
تعداد نشریات | 45 |
تعداد شمارهها | 1,414 |
تعداد مقالات | 17,374 |
تعداد مشاهده مقاله | 56,050,513 |
تعداد دریافت فایل اصل مقاله | 18,290,782 |
Numerical multiscale methods to determine the coefficient in diffusion problems | ||
Computational Methods for Differential Equations | ||
مقاله 7، دوره 13، شماره 4، دی 2025، صفحه 1162-1176 اصل مقاله (2.47 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.59745.2547 | ||
نویسندگان | ||
Marzieh Tavakolian1؛ Ali Hatam* 1؛ Morteza Fotouhi2؛ Edmund Chadwick3 | ||
1Department of Applied Mathematics, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran 1591634311. | ||
2Department of Mathematical Sciences, Sharif University of Technology, Tehran 11365-9415, Iran. | ||
3School of Science, Engineering & Environment, University of Salford, Salford, M5 4WT, UK. | ||
چکیده | ||
Here we study the inverse problem of determining the highly oscillatory coefficient $a^\varepsilon$ in some PDEs of the form $ u^\varepsilon_t - \nabla. (a^\varepsilon(x) \nabla u^\varepsilon)=0$, in a bounded domain $\Omega \subset\mathbb{R}^d $; $\varepsilon$ indicates the smallest characteristic wavelength in the problem ($0 < \varepsilon \ll 1$). Assume that $g(t, x)$ is given input data for $(t, x) \in (0,T) \times\partial \Omega$ and the associated output is the thermal flux $a^\varepsilon(x)\nabla u(T_0,x)\cdot n(x)$ measured on the boundary at a given time $T_0$. Due to the ill-posedness of the inverse problem, we reduce the dimension by seeking effective parameters. For the forward solver, we apply either analytic homogenization or some numerical multiscale methods such as the FE-HMM and LOD method. | ||
کلیدواژهها | ||
Heterogeneous multiscale method؛ Homogenization؛ Inverse problem؛ Localized orthogonal decomposition method؛ Parabolic partial differential equations | ||
آمار تعداد مشاهده مقاله: 127 تعداد دریافت فایل اصل مقاله: 271 |