| تعداد نشریات | 45 |
| تعداد شمارهها | 1,449 |
| تعداد مقالات | 17,761 |
| تعداد مشاهده مقاله | 57,963,304 |
| تعداد دریافت فایل اصل مقاله | 19,556,771 |
کنترل حالت لغزشی پسگام انتگرالی اپیدمی آنفلوانزا در حضور اشباع ورودی و اختلالات خارجی | ||
| مجله مهندسی برق دانشگاه تبریز | ||
| دوره 55، شماره 4 - شماره پیاپی 114، دی 1404، صفحه 673-686 اصل مقاله (1.23 M) | ||
| شناسه دیجیتال (DOI): 10.22034/tjee.2025.64094.4908 | ||
| نویسندگان | ||
| فریبا نوبخت1؛ حسین الیاسی* 2 | ||
| 1گروه مهندسی کنترل برق، دانشکده مهندسی برق و کامپیوتر، دانشگاه بیرجند، بیرجند، ایران | ||
| 2هیئت علمی / دانشکده مهندسی برق و کامپیوتر / دانشگاه بیرجند | ||
| چکیده | ||
| این مقاله یک رویکرد کنترل حالت لغزشی مقاوم قوی مبتنی بر پس گام انتگرالی را برای سیستمهای غیرخطی چند ورودی چند خروجی ارائه میکند. طرح کنترل پیشنهادی به اشباع ورودی، عدم قطعیتهای مدلسازی و اختلالات خارجی متغیر با زمان میپردازد. برای مقابله با اشباع ورودی، یک سیستم طراحی کمکی جدید و توابع نوسباوم در طرح کنترل گنجانده شده است. رویکرد کنترل پیشنهادی به یک مدل اپیدمی غیرخطی اعمال میشود. مدل اپیدمیولوژی آنفولانزا، که شامل پنج متغیر حالت غیر منفی است که نشان دهنده افراد مستعد، در معرض، آلوده، بدون علامت و بهبود یافته است، به همراه سه ورودی کنترل برای واکسیناسیون، درمان ضد ویروسی و فاصله گذاری اجتماعی، در حال مطالعه است. نتایج شبیهسازی اثربخشی طرح کنترل پیشنهادی را در مدیریت اشباع ورودی و دستیابی به ردیابی مسیر دقیق نشان میدهد، که پتانسیل آن را برای سیستمهای غیرخطی نامشخص با محدودیتهای ورودی برجسته میکند | ||
| کلیدواژهها | ||
| کنترل حالت لغزشی پس گام؛ اشباع ورودی؛ تابع نوسباوم؛ اپیدمی آنفولانزا | ||
| مراجع | ||
|
[1]
|
A. H. Amiri Mehra, I. Zamani, Z. Abbasi and A. Ibeas, "Observer-based adaptive PI sliding mode control of developed uncertain SEIAR influenza epidemic model considering dynamic population," Journal of Theoretical Biology, vol. 482, p. 109984, 2019.
|
|
|
[2]
|
Z. Abbasi, I. Zamani, A. H. Amiri Mehra, M. Shafieirad and A. Ibeas, "Optimal Control Design of Impulsive SQEIAR Epidemic Models with Application to COVID-19," Chaos, Solitons & Fractals, vol. 139, p. 110054, 2020.
|
|
|
[3]
|
A. Rajaei, M. Raeiszadeh, V. Azimi and M. Sharifi, "State estimation-based control of COVID-19 epidemic before and after vaccine development," Journal of Process Control, vol. 102, pp. 1-14, 2021.
|
|
|
[4]
|
I. Sekkak, B. R. Nasri, B. N. Rémillard, J. Dzevela Kong and M. El Fatini , “A stochastic analysis of a SIQR epidemic model with short and long-term prophylaxis,” Communications in Nonlinear Science and Numerical Simulation, vol. 127, p. 107523, 2023.
|
|
|
[5]
|
A. I. Abioye, J. P. Olumuyiwa, A. O. Hammed, A. O. Festus, O. Kayode, A. I. Abdullahi and K. Ilyas, "Mathematical model of COVID-19 in Nigeria with optimal control," Results in Physics, vol. 28, p. 104598, 2021.
|
|
|
[6]
|
S. Muthukumar, A. Balakumar, S. Ravikumar and V. Chinnadurai, “An optimal control of bi-modal COVID-19 SEIQR epidemic spreading model in India,” Results in Control and Optimization, vol. 12, p. 100256, 2023.
|
|
|
[7]
|
F. Khondaker, “Optimal control analysis of Influenza epidemic model,” Applied Mathematics, vol. 13, pp. 845-857, 2022.
|
|
|
[8]
|
S. Adak and S. Jana, “Dynamical behavior of an epidemic model with fuzzy transmission and fuzzy treatment control,” Journal of Applied Mathematics and Computing, vol. 68, p. 1929–1948, 2022.
|
|
|
[9]
|
H. Musadaq and Z. M. Amean, “New strategy to control covid-19 pandemic using lead/lag compensator,” Biomedical Signal Processing and Control, vol. 68, p. 102669, 2021.
|
|
|
[10]
|
M. De la Sen, A. Ibeas and S. Alonso-Quesada, “On vaccination controls for the SEIR epidemic model,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 6, pp. 2637-2658, 2012.
