
تعداد نشریات | 44 |
تعداد شمارهها | 1,334 |
تعداد مقالات | 16,385 |
تعداد مشاهده مقاله | 53,252,536 |
تعداد دریافت فایل اصل مقاله | 15,838,936 |
Stability analysis of SAIR mathematical model with general incidence rates and temporary immunity | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 08 اسفند 1403 اصل مقاله (12.9 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2025.64267.2901 | ||
نویسندگان | ||
Nemat Nyamoradi* 1؛ Karam Alalli2؛ Bashir Ahmad3 | ||
1Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran. | ||
2Laboratory of Mathematics, Computer Science and Applications, Faculty of Sciences and Technologies, University Hassan II of Casablanca, PO Box 146, Mohammedia, Morocco. | ||
3Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia. | ||
چکیده | ||
This paper studies the dynamics of a SAIR mathematical model that describes the interac- tion among susceptible, asymptomatic, symptomatic, and recovered individuals. Two general incidence functions describing the infection caused by the asymptomatic and symptomatic indi- viduals are introduced. We also take into account a temporary immunity, that is, a proportion of the recovered individuals becomes susceptible again. The basic reproduction number R 0 de- pends on the general incidence functions. The local and global asymptotical stability for each equilibrium will depend on the basic reproduction number R 0 . In precise terms, the disease- free equilibrium is locally and globally asymptotically stable when R 0 < 1, while the endemic equilibrium is locally and globally asymptotically stable when R 0 > 1. The numerical simu- lation is performed for different incidence rate cases, such as bilinear, Beddington-DeAngelis, Crowley-Martin, and non-monotonic incidence rate functions. The simulation results are found to agree with the theoretical endings. | ||
کلیدواژهها | ||
SAIR mathematical model؛ Stability؛ Basic reproduction number؛ Periodic orbit | ||
آمار تعداد مشاهده مقاله: 10 تعداد دریافت فایل اصل مقاله: 7 |