
تعداد نشریات | 44 |
تعداد شمارهها | 1,327 |
تعداد مقالات | 16,307 |
تعداد مشاهده مقاله | 53,171,665 |
تعداد دریافت فایل اصل مقاله | 15,782,450 |
Exogenously applied putrescine ameliorates zinc toxicity in oilseed rape (Brassica napus L.) by modulating the antioxidant system | ||
Journal of Plant Physiology and Breeding | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 11 دی 1403 اصل مقاله (547.12 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/jppb.2024.62144.1337 | ||
نویسندگان | ||
Tahereh A. Aghajanzadeh* 1؛ Fattaneh Bardon1؛ Omid Jazayeri2 | ||
1Department of Plant Sciences, Faculty of Science, University of Mazandaran, Babolsar, Iran. | ||
2Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, Iran. | ||
چکیده | ||
Objective: The external application of putrescine (Put) may overcome the adverse impact of different abiotic stresses. The current study assessed the effect of Put on the growth and antioxidative responses of oilseed rape (Brassica napus L.) seedlings under excess levels of zinc (Zn). Methods: The experiment was carried out as a completely randomized design with four treatments and four replications in a Hoagland nutrient solution containing supplemental concentrations of 20 μM ZnCl2 (Zn treatment), 0.2 mM Put (Put treatment), 20 μM ZnCl2 + 0.2 mM Put (Put + Zn), and a control treatment without extra Zn and Put. Results: The excess Zn led to the reduction of plant growth and pigment content. The content of total phenols, flavonoids, and flavonols was not significantly changed except that of the flavonols in the roots which was enhanced under Zn toxicity. Likewise, phenylalanine ammonia-lyase (PAL) and antioxidant enzyme activity and also the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) was increased upon exposure to excess Zn. In contrast, Put improved the growth and pigment content of oilseed rape under Zn stress. Put also enhanced the flavonoids and flavonols content and induced the activity of PAL and polyphenol oxidase under Zn toxicity. However, H2O2, MDA, superoxide dismutase, and peroxidase in oilseed rape exposed to Put declined under Zn excess. Conclusion: In conclusion, Put alleviated the negative impact of Zn toxicity partially due to the minimized endogenous levels of Zn in the root, the reduction of the H2O2 and MDA content, and modulation of the antioxidant system. | ||
کلیدواژهها | ||
Antioxidative response؛ Brassica napus؛ Phenolic compounds؛ Plant growth؛ Put؛ Zinc stress | ||
مراجع | ||
Aghajanzadeh TA, Jazayeri O. 2018. Riboflavin induces different defense responses against Pyricularia oryzae in improved and traditional rice (Oryza sativa L.) cultivars. J Agric Sci Technol. 20(5): 1071-1082.
Aghajanzadeh TA, Prajapati DH, Burow M. 2020. Differential partitioning of thiols and glucosinolates between shoot and root in Chinese cabbage upon excess zinc exposure. J Plant Physiol. 244: 1-9. https://doi.org/10.1016/j.jplph.2019.153088
Aghajanzadeh TA, Taheri Otaghsara SH, Jafari N, Khademian Amiri S. 2021. Physiological responses of Ulmus minor Mill. to ozone, carbon monoxide, and nitrogen dioxide in regions with different levels of atmospheric pollutants in Iran. J Plant Physiol Breed. 11(1): 49-62.
Akkol EK, Göger F, Koşar M, Başer KHC. 2008. Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chem. 108(3): 942-949. https://doi.org/10.1016/j.foodchem.2007.11.071
Ali S, Gill RA, Ulhassan Z, Zhang N, Hussain S, Zhang K, Huang Q, Sagir M, Tahir MB, Gill MB, et al. 2023. Exogenously applied melatonin enhanced the tolerance of Brassica napus against cobalt toxicity by modulating antioxidant defense, osmotic adjustment, and expression of stress response genes. Ecotoxicol Environ Saf. 252: 114624. https://doi.org/10.1016/j.ecoenv.2023.114624
Almansa MS, del Río LA, Alcaraz CF, Sevilla F. 1989. Isoenzyme pattern of superoxide dismutase in different varieties of citrus plants. Physiol Plant. 76: 563-568. https://doi.org/10.1111/j.1399-3054.1989.tb05479.x
Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP. 2006. Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 171(3): 382-388. https://doi.org/10.1016/j.plantsci.2006.04.009
Alrawaiq NS, Abdullah A. 2014. A review of flavonoid quercetin: metabolism, bioactivity and antioxidant properties. Int J Pharmtech Res. 6(3): 933-941.
Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 55: 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44(1): 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
Bradford MM. 1976. A rapid and sensitive method for quantization of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem. 72: 54-284. https://doi.org/10.1016/0003-2697(76)90527-3
Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. 2007. Zinc in plants. New Phytol. 173: 677-702. https://doi.org/10.1111/j.1469-8137.2007.01996.x
Candan N, Tarhan L. 2003. Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol Biochem. 41: 35-40. https://doi.org/10.1016/S0981-9428(02)000062
Chen L, Wang L, Chen F, Korpelainen H, Li C. 2013. The effects of exogenous Put on sex-specific responses of Populus cathayana to copper stress. Ecotoxicol Environ Saf. 97: 94-102. https://doi.org/10.1016/j.ecoenv.2013.07.009
Chen WM, Jin N, Shi Y, Su YQ, Fei BJ, Li W, Qiao DR, Cao Y. 2010. Coordinate expression of light-harvesting chlorophyll a/b gene family of photosystem II and chlorophyll a oxygenase gene regulated by salt-induced phosphorylation in Dunaliella salina. Photosynthetica. 48: 355-360. https://doi.org/10.1007/s11099-010-0046-z
Cui J, Pottosin I, Lamade E, Tcherkez G. 2020. What is the role of Put accumulated under potassium deficiency? Plant Cell Environ. 43(6): 1331-1347. https://doi.org/10.1111/pce.13740
Darinka GA. 2018. Heavy metals and their general toxicity on plants. Plant Sci Today. 5: 15-19. https://doi.org/10.14719/pst.2018.5.1.355
David DJ. 1958. Determination of zinc and other elements in plants by atomic-absorption spectroscopy. Analyst. 83: 655-661. https://doi.org/10.1039/AN9588300655
Drążkiewicz M. 1994. Chlorophyllase: occurrence, function, mechanism of action, effects of external and internal factors. Photosynthetica. 30(3): 321-331.
El–Bassiouny HM, Mostafa HA, El–Khawas SA, Hassanein RA, Khalil SI, Abd El–Monem AA. 2008. Physiological responses of wheat plant to foliar treatments with arginine or Put. Aust J Basic Appl Sci. 2(4): 1390-1403.
Farooq M, Wahid A, Lee DJ. 2009. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant. 31: 937-945. https://doi.org/10.1007/s11738-009-0307-2
Farzane A, Nemati H, Shoor M, Ansari H. 2020. Antioxidant enzyme and plant productivity changes in field-grown tomato under drought stress conditions using exogenous Put. J Plant Physiol Breed. 10(1): 29-40. https://doi.org/10.22034/jppb.2020.12491
Feigl G, Lehotai N, Molnár Á, Ördög A, Rodríguez-Ruiz M, Palma JM, Corpas FJ, Erdei L, Kolbert Z. 2015. Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Ann Bot1.16(4): 613-625. https://doi.org/10.1093/aob/mcu246
Fridovich I. 1975. Superoxide dismutases. Annu Rev Biochem. 44: 147-159. https://doi.org/10.1146/annurev.bi.44.070175.001051
Gai APC, dos Santos DS, Vieira EA. 2017. Effects of zinc excess on antioxidant metabolism, mineral content and initial growth of Handroanthus impetiginosus (Mart. ex DC.) Mattos and Tabebuia roseoalba (Ridl.) Sandwith. Environ Exp Bot. 144: 88-99. https://doi.org/10.1016/j.envexpbot.2017.09.006
Ghassemi-Golezani K, Bilasvar HM, Nassab ADM. 2019. Improving rapeseed (Brassica napus L.) plant performance by exogenous salicylic acid and Put under gradual water deficit. Acta Physiol Plant. 41: 192. https://doi.org/10.1007/s11738-019-2986-7
Ghassemi-Golezani K, Ardalan N, Raei Y, Dalil B. 2022. Improving some physiological and yield parameters of safflower by foliar sprays of Fe and Zn under drought stress. J Plant Physiol Breed. 12(1): 15-27. https://doi.org/10.22034/jppb.2022.14657
