تعداد نشریات | 45 |
تعداد شمارهها | 1,391 |
تعداد مقالات | 17,025 |
تعداد مشاهده مقاله | 54,916,469 |
تعداد دریافت فایل اصل مقاله | 17,414,902 |
طراحی سیستم کنترل ترکیبی مبتنی بر فازی برای کاهش ارتعاش سازه با استفاده از مخزن پشتبام و میراگر مغناطیسی | ||
نشریه مهندسی عمران و محیط زیست | ||
مقاله 7، دوره 55، شماره 118، خرداد 1404، صفحه 69-83 اصل مقاله (3.53 M) | ||
نوع مقاله: مقاله کامل پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/ceej.2025.62705.2374 | ||
نویسندگان | ||
علیرضا آران1؛ مهدی منصوری2؛ سحرانه قائمی* 2؛ جواد کاتبی1 | ||
1دانشکده مهندسی عمران، دانشگاه تبریز | ||
2دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز | ||
چکیده | ||
سیستمهای کنترل ترکیبی بهمنظور بهرهمندی از مزایای سیستمهای کنترل غیرفعال و نیمهفعال بهکار میروند. در این پژوهش یک سیستم کنترل ترکیبی نوین معرفی میشود که تلفیقی از میراگر جرمی مایع تنظیمشونده و میراگر مغناطیسی است. مخازن عمیق با استفاده از روش هازنر (Housner) بهعنوان میراگر جرمی مایع تنظیمشونده در نظر گرفته میشوند. این مخازن که در دسته سیستمهای کنترل غیرفعال قرار میگیرند، در پشتبام سازه نصب شده و پارامترهای آن به کمک الگوریتم جستجوی الگو بهینهسازی میشوند. میراگر مغناطیسی بهعنوان سیستم نیمهفعال در طبقه آخر سازه نصب شده و ولتاژ ورودی آن با استفاده از کنترلکننده فازی محاسبه میشود. درنتیجه نیروی کنترلی لازم برای کاهش پاسخ سازه مجهز به سیستم کنترل ترکیبی بهدست میآید. نتایج تحلیل 20 نوع سیستم کنترل ترکیبی با ابعاد مختلف مخزن برای دو ارتعاش زلزله حوزه دور و دو ارتعاش زلزله حوزه نزدیک نشان میدهند که با بهکارگیری سیستم کنترل ترکیبی معرفیشده، میانگین پاسخ جابهجایی و شتاب سازه میتوانند بهترتیب تا 40 درصد و 30 درصد کاهش یابند. همچنین با بررسی تأثیر ارتفاع مایع و حجم مخزن مشخص میشود که افزایش ارتفاع مایع و حجم مخزن میتواند بر کاهش پاسخهای جابهجایی و شتاب سازه تأثیر مثبت بگذارد. | ||
کلیدواژهها | ||
کنترل ترکیبی؛ میراگر مغناطیسی؛ میراگر جرمی مایع تنظیمشونده؛ مخزن؛ بهینهسازی؛ مدل هازنر | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Abdeddaim M, Djerouni S, Ounis A, Athamnia B, Farsangi EN, “Optimal design of magnetorheological damper for seismic response reduction of base-isolated structures considering soil-structure interaction”, InStructures 2022, 38 (1), 733-752. Elsevier. https://doi.org/10.1016/j.istruc.2022.02.039 Abdul Aziz M, Mohtasim SM, Ahammed R, “State-of-the-art recent developments of large magnetorheological (MR) dampers: a review”, Korea-Australia Rheology Journal, 2022, 34 (2), 105-136. https://doi.org/10.1007/s13367-022-00021-2 Bagherkhani A, Baghlani A, “Structure-MR damper reliability analysis using weighted uniform simulation method”, InStructures 2020, 26 (1), 284-297. https://doi.org/10.1016/j.istruc.2020.04.013 Bathaei A, Zahrai SM, “Vibration control of an eleven-story structure with MR and TMD dampers using MAC predictive control, considering nonlinear behavior and time delay in the control system”, InStructures 2024, 60 (1), 105853. https://doi.org/10.1016/j.istruc.2024.105853 Bathaei A, Zahrai SM, Ramezani M, “Semi-active seismic control of an 11-DOF building model with TMD+ MR damper using type-1 and-2 fuzzy algorithms. Journal of vibration and control”, 2018, 24 (13), 2938-2953. https://doi.org/10.1177/1077546317696369 Behinfaraz R, Ghaemi S, “Identification and synchronization of switching fractional-order complex networks with time-varying delays based on a fuzzy method”, International Journal of Fuzzy Systems, 2022, 24 (5), 2203-2214. https://doi.org/10.1007/s40815-022-01285-0 Bedoya-Zambrano D, Lara-Valencia L, Blandón-Valencia J, “Optimization of control forces in a three-dimensional frame with magnetorheological dampers using a hybrid algorithm”, Journal of Building Engineering, 2025, 15, 100, 111697. https://doi.org/10.1016/j.jobe.2024.111697 Bhowmik K, Debnath N, “Semi-active Vibration Control of Soft-Storey Building with Magnetorheological Damper Under Seismic Excitation”, Journal of Vibration Engineering & Technologies, 2024, 12 (4), 6943-6961. https://doi.org/10.1007/s42417-024-01292-5 Cheng CW, Lee HH, Luo YT, “Experimental study of controllable MR-TLCD applied to the mitigation of structure vibration”, Smart Structures and Systems. 