- [1] W. M. Abd-Elhameed and Y. H. Youssri, Numerical solutions for Volterra-Fredholm-Hammerstein integral equations via second kind Chebyshev quadrature collocation algorithm, Adv. Math. Sci. Appl., (2014).
- [2] K. Atkinson and W. Han, Theoretical numerical analysis, Third ed., Applied Mathematics. Springer, Dordrecht, 39 (2005).
- [3] S. Behera and S. Saha Ray, Euler wavelet method for solving fractional-order linear Volterra-Fredholm integrodifferential equations with weakly singular kernels, J CAPM, 40(192) (2021).
- [4] S. Behera and S. Saha Ray, An operational matrix based scheme for numerical solutions of nonlinear weakly singular partial integro-differential equations, J. Appl. Math. Comp, 367 (2020), 124771.
- [5] I. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, Cambridge, (2004).
- [6] M. V. Bulatov and P. M. Lima, Two-dimensional integral-algebraic systems: Analysis and computational methods, J. Comput. Appl. Math. 236 (2011), 132–140.
- [7] D. Conte and B. Paternoster, Multistep collocation methods for Volterra integral equations, J. Appl. Num. Math, 59(8) (2009), 1721-1736.
- [8] G. V. Demidenko and S. V. Uspenski, Partial Differential Equations and Systems not Solvable with Respect to the Highest-order Derivative, Taylor and Francis, (2005).
- [9] M. Fallahpour, M. Khodabin, and K. Maleknejad, Theoretical error analysis and validation in numerical solution of two-dimensional linear stochastic Volterra-Fredholm integral equation by applying the block-pulse functions, J. Cogent Mathematics., 4 (2017).
- [10] R. M. Hafez and Y. H. Youssri, Spectral Legendre-Chebyshev treatment of 2D linear and nonlinear mixed VolterraFredholm integral equation, J. Math. Sci. Lett., (2020).
- [11] A. Karimi, K. Maleknejad, and R. Ezzati, Numerical solutions of system of two-dimensional Volterra integral equation via Legendre wavelets and convergence, J. App. Num. Math., 156 (2020), 228-241.
- [12] Y. Li and N. Sun, Numerical solution of fractional differential equations using the generalized block pulse operational matrix, J. Comput. Math. Appl., 62 (2011), 1046-1054.
- [13] K. Maleknejad, M. Khodabin, and M. Rostami, Numerical solution of stochastic Volterra integral equations by a stichastic operational matrix based on block pulse functins., J. Math. Comput. Model., 55 (2012), 791-800.
- [14] K. Maleknejad and A. Ostadi, Numerical solution of system of Volterra integral equations with weakly singular kernels and its convergence analysis., J. Appl. Numer. Math., 115 (2017), 82-98.
- [15] B. Moiseiwitsch, Integral Equations, Dover Publications Inc., New York, (2005).
- [16] S. Najafalizadeh and R. Ezzati, A block puls nonlinear eoperational matrix method for solving two-dimensional nonlinear integro-differential equations of fractional order, J. Comput. Appl. Math., 326 (2017), 159-170.
- [17] Y. Qian, I. Wu, and Y. Zhang, A Note on the Unique Solutionof the Integral Equations in the framework of Fixed Point Theorem on Partially Ordered Metric Space, Applied Mathematics and Statistics, 4(5) (2016), 154-160.
- [18] C. T. Sheng, Z. Q. Wang, and B. Y. Guo, A Multistep Legendre–Gauss Spectral Collocation Method for Nonlinear Volterra Integral Equations, SIAM Journal on Numerical Analysis, 52(4) (2014), 1953-1980.
- [19] Y. H. Youssri and R. M. Hafez, Chebyshev collocation treatment of Volterra-Fredholm integral equation with error analysis, Arabian Journal of Mathematics, Springer, (2020).
|