- [1] A. Afarideh, F. Dastmalchi Saei, M. Lakestani, and B. N. Saray, Pseudospectral method for solving fractional Sturm-Liouville problem using Chebyshev cardinal functions, Phys. Scr., 96 (2021), 125267.
- [2] A. Afarideh, F. Dastmalchi Saei, and B. N. Saray, Eigenvalue problem with fractional differential operator: Chebyshev cardinal spectral method, J. Math. Model., 11(2) (2021), 343-355.
- [3] J. M. Almira, Müntz type theorems, I. Surv. Approx. Theory, 3 (2007), 152–194.
- [4] B. Alpert, G. Beylkin, R. R. Coifman, and V. Rokhlin, Wavelet-like bases for the fast solution of second-kind integral equations, SIAM J. Sci. Statist. Comput., 14(1) (1993), 159–184.
- [5] M. Asadzadeh and B. N. Saray, On a multiwavelet spectral element method for integral equation of a generalized Cauchy problem, BIT., 62 (2022), 383-1416.
- [6] P. Borwein, T. Erdelyi, and J. Zhang, Müntz systems and orthogonal Müntz–Legendre polynomials, Trans. Amer. Math. Soc., 342 (1994), 523–542.
- [7] Y. C¸enesiz, Y. Keskin, and A. Kurnaz, The solution of the Bagley–Torvik equation with the generalized Taylor collocation method, J. Frank. Inst., 347 (2010), 452–466.
- [8] V. Daftardar Gejji and A. Jafari, Adomian decomposition: A tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301(2) (2005), 508–518.
- [9] H. Dehestani, Y. Ordokhani, and M. Razzaghi, Fractional-Lucas optimization method for evaluating the approximate solution of the multi-dimensional fractional differential equations, Engin. Comput., 38 (2020), 1–17.
- [10] K. Diethelm and J. Ford, Numerical solution of the Bagley–Torvik equation, BIT Numer. Math., 42(3) (2002), 490–507.
- [11] R. Garrappa, On some explicit Adams multistep methods for fractional differential equations, J. Comput. Appl. Math., 229(2) (2009), 392-399.
- [12] R. Ghasemkhani, M. Lakestani, and S. Shahmorad, Solving fractional differential equations using cubic Hermit spline functions, Filomat, 38(14) (2024), 5161-5178.
- [13] H. B. Jebreen and F. Tchier, A New Scheme for Solving Multiorder Fractional Differential Equations Based on Müntz–Legendre Wavelets, complexity., 2021 (2021), 9915551.
- [14] V. Heller, G. Strang, P. N. Topiwala, and C. Heil, The application of multiwavelet filterbanks to image processing, IEEE Transactions on Image Processing, 8(4) (1999), 548-563.
- [15] T. Ji and J. Hou, Numerical solution of the Bagley–Torvik equation using Laguerre polynomials, SeMA J., 77(1) (2020), 97–106.
- [16] S. Kazem, S. Abbasbandy, and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., 37(7) (2013), 5498–5510.
- [17] A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B. V., Amsterdam, 204 (2006).
- [18] V. S. Krishnasamy and M. Razzaghi, The Numerical Solution of the Bagley–Torvik Equation With Fractional Taylor Method, J. Comput. Nonlinear Dynam., 11(5) (2016), 051010.
- [19] M. Lakestani, M. Dehghan, and S. Irandoust-Pakchin, The construction of operational matrix of fractional derivatives using B-spline functions, Commun Nonlinear Sci., 17(3) (2012), 1149–1162.
- [20] C. Leszczynski and M. Ciesielski, A numerical method for solution of ordinary differential equations of fractional order, Parallel Processing and Applied Mathematics, (2002), 695–702.
- [21] Z. Lin, D. Wang, D. Qi, and L. Deng, A Petrov–Galerkin finite element-meshfree formulation for multi-dimensional fractional diffusion equations, Comput. Mech., 66 (2020), 323–350.