Ghassemi-Golezani K, Rajabi M, Farzi-Aminabad R. 2023. Improving physiological performance and productivity of oilseed rape under drought stress by foliar application of Zn and Mg nanoparticles. J Plant Physiol Breed. 13(2): 217-229. https://doi.org/10.22034/jppb.2023.56387.1304
Ghosh N, Adak MK. 2016. Effects of Put on anti-oxidative enzymes in two rice cultivars subjected to salinity. Adv Crop Sci Tech. 4(2): 210. https://doi.org/10.4172/2329-8863.1000210
Hamid M, Mansour G, Marian B. 2018. Exogenous Put changes redox regulations and essential oil constituents in field-grown Thymus vulgaris L. under well-watered and drought stress conditions. Ind Crops Prod. 122: 119-132. https://doi.org/10.1016/j.indcrop.2018.05.064
Harirforoush M, Sorooshzadeh A, Ghanati F. 2019. Study the growth and biochemical characteristics of canola under flooded conditions, using potassium nitrate and polyamines Put. J Plant Process Funct. 8(30): 341-351 (In Persian with English abstract).
Heath RL, Packer L. 1968. Photo peroxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1): 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
Hoagland DR, Arnon DI. 1938. The water-culture method for growing plants without soil. California Agricultural Experiment Station. The College of Agriculture, University of California, Berkeley, USA.
Hsu YT, Kao CH. 2007. Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant Soil. 291(1): 27-37. https://doi.org/10.1007/s11104-006-9171-7
Hussain SS, Ali M, Ahmad M, Siddique KHM. 2011. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv. 29(3): 300-311. https://doi.org/10.1016/j.biotechadv.2011.01.003
Hu-zhe Z, Chun-lan CUI, Yu-ting Z, Dan W, NG, Yu J, Yong KK. 2005. Active changes of lignification-related enzymes in pepper response to Glomus intraradices and/or Phytophthora capsici. J Zhejiang Univ Sci. B 6(8): 778-786. https://doi.org/10.1007/BF02842437
Ioannidis NE, Kotzabasis K. 2007. Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochim Biophys Acta Bioenerg. 1767(12): 1372-1382. https://doi.org/10.1016/j.bbabio.2007.10.002
Jahan A, Iqbal M, Shafiq F, Malik A, Javed MT. 2021. Influence of foliar glutathione and Put on metabolism and mineral status of genetically diverse rapeseed cultivars under hexavalent chromium stress. Environ Sci Pollut Res. 28: 45353-45363. https://doi.org/10.1007/s11356-021-13702-2
Jiang S, Weng B, Liu T, Su Y, Liu J, Lu H, Yan C. 2017. Response of phenolic metabolism to cadmium and phenanthrene and its influence on pollutant translocations in the mangrove plant Aegiceras corniculatum (L.) Blanco (Ac). Ecotoxicol Environ Saf. 141: 290-297. https://doi.org/10.1016/j.ecoenv.2017.03.041
Kabata-Pendias A. 2011. Trace elements in soils and plants. 4th ed. New York: Taylor & Francis. https://doi.org/10.1007/s00425-021-03642-z
Kaur H, Neera G. 2021. Zinc toxicity in plants: a review. Planta. 129: 253-256. https://doi.org/10.1007/s00425-021-03642-z
Li L, Gu W, Li C, Li W, Li C, Li J, Wei S. 2018. Exogenous spermidine improves drought tolerance in maize by enhancing the antioxidant defence system and regulating endogenous polyamine metabolism. Crop Pasture Sci. 69(11): 1076-1091. https://doi.org/10.1071/CP18271
Lichtenthaler H. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol. 148: 350-382. https://doi.org/10.1016/0076-6879(87)480361
Lin CC, Kao CH. 2001. Cell wall peroxidase activity, hydrogen peroxide level, and NaCl inhibited root growth of rice seedlings. Plant Soil. 230(1): 135-143. https://doi.org/10.1023/A:1004876712476
