
تعداد نشریات | 45 |
تعداد شمارهها | 1,388 |
تعداد مقالات | 17,004 |
تعداد مشاهده مقاله | 54,725,232 |
تعداد دریافت فایل اصل مقاله | 17,275,824 |
ارزیابی تبخیر و تعرق واقعی (ALARM) تحت سناریوهای SSP و تاثیر آن بر شوری خاک مطالعه موردی: حوضه آبریز اهر چای | ||
هیدروژئومورفولوژی | ||
دوره 12، شماره 43، تیر 1404، صفحه 141-125 اصل مقاله (1.31 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2025.64820.1769 | ||
نویسنده | ||
مهدی اسدی* | ||
استادیار، گروه آموزش جغرافیا، دانشگاه فرهنگیان، صندوق پستی 889-14665، تهران، ایران. | ||
چکیده | ||
در پژوهش حاضر با استفاده روش ALARM (مدل تحلیل رادیومتر اتمسفر-زمینی) و مدلهای UKESM1-0-LL، INM-CM5-0، CanESM5، BCC-ESM1 و ACCESS-CM2 از گزارش CMIP6 و سناریوهای SSP (سناریوهای SSP1.2.6 و SSP3.7.0 و SSP5.8.5) به پیشبینی مقدار تبخیر و تعرق در حوضه آبریز اهر چای پرداخته شد. همچنین نتایج حاصل از روش ALARM با روشهای پنمن ماتیث فائو و تورنت وایت مقایسه گردید. برای این منظور از 72 تصویر سنجنده لندست 8 OLI مربوط به ردیف 168 و گذر 33 استفاده شده است. نتایج نشان داد که روش ALARM بیشترین میزان همبستگی (R^2 915/0) و کمترین میزان خطا (〖RMSE〗^ 493/1 و MSE 232/1 میلیمتر) را با روش پنمن مانتیث دارا میباشد. مقادیر RMSE و MSE مربوط به تبخیر و تعرق در تمامی مدلهای مورد بررسی زیر 867/2 بوده و کمترین میزان RMSE و MSE مربوط به مدل ACCESS-CM2 به ترتیب با مقادیر عددی 198/0 و 165/0 در سناریوی SSP1.2.6 میباشد. همچنین قابلذکر است که مدلهای مورد بررسی در ارزیابی پارامتر تبخیر و تعرق در سناریوی SSP5.8.5 زیاد خوب عمل نکرده و مقادیر RMSE و MSE در تمامی مدلها بالای 1 بوده که این میزان در SSP5.8.5 در مدل UKESM1-0-LL به ترتیب با مقادیر عددی 867/2 و 735/2 دارای بالاترین میزان تبخیر و تعرق هستند. همچنین میزان شوری خیلی زیاد خاک براساس شاخص های NDSI و 〖SI〗_1 از سال 2013 تا 2024 بترتیب حدود 81/6613 و 81/6296 هکتار افزوده شده است که با روند افزایشی تبخیر و تعرق در سناریوهای اقلیمی نیز همبستگی 987/0 دارد. | ||
کلیدواژهها | ||
تبخیر و تعرق؛ ALARM؛ سنجشازدور؛ حوضه آبریز؛ اهر چای | ||
مراجع | ||
Alam, M. M., Akter, M. Y., Islam, A. R. M. T., Mallick, J., Kabir, Z., Chu, R., ... & Senapathi, V. (2024). A review of recent advances and future prospects in calculation of reference evapotranspiration in Bangladesh using soft computing models. Journal of Environmental Management, 351, 119714. https://doi.org/10.1016/j.jenvman.2023.119714. Al-Hasani, A. A. J., & Shahid, S. (2024). Assessing the effect of climate change on spatiotemporal variations in reference evapotranspiration across Iraq. Theoretical and Applied Climatology, 1-21. https://doi.org/10.1007/s00704-024-05217-w. Allen, R., Waters, R., Bastiaanssen, W., Tasumi, M., & Trezza, R. (2002). Sebal. Surface energy balance algorithms for land. Idaho implementation. Advanced Training and Users Manual, Idaho, USA. Alqudah, Sh., Suleiman, A., Aljaafreh, S. (2024). Estimation of daily actual evapotranspiration for dates using the ALARM, Journal of Southwest Jiaotong University, 59(3), 521-531. https://doi.org/10.35741/issn.0258-2724.59.3.35. Ardakani, M., Mahdavi Ardakani, R., Jabali, A., & Esfandiari, M. (2015). Evaluation of soil salinity by using satellite images and statistical methods: A case study of Chah-Afzal area, Ardakan. The Journal of Geographical Research on Desert Areas, 3(2), 25-46 (In persian). https://dorl.net/dor/20.1001.1.2345332.1394.3.2.2.4. Asadi, M., & Kamran, K. V. (2022). Comparison of SEBAL, METRIC, and ALARM algorithms for estimating actual evapotranspiration of wheat crop. Theoretical and Applied Climatology, 149(1), 327-337. https://doi.org/10.1007/s00704-022-04026-3. Asadi, M., & Kamran, K. V. (2023). Estimating selected cultivated crop water requirement-based surface energy balance algorithm. Arabian Journal of Geosciences, 16(5), 298. https://doi.org/10.1007/s12517-023-11386-1. Asadi, M., & Karami, M. (2020). Estimation of evapotranspiration in Fars province using experimental indicators. Journal of Applied Researches in