- [22] Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnamica., 24 (1999), 207–233.
- [23] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, 2008.
- [24] S. Mashayekhi and M. Razzaghi, Numerical solution of the fractional Bagley–Torvik equation by using hybrid functions approximation, Math. Methods Appl. Sci., 39(3) (2016), 353–365.
- [25] P. Mokhtary, Numerical treatment of a well-posed Chebyshev tau method for Bagley–Torvik equation with high order of accuracy, Numer. Algorithms, 72(4) (2016), 875–891.
- [26] C. H. Müntz, Über den Approximationssatz von Weierstrass, in H. A. Schwarz’s Festschrift, Berlin, (1914), 303312.
- [27] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, (1999).
- [28] P. Rahimkhani, Y. Ordokhani, and E. Babolian, Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer. Algor., 77(4) (2018), 1283–1305.
- [29] P. Rahimkhani, Y. Ordokhani, and E. Babolian, Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations, Numer. Algor., 77 (2018), 1283–1305.
- [30] P. Rahimkhani and Y. Ordokhani, Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz-Legendre wavelets, Optim. Contr. Appl. Met., 39(6) (2018), 1916–1934.
- [31] S. S. Ray and R. K. Bera, Analytical solution of the Bagley–Torvik equation by Adomian decomposition method, Appl. Math. Comput., 168 (2005), 398–410.
- [32] M. Rehman and R. A. Khan, A numerical method for solving boundary value problems for fractional differential equations, Appl. Math. model., 36 (2012), 894-907.
- [33] S. Sabermahani and Y. Ordokhani, A new operational matrix of Müntz-Legendre polynomials and Petrov-Galerkin method for solving fractional Volterra-Fredholm integrodifferential equations, Comput. Methods Differ. Equ., 8(3) (2020), 408–423.
- [34] B. N. Saray, Abel’s integral operator: sparse representation based on multiwavelets, BIT Numerical Mathematics, 61 (2021), 587–606.
- [35] B. N. Saray, An effcient algorithm for solving Volterra integro-differential equations based on Alpert’s multiwavelets Galerkin method, J. Comput. Appl. Math., 348 (2019), 453-465.
- [36] B. N. Saray, Sparse multiscale representation of Galerkin method for solving linear-mixed Volterra-Fredholm integral equations, Math. Method Appl. Sci., 43(5) (2020), 2601–2614.
- [37] B. N. Saray, M. Lakestani, and M. Dehghan, On the sparse multiscale representation of 2-D Burgers equations by an efficient algorithm based on multiwavelets, Numer. Meth. Part. D. E., 39(3) (2023), 1938-1961.
- [38] M. Shahriari, B. N. Saray, B. Mohammadalipour, and S. Saeidian, Pseudospectral method for solving the fractional one-dimensional Dirac operator using Chebyshev cardinal functions, Phys. Scr., 98(5) (2023), 055205.
- [39] J. Shen and Y. Wang, Müntz-Galerkin methods and applicationa to mixed dirichlet-neumann boundary value problems, Siam J. Sci. Comput., 38(4) (2016), 2357–2381.
- [40] L. Shi, B. N. Saray, and F. Soleymani, Sparse wavelet Galerkin method: Application for fractional Pantograph problem, J. Comput. Appl. Math., 451 (2024), 116081
- [41] P. Thanh Toan, T. N. Vo, and M. Razzaghi, Taylor wavelet method for fractional delay differential equations, Eng. Comput., 37 (2021). 231–240.
- [42] P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298.
- [43] S¸ Yüzbaşi, Numerical solution of the Bagley–Torvik equation by the Bessel collocation method, Math. Meth. Appl. Sci., 36 (2013), 300–312.
- [44] Y. Zhao, P. Zhu, X. Gu, X. Zhao, and H. Jian, An implicit integration factor method for a kind of spatial fractional diffusion equations, J. Phys.: Conf. Ser., 1324 (2019), 012030.
|