Mabudi Bilasvar H, Ghassemi-Golezani K, Mohammadi Nassab AD. 2022. Seed development, oil accumulation and fatty acid composition of drought stressed rapeseed plants affected by salicylic acid and Put. Gesunde Pflanzen. 74: 333-345. https://doi.org/10.1007/s10343-021-00612-z
Manaf A, Raheel M, Sher A, Sattar A, Ul-Allah S, Qayyum A, Hussain Q. 2019. Interactive effect of zinc fertilization and cultivar on yield and nutritional attributes of canola (Brassica napus L.). J Soil Sci Plant Nutr. 19: 671-677. https://doi.org/10.1007/s42729-019-00067-2
Mansoor S, Ali Wani O, Lone JK, Manhas S, Kour N, Alam P, Ahmad A, Ahmad P. 2022. Reactive oxygen species in plants: from source to sink. Antioxidants. 11(2): 225. https://doi.org/10.3390/antiox11020225
Mansour MMF, Al-Mutawa MM. 1999. Stabilization of plasma membrane by polyamines against salt stress. Cytobios. 393: 7-17.
Mohammadrezakhani S, Pakkish Z, Saffari VR. 2017. Effect of putrescine and methyl jasmonate on antioxidant responses in peel and pulp of orange (Citrus sinensis L. var. Valencia) fruit. J Plant Physiol Breed. 7(2): 41-52.
Mukhopadhyay M, Das A, Subba P, Bantawa P, Sarkar B, Ghosh P, Mondal TK. 2013. Structural, physiological, and biochemical profiling of tea plantlets under zinc stress. Biol Plant. 57: 474-480. https://doi.org/10.1007/s10535-012-0300-2
Nagarathna KC, Shetty SA, Shetty HS. 1993. Phenylalanine ammonia lyase activity in pearl millet seedlings and its relation to downy mildew disease resistance. J Exp Bot. 44(8): 1291-1296. https://doi.org/10.1093/jxb/44.8.1291
Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5): 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Öztürk L, Demir Y. 2003. Effects of Put and ethephon on some oxidative stress enzyme activities and proline content in salt stressed spinach leaves. Plant Growth Regul. 40(1): 89-95. https://doi.org/10.1023/A:1023078819935
Rady MM, Hemida KA. 2015. Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxico Environ Saf. 119: 178-185. https://doi.org/10.1016/j.ecoenv.2015.05.008
Ramazan S, Nazir I, Yousuf W, John R. 2023. Environmental stress tolerance in maize (Zea mays): role of polyamine metabolism. Func Plant Biol. 50(2): 85-96. https://doi.org/10.1071/FP21324
Schindler C, Reith P, Lichtenthaler HK. 1994. Differential levels of carotenoids and decrease of zeaxanthin cycle performance during leaf development in a green and an aurea variety of tobacco. J Plant Physiol. 143: 500-507. https://doi.org/10.1016/S0176-1617(11)81813-4
Shi H, Chan Z. 2014. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol. 56(2): 114-121. https://doi.org/10.1111/jipb.12128
Shi HT, Ye TT, Chen FF, Cheng ZM, Wang YP, Yang PF, Zhang Y, Chan Z. 2013. Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. Plant Biol. 56(2): 1367-1379. https://doi.org/10.1093/jxb/ers400
Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Method Enzymol. 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Stuiver CEE, Posthumus FS, Parmar S, Shahbaz M, Hawkesford MJ, de Kok LJ. 2014. Zinc exposure has differential effects on uptake and metabolism of sulfur and nitrogen in Chinese cabbage. J Plant Nutr Soil Sci. 177: 748-757. https://doi.org/10.1002/jpln.201300369
Taie HAA, Seif El-Yazal MA, Ahmed SMA, Rady MM. 2019. Polyamines modulate growth, antioxidant activity, and genomic DNA in heavy metal-stressed wheat plant. Environ Sci Pollut Res Int. 26(22): 22338-22350. https://doi.org/10.1007/s11356-019-05555-7
Taiz L, Zeiger E. 2002. Plant physiology. Third Edition. Sunderland, United States: Sinauer Associates, Inc., Publishers, pp. 67-86.
