cs(ξ)

(
1− ω2 +

(
ω2 + 1

)
dn(ξ)

)
+
(
ω2 + 1

)
(2JacobiEpsilon(ξ) + ξ (ω − 2))

)
, (3.129)

where ξ = β1x+ β2y + β3z − ρt.
If ω = 0 or ω = 1, then Eq. (3.129) reduces to either a singular periodic solution or singular soliton solution:

W6.7,6.1(x, y, z, t) = 2β1 cot (β1x+ β2y + β3z − ρt) , (3.130)
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or

W6.7,6.2(x, y, z, t) = −β1 ((β1x+ β2y + β3z − ρt)− coth (2 (β1x+ β2y + β3z − ρt))) . (3.131)

4. Illustrations of the solutions

To illustrate the physical characteristics of some extracted solutions, this section displays the 2D, 3D, and contour
diagrams of a few chosen solutions. Figure 1 displays a dark soliton of Eq. (3.5) with j2 = 1, β1 = 2, β2 = 3, β3 =
3.5, ρ = 0.5, y = 0, z = 0. Figure 2 displays a singular periodic solution of Eq. (3.25) including j2 = 0.5, β1 =
1.6, β2 = 3.1, β3 = 3.6, ρ = 0.05, y = 0, z = 0. Figure 3 depicts a singular soliton solution of Eq. (3.35) including
j2 = 2, β1 = 1.8, β2 = 3.6, β3 = 3.3, ρ = 0.055, y = 0, and z = 0. Figure 4 depicts a combo dark-singular solution of
Eq. (3.66) is illustrated using 2D and 3D plots, showing the interplay between the dark and singular characteristics.
with β1 = −0.98, β2 = 3.6, β3 = 2.3, ρ = 0.06, y = 0, z = 0.

(a)

(b) (c)

Figure 1. The dark soliton solution for Eq. (3.5).
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(a)

(b) (c)

Figure 2. The singular periodic wave solution for Eq. (3.25).

5. Conclusion

In this study, we investigated the (3+1)-dimensional integrable pKP–BKP equation using the Modified Extended
Direct Algebraic (MEDA) technique. The study successfully derived a diverse range of exact solutions, including dark
solitons, singular solitons, hyperbolic solutions, singular periodic solutions, exponential solutions, rational solutions,
and Jacobi elliptic solutions. These solutions were further visualized through 2D and 3D graphical representations to
enhance the understanding of their dynamic behaviors.

Our approach provides a richer set of exact solutions compared to previous studies that primarily relied on Hirota’s
bilinear method and lump soliton solutions. These solutions, including previously unexplored Jacobi elliptic functions
and combo dark-singular solitons, expand the understanding of multi-dimensional nonlinear wave propagation. The
results of this study not only demonstrate the effectiveness of the MEDA method but also offer new perspectives for
analyzing soliton interactions in applied physical sciences.

Moreover, the MEDA technique offers methodological advancements by enabling a systematic balance between
nonlinear and highest-order derivative components, leading to a broader classification of wave structures. The results
contribute to the theoretical analysis of nonlinear wave dynamics and hold potential applications in various physical
systems, including oceanography, plasma physics, and fluid mechanics. Future research could explore the stability
properties of these solutions and their interactions in real-world nonlinear systems.
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(a)

(b) (c)

Figure 3. The singular soliton solution for Eq. (3.35).

6. Future research directions

This study significantly contributes to the understanding of soliton solutions and nonlinear wave structures, but
there are still many unexplored aspects that warrant further research. Based on our findings, several specific directions
for future research can be explored to further advance the understanding of nonlinear wave dynamics and soliton
interactions: Multi-soliton interactions, investigating the interactions between multiple combo dark-singular solitons
can provide deeper insights into wave collision dynamics, energy exchange, and stability in nonlinear media. This
could be extended to study higher-order soliton interactions in integrable and non-integrable systems. Modulation
instability and perturbation analysis, examining how small perturbations affect the stability of the obtained soliton
solutions is crucial for practical applications in fiber optics, fluid mechanics, and plasma waves. A detailed stability
analysis can help in understanding the long-term behavior of solitons under realistic conditions. Higher-dimensional
generalizations, extending the current (3+1)-dimensional pKP–BKP equation to (4+1) or higher-dimensional models
may reveal additional soliton structures and more intricate wave behaviors. This can provide a broader perspective
on wave propagation in multidimensional nonlinear systems. Experimental validation, comparing our theoretical
predictions with experimental observations in nonlinear optics, plasma physics, and hydrodynamics is a crucial next
step. This can confirm the physical relevance of our solutions and guide the development of real-world applications.
Nonlocal and fractional extensions, investigating nonlocal solitons or fractional-order extensions of the pKP–BKP
equation can provide new mathematical models that better describe nonlinear materials, quantum systems, and
biological waves. Ultimately, this research enhances our understanding of nonlinear wave structures and serves as a
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(a)

(b) (c)

Figure 4. The combo dark-singular solution for Eq. (3.66).

foundation for future studies on soliton interactions, stability analysis, and practical applications in wave physics and
engineering.
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