| تعداد نشریات | 45 |
| تعداد شمارهها | 1,416 |
| تعداد مقالات | 17,490 |
| تعداد مشاهده مقاله | 56,485,173 |
| تعداد دریافت فایل اصل مقاله | 18,742,415 |
بررسی تأثیر تحلیل هیدرولیکی مبتنی بر فشار در قابلیت اطمینان کیفی شبکههای توزیع آب (از نظر کلر باقیمانده و ترِیهالومتان) با بهرهگیری از نرمافزار EPANET-MSX | ||
| نشریه مهندسی عمران و محیط زیست | ||
| مقاله 5، دوره 55، شماره 119، شهریور 1404، صفحه 57-72 اصل مقاله (2.42 M) | ||
| نوع مقاله: مقاله کامل پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22034/ceej.2025.64179.2394 | ||
| نویسندگان | ||
| مسعود تابش* ؛ فاطمه سجادی؛ نیلوفر کریمی | ||
| دانشکده مهندسی عمران، دانشکدگان فنی، دانشگاه تهران | ||
| چکیده | ||
| ارزیابی عملکرد شبکههای توزیع آب بر اساس پارامترهای کیفی و رعایت مقدار کلر باقیمانده در گرههای مصرف از اهمیت بهسزایی برخوردار است. مدلهای شبیهسازی مبتنی بر تقاضا در شرایط کمبود فشار، نتایجی به دور از واقعیت ارائه میدهند. از سوی دیگر، برای شبیهسازی کیفی آب، رویکرد تکگونهای، ناکارآمد و تا حدودی غیرواقعی است؛ زیرا در شبکههای توزیع آب، مواد زیادی با هم تعامل دارند. در این مقاله، بهمنظور ارزیابی دقیق عملکرد شبکه از نظر پارامترهای کیفی کلر و تریهالومتان در شرایط نرمال و کمبود فشار، مدل شبیهساز کیفی چندگونهای EPANET-MSX توسعه داده شده است. این برنامه توسعه یافته که تحت عنوان نرمافزار EPANET-MSX-HDSM یاد شده است، قادر به شبیهسازی هیدرولیکی و کیفی شبکه بهصورت توأمان و دینامیکی است و قابلیت استفاده در شرایط نرمال و کمبود فشار را دارد. مدل پیشنهادی بر روی دو شبکه توزیع از جمله شبکه توزیع آب شهر محلات مورد آزمایش قرار گرفته و با بهرهگیری از منحنیهای جریمهای که برای کلر و ترِیهالومتان تعریف شده، قابلیت اطمینان شبکه از نظر این پارامترها بررسی شده است. بر اساس نتایج، استفاده از نرمافزار توسعه داده شده در شرایط وجود کمبود فشار میتواند بهطور قابل ملاحظهای نتایج قابلیت اطمینان کیفی شبکه را تحت تأثیر قرار دهد. چنانکه در شبکه نمونه اول، در سناریویی که در آن 64 درصد تقاضا تأمین میشود، کاهش 36 درصدی در قابلیت اطمینان کیفی تلفیقی و در شبکه نمونه دوم، در سناریوی تأمین 30 درصد تقاضا نسبت به سناریوی تأمین 90 درصد تقاضا، کاهش تقریبی 70 درصدی این شاخص مشاهده میشود. | ||
| کلیدواژهها | ||
| EPANET-MSX؛ تحلیل کیفی چندگونه؛ قابلیت اطمینان؛ تحلیل هیدرولیکی مبتنی بر فشار؛ کلر باقیمانده؛ ترِیهالومتان؛ شبکه توزیع آب | ||
| مراجع | ||
|
Abhijith GR, Salomons E, Ostfeld, A, “Enhancing the reliability of a contamination detection sensors’ network in water distribution systems during a cyber-attack”, World Environmental and Water Resources Congress, 2023. https://doi.org/10.1061/9780784484852 Abhijith GR, Kadinski L, Ostfeld A, “Modeling bacterial regrowth and trihalomethane formation in water distribution systems“, Water, 2021, 13, 463. https://doi.org/10.3390/w13040463 Abdy Sayyed MAH, Gupta R, Tanyimboh TT, “Modelling pressure deficient water distribution networks in EPANET”, Procedia Engineering, 2014, 89, 626-631. https://doi.org/10.1016/j.proeng.2014.11.487 Burkhardt JB, Burkhart B, Shang F, “Modeling nicotine-induced chlorine loss in drinking water using updated EPANET-MSX”, Journal of Environmental Engineering, 2023, 149 (12), 1-9. https://doi.org/10.1061/joeedu.eeeng-7433 Cardoso SM, Barros DB, Oliveira E, Brentan B, Ribeiro L, “Optimal sensor placement for contamination detection: A multi-objective and probabilistic approach”, Environmental Modelling and Software, 2021, 135, 104896. https://doi.org/10.1016/j.envsoft.2020.104896 Cardoso SM, Barros DB, Oliveira E, “Multiobjective optimization and rule extraction for optimum location of quality sensors in water distribution network”, In WDSA/CCWI Joint Conference Proceedings, 2018. https://ojs.library.queensu.ca/index.php/wdsa-ccw/article/view/12144 Chang DE, Yoo DG, Kim JH, “A study on the practical pressure-driven hydraulic analysis method considering actual water supply characteristics of water distribution network”, Sustainability (Switzerland), 2021, 13 (5), 1-15. https://doi.org/10.3390/su13052793 Chang K, Gao J, Yuan Y, Wu W, “Water distribution network residual chlorine modeling based on the synergy of chlorine and chlorine dioxide”, In Water Distribution Systems Analysis, 2010, 678-686. http://dx.doi.org/10.1061/41203(425)64 Choi YH, “Qualification of hydraulic analysis models for optimal design of water distribution systems”, Applied Sciences (Switzerland), 2021, 11 (17). https://doi.org/10.3390/app11178152 Clark RM, “Chlorine demand and TTHM formation kinetics: A second-order model”, Journal of Environmental Engineering, 1998, 124 (1), 16-24. