- [1] K. A. Abro and A. Atangana, A comparative analysis of electromechanical model of piezoelectric actuator through Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Math. Methods Appl. Sci., 43 (2020), 9681–9691.
- [2] A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769.
- [3] H. Azin, F. Mohammadi, and J. A. T. Machado, A piecewise spectral-collocation method for solving fractional Riccati differential equation in large domains, Comput. Appl. Math., 38 (2019).
- [4] B. Batiha, M. S. M. Noorani, and I. Hashim, Application of variational iteration method to a general Riccati equation, Int. Math. Forum., 2 (2007), 2759–2770.
- [5] E. Bonyah, M. Juga, and F. Wati, Fractional dynamics of coronavirus with comorbidity via Caputo-Fabrizio derivative, Communications in Mathematical Biology and Neuroscience, (2022).
- [6] P. P. Boyle, P. W. Tian, and F. Guan, The Riccati equation in mathematical finance, J. Symb. Comput., 33 (2002), 343–355.
- [7] M. Caputo and M. Fabrizio, On the singular kernels for fractional derivatives: Some applications to partial differential equations, PFDA., 7 (2021), 79–82.
- [8] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, PFDA., 1 (2015), 73–85.
- [9] Z. Cui, Solutions of some typical nonlinear differential equations with Caputo-Fabrizio fractional derivative, AIMS mathematics, 7 (2022), 14139–14153.
- [10] M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228 (2009), 7792–7804.
- [11] F. Ghomanjani, A numerical technique for solving fractional optimal control problems and fractional Riccati differential equations, JOEMS., 24 (2016), 638–643.
- [12] J. Hristov, On the Atangana-Baleanu derivative and its relation to the fading memory concept: the diffusion equation formulation, in fractional derivatives with Mittag-Leffler kernel studies in systems, Decision and Control, Springer, Cham, Switzerland, (2019), 175–193.
- [13] S. U. Jan, I. Sehra Khan, and A. Mohamed, Heat transfer analysis in a non-Newtonian hybrid nanofluid over an exponentially oscillating plate using fractional Caputo-Fabrizio derivative, Sci. Rep., 12 (2022).
- [14] M. M. Khader, Numerical treatment for solving fractional Riccati differential equation, JOEMS., 21 (2013), 32–37.
- [15] M. A. Khan, The dynamics of a new chaotic system through the Caputo-Fabrizio and Atanagan-Baleanu fractional operators, Adv. Mech. Eng., 11 (2019).
- [16] Y. Khan, M. A. Khan, F. Wati, and N. Faraz, A fractional bank competition model in Caputo-Fabrizio derivative through Newton polynomial approach, Alex. Eng. J., 60 (2021), 711–718.
- [17] S. Kumar and J. F. Gomez-Aguilar, Numerical solution of Caputo-Fabrizio time fractional distributed order reaction-diffusion equation via quasi wavelet based numerical method, J. Appl. Comput. Mech., 6 (2020), 848-861.
- [18] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16–42.
- [19] Y. Li, N. Sun, B. Zheng, Q. Wang, and Y. Zhang, Wavelet operational matrix method for solving the Riccati differential equation, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 483–493.
- [20] J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, PFDA., 1 (2015), 87–92.
- [21] A. M. Mahdy, Y. A. E. Amer, M. S. Mohamed, and E. Sobhy, General fractional financial models of awareness with Caputo-Fabrizio derivative, Adv. Mech. Eng., 12 (2020).
- [22] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons Inc., New York, 1993.
- [23] S. Momani, N. Djeddi, M. Ail-Smadi, and S. Al-Omari, Numerical investigation for Caputo-Fabrizio fractional Riccati and Bernoulli equations using iterative reproducing kernel method, Appl. Numer. Math., 170 (2021), 418– 434.
- [24] S. Momani and N. Shawagfeh, Decomposition method for solving fractional Riccati differential equations, Appl. Math. Comput., 182 (2006), 1083–1092.