|
|
|
[11]
|
L. Zhou, J. Li, . D. Shi, L. Xu and S.-X. Huang, “Predicting Influenza Epidemic for United States,” International Journal of Environmental Health Research , vol. 32, no. 6, pp. 1231-1237, 2022.
|
|
|
[12]
|
A. Veisi and H. Delavari, “Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak,” Mathematical Methods in the Applied Sciences, vol. 45, no. 7, pp. 3479-3496, 2021.
|
|
|
[13]
|
M. Sharifi and H. Moradi, "Nonlinear robust adaptive sliding mode control of influenza epidemic in the presence of uncertainty," Journal of Process Control, vol. 56, pp. 48-57, 2017.
|
|
|
[14]
|
V. Azimi, M. Sharifi, S. Fakoorian, T. Nguyen and V. Huynh, “State estimation-based robust optimal control of influenza epidemics in an interactive human society,” Information Sciences, vol. 592, pp. 340-360, 2022.
|
|
|
[15]
|
J. Ibarra, R. Márquez and M. Bernal, “An LMI backstepping generalization via H-infinity dynamic control and Takagi-Sugeno models,” Fuzzy Sets and Systems, vol. 495–496, p. 109085, 2024.
|
|
|
[16]
|
T. Kuniya and H. Sano, “Application of the backstepping method to the prediction of increase or decrease of infected population,” Theoretical Biology and Medical Modelling, vol. 13, pp. 1-10, 2016.
|
|
|
[17]
|
M. L. Srief, B. Soltane, N. A. Lokmane and G. Malak, “A complete control structure based backstepping controller design for stacked multi-cell multi-level SPWM VSC STATCOM,” Energy Reports, vol. 12, pp. 687-698, 2021.
|
|
|
[18]
|
C. Wen, . J. Zhou, . Z. Liu and H. Su, “Robust Adaptive Control of Uncertain Nonlinear Systems in the Presence of Input Saturation and External Disturbance,” IEEE Transactions on Automatic Control, vol. 56, pp. 1672-1678, 2011.
|
|
|
[19]
|
Z. Fallah, M. Baradarannia, . H. Kharrati and F. Hashemzadeh, “Sliding Mode H∞ Control of Discrete-time Delayed Singular Markovian Jump Systems,” Tabriz Journal of Electrical Engineering, vol. 54, no. 2, pp. 229-237, 2024.
|
|
|
[20]
|
M. Wan, M. Chen and M. Lungu, “Integral Backstepping Sliding Mode Control for Unmanned Autonomous Helicopters Based on Neural Networks,” Drones , vol. 7, p. 154, 2023.
|
|
|
[21]
|
A. K. Jain and S. Bhasin, “Robust backstepping control of uncertain nonlinear systems with unknown time-varying input delay,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 4862-4867, 2020.
|
|
|
[22]
|
M. A. M. Basri, “Design and application of an adaptive backstepping sliding mode controller for a six-DOF quadrotor aerial robot,” Robotica, vol. 36, no. 11, pp. 1701-1727, 2018.
|
|
|
[23]
|
H. Shen, J. Iorio and N. Li, “Sliding Mode Control in Backstepping Framework for a Class of Nonlinear Systems,” journal of Marine Science and Engineering, vol. 7, no. 12, p. 452, 2019.
|
|
|
[24]
|
J. Keighobadi and M. m. Fateh, “Adaptive Robust Tracking Control Based on Backstepping Method for Uncertain Robotic Manipulators Including Motor Dynamics,” International Journal of Industrial Electronics Control and Optimization, vol. 4, pp. 13-22, 2021.
|
|
|
[25]
|
W. Guo and D. Liu, “Adaptive second-order backstepping control for a class of 2DoF underactuated systems with input saturation and uncertain disturbances,” Scientific Reports, vol. 14, p. 15840, 2024.
|
|
|
[26]
|
Y. Zhao, X. Sun, G. Wang and Y. Fan, “Adaptive Backstepping Sliding Mode Tracking Control for Underactuated Unmanned Surface Vehicle With Disturbances and Input Saturation,” IEEE Access, vol. 9, pp. 1304-1312, 2020.
|
|
|
[27]
|
S. Neisarian, M. M. Arefi, A. Abooee and S. Yin, “Fast finite-time observer-based sliding mode controller design for a class of uncertain nonlinear systems with input saturation,” Information Sciences, vol. 630, pp. 599-622, 2023.
|
|
|
[28]
|
M. Rostami, M. Shahriari-kahkeshi and H. Arvin, “Adaptive Improved Dynamic Surface Control for a Class of Uncertain Nonlinear Systems in the presence of Input Hysteresis and Unknown Control Direction,” Tabriz Journal of Electrical Engineering, vol. 53, pp. 197-207, 2023.
|
|
|
[29]
|
Y-J. Liu and . S. Tong, “Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems,” Automatica, vol. 76, pp. 143-152, 2017.
|
|
|
[30]
|
A. Ibeas, M. de la Sen and S. Alonso-Quesada, “Robust Sliding Control of SEIR Epidemic Models,” Mathematical Problems in Engineering, vol. 2014, p. 104764, 2014.
|
|
|
[31]
|
S.S. Yoon, J.K. Park and T.W. Yoon, “Dynamic anti-windup scheme for feedback linearizable nonlinear control systems with saturating inputs,” Automatica, vol. 44, no. 12, pp. 3176-3180, 2008.
|
|