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:1(16) Coelho ST, “Performance assessment in water supply and distribution”, Ph.D. Thesis, Civil and Offshore Engineering Department, Heriot-Watt University, Edinburg, UK, 1996. Filion Y, Karney B, Adams B, “Multiobjective design of water networks with random loads”, 4th International Symposium on Environmental Hydraulics, International Association of Hydraulic Engineering and Research, Hong Kong, Environmental Informatics Archive, 2004, 2 (1), 252-257. http://dx.doi.org/10.1201/b16814-216 Fisher IH, “Integrated EPANET-MSX process models of chlorine and its by-products in drinking water distribution systems”, Water Environment Research, 2023, 95 (12), 1-15. https://doi.org/10.1002/wer.10949 Fisher I, Kastl G, Sathasivan A, Catling R, “Modelling chlorine residual and trihalomethane profiles in water distribution systems after treatment including pre-chlorination”, Journal of Environmental Chemical Engineering, 2021, 9 (4), 105686. https://doi.org/10.1016/j.jece.2021.105686. Fisher I, Kastl G, Sathasivan A, Jegatheesan V, “Suitability of chlorine bulk decay models for planning and management of water distribution systems”, Critical Reviews in Environmental Science and Technology, 2011, 41 (20), 1843-1882. https://doi.org/10.1080/10643389.2010.495639 Gómez-Coronel L, Delgado-Aguiñaga JA, Santos-Ruiz I, Navarro-Díaz A, “Estimation of chlorine concentration in water distribution systems based on a Genetic Algorithm“, Processes, 2023, 11, 676. https://doi.org/10.3390/pr11030676. Goodarzi D, Abolfathi S, Borzooei S, “Modelling solute transport in water disinfection systems: Effects of temperature gradient on the hydraulic and disinfection efficiency of serpentine chlorine contact tanks”, Journal of Water Process Engineering, 2020, 37, 101411. https://doi.org/10.1016/j.jwpe.2020.101411 Gopal K, Tripathy SS, Bersillon JL, Dubey SP, “Chlorination byproducts, their toxicodynamics and removal from drinking water”, Journal of Hazardous Materials, 2007, 140 (1-2), 1-6. https://doi.org/10.1016/j.jhazmat.2006.10.063 Hall J, Zaffiro AD, Marx RB, Kefauver PC, Krishnan ER, Haught RC, Herrmann JG, “On-Line water quality parameters as indicators of distribution system contamination”, Journal of American Water Works Association, 2007, 99 (1), 66-77. http://dx.doi.org/10.1002/j.1551-8833.2007.tb07847.x Helbling DE, VanBriesen JM, “Modeling residual chlorine response to a microbial contamination event in drinking water distribution systems”, Journal of Environmental Engineering, 2009, 135 (10), 918-927. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000080 Klosterman S, Murray R, Szabo J, Hall J, Uber J, “Modeling and simultation of arsenate fate and transport in a distribution system simulator”, In Water Distribution Systems Analysis, 2010, 41203, 655-669. https://doi.org/10.1061/41203(425)62 Lee HM, Yoo DG, Kim JH, Kang D, “Hydraulic simulation techniques for water distribution networks to treat pressure deficient conditions”, Journal of Water Resources Planning and Management, 2016, 142 (4), 1-6. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000624 Maheshwari A, Abokifa A, Gudi R, Biswas P, “Control of lead contamination in water distribution networks: A dynamic optimization framework”, IFAC-PapersOnLine, 2020, 53 (1), 277-282. https://doi.org/10.1016/j.ifacol.2020.06.047 Maheshwari A, Abokifa AA, Gudi RD, Biswas P, “Coordinated decentralization-based optimization of disinfectant dosing in large-scale water distribution networks”, Journal of Water Resources Planning and Management, 2018, 144 (10), 1-14. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000979 Mohseni U, Pathan AI, Agnihotri PG, Patidar N, Zareer SA, Kalyan D, Saran V, Patel D, Prieto C, “Design and analysis of water distribution network using Epanet 2.0 and Loop 4.0-A case study of Narangi Village”, Lecture Notes in Networks and Systems, 2022, 371, 671-684. https://doi.org/10.1007/978-3-030-93247-3_65 Najafzadeh M, Homaei F, Mohamadi S, “Reliability evaluation of groundwater quality index using data-driven models”, Environmental Science and Pollution Research, 2022, 29 (6), 8174-8190. https://doi.org/10.1007/s11356-021-16158-6 Ostfeld A, Kogan D, Shamir U, “Reliability simulation of water distribution systems-single