2015, 15 (6), 1481-1501. https://doi.org/10.12989/sss.2015.15.6.1481 Cheng FY, Jiang H, Lou K, “Smart structures: innovative systems for seismic response control”, CRC press; 2008, Feb 25. https://doi.org/10.1201/9781420008173 Fu L, Guo T, Li G, “Investigation on damping performance of new type oscillator-liquid combined damper”, International Journal of Mechanical Sciences, 2018, 135, 53-62. https://doi.org/10.1016/j.ijmecsci.2017.11.018 Ghaffarzadeh H, Aran A, Hosseinlou M, “Optimal parameters of rooftop pools as the structural control system”, Journal of Structural and Construction Engineering, 2024 Oct 2. https://doi.org/10.22065/jsce.2024.460956.3432 Ghaffarzadeh H, Aran A, Javadi Amoodizaj F, “Phase motion predictive control for a structure equipped with MR dampers”, Journal of Structural and Construction Engineering, 2024 Sep 17. https://doi.org/10.22065/jsce.2024.451732.3388 Ghaffari AH, Ghaffarzadeh H, “Mine blast‐induced ground motion response reduction using semi‐active devices”, The Structural Design of Tall and Special Buildings. 2023, 32 (8-9), e2005. https://doi.org/10.1002/tal.2005 Ghasemi MR, Barghi E, Estimation of inverse dynamic behavior of MR dampers using artificial and fuzzy-based neural networks. https://doi.org/103792120303 Housner GW, “The dynamic behavior of water tanks. Bulletin of the seismological society of America”, 1963, 53 (2), 381-387. https://doi.org/10.1785/BSSA0530020381 Jung HJ, Spencer Jr BF, Ni YQ, Lee IW, “State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications. Structural Engineering and Mechanics”, 2004,17 (3-4), 493-526. https://doi.org/10.12989/sem.2004.17.3_4.493 Kim HS, Kang JW, “Semi-active fuzzy control of a wind-excited tall building using multi-objective genetic algorithm’, Engineering Structures, 2012, 41, 242-257. https://doi.org/10.1016/j.engstruct.2012.03.038 Lavassani SH, Shangapour S, Homami P, Gharehbaghi V, Farsangi EN, Yang TY, “An innovative methodology for hybrid vibration control (MR+ TMD) of buildings under seismic excitations”, Soil Dynamics and Earthquake Engineering, 2022,155, 107175. https://doi.org/10.1016/j.soildyn.2022.107175 Lin X, Chen S, Lin W, “Modified crow search algorithm-based fuzzy control of adjacent buildings connected by magnetorheological dampers considering soil-structure interaction”, Journal of Vibration and Control, 2021, 27 (1-2), 57-72. https://doi.org/10.1177/1077546320923438 Love JS, Lee CS, “Nonlinear series-type tuned mass damper-tuned sloshing damper for improved structural control”, Journal of Vibration and Acoustics, 2019, 141 (2),021006. https://doi.org/10.1115/1.4041513 Mohammadyzadeh S, Mojtahedi A, Hokmabady H, Farajpour I, “Performance of a magnetorheological tuned liquid column damper (MR-TLCD) in mitigating vibration of an offshore structure”, Journal of Vibration Engineering & Technologies, 2022, 10 (8), 2999-3010. https://doi.org/10.1007/s42417-022-00532-w Pandey DK, Mishra SK, Chakraborty S, “A tuned liquid mass damper implemented in a deep liquid storage tank for seismic vibration control of short period structures”, The Structural Design of Tall and Special Buildings, 2022, 31 (8), e1928. https://doi.org/10.1002/tal.1928 Pandey DK, Sharma MK, Mishra SK, “A compliant tuned liquid damper for controlling seismic vibration of short period