- [25] A. Neamaty, B. Agheli, and R. Darzi, The shifted Jacobi polynomial integral operational matrix for solving Riccati differential equation of fractional order, Appl. Appl. Math., 10 (2015), 16.
- [26] L. Ntogramatzidis and A. Ferrante, On the solution of the Riccati differential equation arising from the LQ optimal control problem, Syst. Control Lett., 59 (2010), 114–121.
- [27] Z. Odibat, A Riccati equation approach and travelling wave solutions for nonlinear evolution equations, Int. J. Appl. Comput., 3 (2017), 1–13.
- [28] Z. Odibat and S. Momani, Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, Chaos Solit., 36 (2008), 167–174.
- [29] Z. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci., 7 (2006), 27–34.
- [30] Y. Oztürk, A. Anapal, M. Gülsu, and M. Sezer, A collocation method for solving fractional Riccati differential equation, J. Appl. Math., 10 (2013).
- [31] P. Pandey, J. F. Gomez-Aguilar, M. K. A. Kaabar, Z. Siri, and A. A. Mousa, Mathematical modeling of COVID-19 pandemic in India using Caputo-Fabrizio fractional derivative, Comput. Biol. Med., 145 (2022).
- [32] M. A. Z. Raja, J. A. Khan, and I. M. Qureshi, A new stochastic approach for solution of Riccati differential equation of fractional order, Ann. Math. Artif. Intell., 60 (2010), 229–250.
- [33] W. T. Reid, Riccati Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1972.
- [34] M. B. Riaz, S. T. Saeed, and D. Baleanu, Role of magnetic field on the dynamical analysis of second grade fluid: An optimal solution subject to non-integer differentiable operators, J. Appl. Comput. Mech., 7 (2021), 54–68.
- [35] M. Sari and G. A. Gurarslan, A sixth-order compact finite difference scheme to the numerical solutions of Burgers’ equation, Appl. Math. Comput., 208 (2009), 475–483.
- [36] I. Siddique, S. Ayaz, and F. Jarad, Dufour effect on transient MHD double convection flow of fractionalized second-grade fluid with Caputo-Fabrizio derivative, Complexity, 2021.
- [37] R. Singh, J. Mishra, and V. K. Gupta, Dynamical analysis of a tumor growth model under the effect of fractal fractional Caputo-Fabrizio derivative, IJMCE., 1 (2023), 115-126.
- [38] H. Singh and H. M. Srivastava, Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients, Phys., 523 (2019), 1130–1149.
- [39] N. A. Shah, X. Wang, H. Qi, S. Wang, and A. Hajizadeh, Transient electro-osmotic slip flow of an oldroyd-B fluid with time-fractional Caputo-Fabrizio derivative, J. Appl. Comput. Mech., 5 (2019), 779–790.
- [40] V. Shameema and M. C. Ranjini, An operational matrix method for fractional differential equations with nonsingular kernel, Fract. Calc. Appl. Anal., 14 (2023), 157–170.
- [41] N. T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., 131 (2002), 517–529.
- [42] E. Ucar and N. Ozdemir, A fractional model of cancer-immune system with Caputo and Caputo-Fabrizio derivatives, Eur. Phys. J. Plus., 136 (2021), 43.
- [43] H. Yepez-Martınez and J. F. Gomez-Aguilar, Laplace variational iteration method for modified fractional derivatives with non-singular kernel, J. Appl. Comput. Mech., 6(3) (2020), 684–698.
- [44] P. G. Zhang and J. P. Wang, A predictor-corrector compact finite difference scheme for Burgers’ equation, Appl. Math. Comput., 219 (2012), 892–898.
- [45] J. Zhao, T. Zhang, and R. M. Corless, Convergence of the compact finite difference method for second-order elliptic equations, Appl. Math. Comput., 182 (2006), 1454–1469.
|