and multiquality”, Urban Water, 2002, 4 (1), 53-61. https://doi.org/10.1016/S1462-0758(01)00055-3 Reddy LS, Elango K, “Analysis of water distribution networks with head-dependent outlets”, Civil Engineering Systems, 1989, 6 (3), 102-110. http://dx.doi.org/10.1080/02630258908970550 Rodriguez MJ, Sérodes J-B, Levallois P, Proulx F, “Chlorinated disinfection by-products in drinking water according to source, treatment, season, and distribution location”, Journal of Environmental Engineering and Science, 2007, 6 (4), 355-365. https://doi.org/10.1139/s06-055 Rossman LA, EPANET 2: Users manual, Water Supply and Water Resources Division, National Risk Management Research Laboratory, Cincinnati, OH, 2000. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1007WWU.TXT Sadra Negar Consulting Engineers, “Optimization studies of water distribution system in mahallat city”, Water and Wastewater Company of Markazi Province, Iran, 2005. Sarisen D, Koukoravas V, Farmani R, Kapelan Z, Memon FA, “Review of hydraulic modelling approaches for intermittent water supply systems”, Aqua Water Infrastructure, Ecosystems and Society, 2022, 71 (12), 1291-1310. https://doi.org/10.2166/aqua.2022.028 Seyoum AG, Tanyimboh TT, “Integration of hydraulic and water quality modelling in distribution networks: EPANET-PMX”, Water Resources Management, 2017, 31, 4485-4503. https://doi.org/10.1007/s11269-017-1760-0 Shang F, Uber JG, Rossman LA, EPANET multi-species extension user’s manual, Risk Reduction Engineering Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, February, 2008. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100XGNO.TXT Tabesh M, “Advanced modeling of water distribution networks”, University of Tehran Press, Second Edition, Tehran, Iran, 2016. Tabesh M, “Implications of the pressure dependency of outflows of data management, mathematical modelling and reliability assessment of water distribution systems”, PhD Thesis, University of Liverpool, UK, 1998. Tabesh M, Dolatkhahi A, “Effects of pressure dependent analysis on quality performance assessment of water distribution networks”, Iranian Journal of Science & Technology, Transaction B, Engineering, 2006, 30 (B1), 9-13. https://www.sid.ir/EN/VEWSSID/J_pdf/8542006B110.pdf Vijay M, Porwal S, Jain SC, Botre BA, “Chlorine decay modelling in water distribution system case study: CEERI Network”, In International Conference on Next Generation Computing Technologies, 2017, 430-443. https://doi.org/10.1007/978-981-10-8657-1_33 Wang Y, Zhu G, “Evaluation of water quality reliability based on entropy in water distribution system”, Physica A:Statistical Mechanics and Its Applications,2021,584,126373. https://doi.org/10.1016/j.physa.2021.126373 Wang Y, Zhu J, Zhu G, “Water quality reliability based on an improved entropy in a water distribution system“, Aqua Water Infrastructure, Ecosystems and Society, 2022, 71 (7), 862-877. https://doi.org/10.2166/aqua.2022.066 Wagner JM, Shamir U, Marks DH,“Water distribution reliability: simulation methods”, Journal of Water Resources Planning and Management (ASCE), 1988, 114 (3), 276-294. https://doi.org/10.1061/(ASCE)0733 9496(1988)114:3(276) World Health Organization (WHO), Guidelines for drinking-water quality, 4th edition, Incorporating the 1st addendum, Malta, 2011. Zafari M, “Minimizing the effects of pollution spread in urban water networks using pressure-based hydraulic analysis”, Master's Thesis, Faculty of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran, 2015. Zanjani S, “Investigation of widespread contamination in urban water distribution networks”, Master's Thesis, Faculty of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran, 2015. Zilin L, Haixing L, Chi Zh, Guangtao F, “Real-time water quality prediction in water distribution networks using graph neural networks with sparse monitoring data“, Water Research, 250, 121018, ISSN0043-1354,2024. https://doi.org/10.1016/j.watres.2023.121018 Zuthi MFR, Khan F, Sajol MS, Kabir M, Kaiser NM, Rahman MS, Hasan SM, “Combined application of EPANET and empirical model for possible formation of trihalomethanes in water distribution network of Chattogram city to identify potential carcinogenic health risk zone”, Heliyon, 9 (2023), e16615. https://doi.org/10.1016/j.heliyon.2023.e16615 | ||
|
آمار تعداد مشاهده مقاله: 222 تعداد دریافت فایل اصل مقاله: 146 |
||