Geographical Sciences, 20(56), 159-175 (In persian). http://dx.doi.org/10.29252/jgs.20.56.159. Asadi, M., Valizadeh Kamran, K., Baaghideh, M., & Adab, H. (2020). Estimation of Actual Evapotranspiration by Mountain SEBAL Algorithm Based on Pea Plants (Case Study: Semi-Northern Half of Ardabil Province). Hydrogeomorphology, 7(22), 67-85 (In persian). https://dorl.net/dor/20.1001.1.23833254.1399.7.22.4.8. Chia, M. Y., Huang, Y. F., & Koo, C. H. (2020a). Reference evapotranspiration estimation using adaptive neuro-fuzzy inference system with limited meteorological data. In IOP conference series: Earth and environmental science (Vol. 612, No. 1, p. 012017). IOP Publishing. https://doi.org/10.1088/1755-1315/612/1/012017. Chia, M. Y., Huang, Y. F., Koo, C. H., & Fung, K. F. (2020b). Recent advances in evapotranspiration estimation using artificial intelligence approaches with a focus on hybridization techniques—a review. Agronomy, 10(1), 101. https://doi.org/10.3390/agronomy10010101. Gao, Y., Long, D., & Li, Z. L. (2008). Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China. International Journal of Remote Sensing, 29(11), 3295-3315. https://doi.org/10.1080/01431160701469073. Golreyhan, J., Amininia, K., & Valizadeh Kamran, K. (2023). Estimation of Actual Evapotranspiration of Pasture Plants using SEBAL Algorithm (Research-Case Study: Ahar County). Journal of Geography and Regional Development, 21(3), 169-197 (In persian). https://doi.org/10.22067/jgrd.2023.82588.1291. Islam, A. T., Shen, S., Yang, S., Hu, Z., & Chu, R. (2019). Assessing recent impacts of climate change on design water requirement of Boro rice season in Bangladesh. Theoretical and Applied Climatology, 138, 97-113. https://doi.org/10.1007/s00704-019-02818-8. Jerin, J. N., Islam, H. T., Islam, A. R. M. T., Shahid, S., Hu, Z., Badhan, M. A., ... & Elbeltagi, A. (2021). Spatiotemporal trends in reference evapotranspiration and its driving factors in Bangladesh. Theoretical and Applied climatology, 144, 793-808. https://doi.org/10.1007/s00704-021-03566-4. Karami, F., Bayati Khatibi, M., Kheirizadeh, M., & Mokhtari Asl, A. (2020). Evaluation of Performance of Support Vector Machine Algorithm in Landslide Susceptibility Zoning in Ahar-chai Basin. Journal of Geography and Environmental Hazards, 8(4), 1-17 (In persian). https://doi.org/10.22067/geo.v8i4.83263. Karami, M., & Asadi, M. (2016). Estimates and Zoning of reference evapotranspiration by FAO-Penman-Monteith (Case Study: North West of Iran). International Journal of Scientific Research in Science, Engineering and Technology, 2(1), 210-216. https://doi.org/10.32628/IJSRSET162119. Karimi, S. R., nasrolahi, A., & iranshahi, M. (2024). Investigating the effects of climate change on reference evapotranspiration based on the SSP scenarios. Iranian Journal of Soil and Water Research, 54(11), 1759-1777. https://doi.org/10.22059/ijswr.2023.358697.669493. La Fuente, S., Jennings, E., Lenters, J. D., Verburg, P., Tan, Z., Perroud, M., ... & Woolway, R. I. (2024). Ensemble modeling of global lake evaporation under climate change. Journal of Hydrology, 631, 130647. https://doi.org/10.1016/j.jhydrol.2024.130647. Li, M., Chu, R., Shen, S., & Islam, A. R. M. T. (2018). Dynamic analysis of pan evaporation variations in the Huai River Basin, a climate transition zone in eastern China. Science of the Total Environment, 625, 496-509. https://doi.org/10.1016/j.scitotenv.2017.12.317. Losgedaragh, S. Z., & Rahimzadegan, M. (2018). Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). Journal of Hydrology, 561, 523-531. https://doi.org/10.1016/j.jhydrol.2018.04.025. Nabavi-Pelesaraei, A., Saber, Z., Mostashari-Rad, F., Ghasemi-Mobtaker, H., & Chau, K. W. (2021). Coupled life cycle assessment and data envelopment analysis to optimize energy consumption and mitigate environmental impacts in agricultural production. In Methods in sustainability science (pp. 227-264). Elsevier. https://doi.org/10.1016/B978-0-12-823987-2.00012-X. Owaneh, O. M., & Suleiman, A. A. (2018). Comparison of the Performance of ALARM and SEBAL in Estimating the Actual Daily ET from Satellite Data. Journal of Irrigation and Drainage Engineering, 144(9), 04018024. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001335. Salam, R., & Islam, A. R. M. T. (2020). Potential of RT, Bagging and RS ensemble learning algorithms for reference evapotranspiration prediction using climatic data-limited humid region in Bangladesh. Journal of Hydrology, 590, 125241. https://doi.org/10.1016/j.jhydrol.2020.125241. Salimi, KH., Ahmadi sani, N., & Jalinejad, N. (2019). Mapping Soil Salinity Using Remote Sensing Technology (Case Study: South Lands of West Azarbaijan province). Water and soil science (Agricutural science), 29(2), 115-128 (In persian). Santos, C., Bezerra, B., Silva, B., and Neale, C. (2009). Assessment of daily actual evapotranspiration estimated by remote sensing algorithms. Anais XIV Simposio Brasileiro de Sensoriamento Remoto, Natal, Brasil, 25-30 abril 2009, INPE, p. 427-434. Shiri, J., Sadraddini, A. A., Nazemi, A. H., Kisi, O., Landeras, G., Fard, A. F., & Marti, P. (2014). Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of hydrology, 508, 1-11. https://doi.org/10.1016/j.jhydrol.2013.10.034. Suleiman, A. A., Bali, K. M., & Kleissl, J. (2009). Comparison of ALARM and SEBAL evapotranspiration of irrigated alfalfa. In 2009 Reno, Nevada, June 21-June 24, 2009 (p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.27033. Suleiman, A., & Al-Bakri, J. (2011). Estimating actual evapotranspiration using ALARM and the dimensionless temperature. Evapotranspiration. Croatia: InTech Publisher, 163-194. https://doi.org/10.5772/13918. Suleiman, A., & Crago, R. (2002a). Analytical land–atmosphere radiometer model. Journal of Applied Meteorology and Climatology, 41(2), 177-187. https://doi.org/10.1016/S0168-1923(02)00127-2. Suleiman, A., & Crago, R. (2002b). Analytical land atmosphere radiometer model (ALARM) applied to a dense canopy. Agricultural and forest meteorology, 112(3-4), 151-159. https://doi.org/10.1175/1520-0450(2002)041%3c0177:ALARM%3e2.0.CO;2. Suleiman, A., & Crago, R. (2004). Hourly and daytime evapotranspiration from grassland using radiometric surface temperatures. Agronomy Journal, 96(2), 384-390. https://doi.org/10.2134/agronj2004.3840. Suleiman, A., Al-Bakri, J., Duqqah, M., & Crago, R. (2008). Intercomparison of evapotranspiration estimates at the different ecological zones in Jordan. Journal of Hydrometeorology, 9(5), 903-919. https://doi.org/10.1175/2008JHM920.1. Valle Júnior, L. C. G. D., Vourlitis, G. L., Curado, L. F. A., Palácios, R. D. S., Nogueira, J. D. S., Lobo, F. D. A., ... & Rodrigues, T. R. (2021). Evaluation of FAO-56 procedures for estimating reference evapotranspiration using missing climatic data for a Brazilian tropical savanna. Water, 13(13), 1763. https://doi.org/10.3390/w13131763. Xing, X., Liu, Y., Yu, M., & Ma, X. (2016). Determination of dominant weather parameters on reference evapotranspiration by path analysis theory. Computers and Electronics in Agriculture, 120, 10-16. https://doi.org/10.1016/j.compag.2015.11.001. Yahaya, I., Li, Z., Zhou, J., Jiang, S., Su, B., Huang, J., ... & Jiang, T. (2024). Estimations of potential evapotranspiration from CMIP6 multi-model ensemble over Africa. Atmospheric Research, 300, 107255. https://doi.org/10.1016/j.atmosres.2024.107255. Zeinadini, S., Anvari, S., & Zahmatkesh, Z. (2019). Investigation of Water Allocation Conditions in Aharchay Basin under Climate Change Impacts. Irrigation Sciences and Engineering, 42(4), 195-210. https://doi.org/10.22055/jise.2018.23237.1648. | ||
آمار تعداد مشاهده مقاله: 119 تعداد دریافت فایل اصل مقاله: 4 |