Taranto F, Pasqualone A, Mangini G, Tripodi P, Miazzi MM, Pavan S, Montemurro C. 2017. Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. Int J Mol Sci. 18(2): 377. https://doi.org/10.3390/ijms18020377
Thiruvengadam M, Chung IM. 2015. Selenium, Put, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. Rapa). Food Chem. 173: 185-193. https://doi.org/10.1016/j.foodchem.2014.10.012
Thygesen L, Thulin J, Mortensen A, Skibsted LH, Molgaard P. 2007. Antioxidant activity of cichoric acid and alkamides from Echinacea purpurea, alone and in combination. Food Chem. 101: 74-81. https://doi.org/10.1016/j.foodchem.2005.11.048
Tripathi DK, Bhat JA, Ahmad P, Allakhverdiev SI. 2023. Polyamines and nitric oxide crosstalk in plant development and abiotic stress tolerance. Func Plant Biol. 50(2): 1-4. https://doi.org/10.1071/FP22170
Ullah F, Bano A, Nosheen A. 2012. Effects of plant growth regulators on growth and oil quality of canola (Brassica napus l.) under drought stress. Pak J Bot. 44(6): 1873-1880.
Vanloon LC. 1971. Tobacco polyphenol oxidases: a specific staining method indicating non-identity with peroxidases. Phytochem. 10: 503-507. https://doi.org/10.1016/s0031-9422(00)94689-2
Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151(1): 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
Wang X, Shi G, Xu Q, Hu J. 2007. Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J Plant Physiol. 164(8): 1062-1070. https://doi.org/10.1016/j.jplph.2006.06.003
Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP. 2009. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere. 75(11): 1468-1476. https://doi.org/10.1016/j.chemosphere.2009.02.033
Wang C, Yang J, Chen W, Zhao X, Wang Z. 2023. Contribution of the leaf and silique photosynthesis to the seeds yield and quality of oilseed rape (Brassica napus L.) in reproductive stage. Sci Rep. 13: 4721. https://doi.org/10.1038/s41598-023-31872-6
Yang Y, Nan Z, Zhao Z, Wang S, Wang Z, Wang X. 2011. Chemical fractionations and bioavailability of cadmium and zinc to cole (Brassica campestris L.) grown in the multi-metals contaminated oasis soil, northwest of China. J Environ Sci. 23(2): 275-281. https://doi.org/10.1016/s1001-0742(10)60403-2
Yuan RN, Shu S, Guo SR, Sun J, Wu Q. 2018. The positive roles of exogenous Put on chlorophyll metabolism and xanthophyll cycle in salt-stressed cucumber seedlings. Photosynthetica. 56: 557-566. https://doi.org/10.1007/s11099-017-0712-5
Zhao J, Wang X, Pan X, Jiang Q, Xi Z. 2021. Exogenous Put alleviates drought stress by altering reactive oxygen species scavenging and biosynthesis of polyamines in the seedlings of Cabernet sauvignon. Front Plant Sci. 12: 767992. https://doi.org/10.3389/fpls.2021.767992
| ||
آمار تعداد مشاهده مقاله: 40 تعداد دریافت فایل اصل مقاله: 48 |