structures”, Mechanical Systems and Signal Processing, 2019, 132, 405-428. https://doi.org/10.1016/j.ymssp.2019.07.002 Pei P, Peng Y, Qiu C, “An improved semi-active structural control combining optimized fuzzy controller with inverse modeling technique of MR damper”, Structural and Multidisciplinary Optimization, 2022, 65 (9), 272. https://doi.org/10.1007/s00158-022-03365-z Rashidi H, Khanlari K, Zarfam P, Ghafory-Ashtiany M, “A novel approach of active control of structures based on the critically damped condition”, Journal of Vibration and Control, 2021, 27 (13-14), 1511-1523. https://doi.org/10.1177/1077546320944300 Renzi E, Serino G, “Testing and modeling a semi‐actively controlled steel frame structure equipped with MR dampers”, Structural Control and Health Monitoring, 2004, 11 (3), 189-221. https://doi.org/10.1002/stc.36 Roychowdhury D, Gur S, “MR tuned liquid colum damper (Mr-Tlcd) for seismic vibration control”, InASPS Conference Proceedings 2022, 4 (1), 1139-1147. https://doi.org/10.38208/acp.v1.633 Schurter KC, Roschke PN, “Fuzzy modeling of a magnetorheological damper using ANFIS”, In Ninth IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2000 (Cat. No. 00CH37063) 2000, 7 (1), 122-127. https://doi.org/10.1109/FUZZY.2000.838645 Sodeyama H, Sunakoda K, Fujitani H, Soda S, Iwata N, Hata K, “Dynamic tests and simulation of magnetorheological dampers”, Computer‐Aided Civil and Infrastructure Engineering, 2003, 18 (1), 45-57. https://doi.org/10.1111/1467-8667.t01-1-00298 Suthar SJ, Patil VB, Jangid RS, “Optimization of MR dampers for wind-excited benchmark tall building”, Practice Periodical on Structural Design and Construction, 2022, 27 (4), 04022048. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000733 Wang H, “Modeling of magnetorheological damper using neuro-fuzzy system”, In Fuzzy Information and Engineering, Springer Berlin Heidelberg, 2009, 2, 1157-1164. https://doi.org/10.1007/978-3-642-03664-4_123 Wang JY, Ni YQ, Ko JM, Spencer Jr BF, “Magnetorheological tuned liquid column dampers (MR-TLCDs) for vibration mitigation of tall buildings: modeling and analysis of open-loop control”, Computers & structures, 2005, 83 (25-26), 2023-34. https://doi.org/10.1016/j.compstruc.2005.03.011 Xu X, Guo T, Li G, Sun G, Shang B, Guan Z, “A combined system of tuned immersion mass and sloshing liquid for vibration suppression: Optimization and characterization”, Journal of Fluids and Structures, 2018, 76, 396-410. https://doi.org/10.1016/j.jfluidstructs.2017.10.011 Xu YL, Chen J, Ng CL, Qu WL, “Semiactive seismic response control of buildings with podium structure”, Journal of Structural Engineering, 2005, 131 (6), 890-899. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(890) Xu ZD, Shen YP, Guo YQ, “Semi-active control of structures incorporated with magnetorheological dampers using neural networks”, Smart materials and structures, 2003, 12 (1), 80. https://doi.org/10.1088/0964-1726/12/1/309 Yan G, Zhou LL, “Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers”, Journal of sound and vibration, 2006, 296 (1-2), 368-82. https://doi.org/10.1016/j.jsv.2006.03.011 Zahrai SM, Salehi H, “Semi-active seismic control of mid-rise structures using magneto-rheological dampers and two proposed improving mechanisms. Iranian Journal of Science and Technology”, Transactions of Civil Engineering, 2014, 38 (C1), 21. https://doi.org/10.22099/ijstc.2014.1841 Zand JP, Katebi J, Yaghmaei-Sabegh S, “A generalized ANFIS controller for vibration mitigation of uncertain building structure”, Structural Engineering and Mechanics, 2023, 87 (3), 231-42. https://doi.org/10.12989/sem.2023.87.3.231 | ||
آمار تعداد مشاهده مقاله: 176 تعداد دریافت فایل اصل مقاله: 21 |