| تعداد نشریات | 45 |
| تعداد شمارهها | 1,424 |
| تعداد مقالات | 17,550 |
| تعداد مشاهده مقاله | 56,879,527 |
| تعداد دریافت فایل اصل مقاله | 18,865,249 |
A Novel Approach to Fractional Kinetic Equations Involving Srivastava Polynomial and Multi-Index Bessel Function | ||
| Computational Methods for Differential Equations | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 19 دی 1403 اصل مقاله (537.02 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22034/cmde.2024.61477.2651 | ||
| نویسندگان | ||
| Alok Bhargava1؛ Dayalal Suthar* 2؛ Komal Prasad Sharma3 | ||
| 1Department of Mathematics, Manipal University Jaipur, Jaipur, India. | ||
| 2Department of Mathematics, Wollo University, P.O. Box 1145, Dessie, Ethiopia. | ||
| 3Department of Mathematics, NIMS University Rajasthan, Jaipur, India. | ||
| چکیده | ||
| In the present work, the generalized fractional kinetic equations (FKE) incorporating the composition of Multi-Index Bessel function and Srivastava polynomial are expressed with their fractional derivatives. Moreover, by employing the idea of the Laplace transform, solutions are obtained in terms of the Mittag-Leffler function. Finally, a numerical and graphical interpretation of the outcome is displayed. | ||
| کلیدواژهها | ||
| Generalized fractional kinetic equation (GFKE)؛ Fractional derivative؛ Laplace Transform؛ Mittag-Leffler function | ||
|
آمار تعداد مشاهده مقاله: 186 تعداد دریافت فایل اصل مقاله: 245 |
||