| 
		
[1] A. Abdulle, D. Arjmand, and E. Paganoni, Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems, C. R. Math. Acad. Sci. Paris, 357 (2019), 545–551.[2] A. Abdulle, D. Arjmand, and E. Paganoni, A parabolic local problem with exponential decay of the resonance error for numerical homogenization, Mathematical Models and Methods in Applied Sciences, 31(13) (2021), 2733–2772.[3] A. Abdulle, D. Arjmand, and E. Paganoni, An elliptic local problem with exponential decay of the resonance error for numerical homogenization, Multiscale Modeling & Simulation, 21(2) (2023), 513–541.[4] A. Abdulle and A. Blasio, A Bayesian Numerical Homogenization Method for Elliptic Multiscale Inverse Problems, SIAM/ASA J. Uncertain. Quantif., 8 (2020), 414–450.[5] A. Abdulle and A. Di Blasio, Numerical homogenization and model order reduction for multiscale inverse problems, Multiscale Model. Simul., 17 (2019), 399–433.[6] A. Abdulle and W. E, Finite difference heterogeneous multi-scale method for homogenization problems, J. Comput. Phys., 191 (2003), 18– 39.[7] A. Abdulle and A. Nonnenmacher, A short and versatile finite element multiscale code for homogenization problems, Comput. Methods Appl. Mech. Engrg., 198 (2009), 2839–2859.[8] D. Arjmand and O. Runborg, A time dependent approach for removing the cell boundary error in elliptic homogenization problems, Journal of Computational Physics, 314(2) (2016), 206–227.[9] D. Arjmand and O. Runborg, Estimates for the upscaling error in heterogeneous multiscale methods for wave propagation problems in locally periodic media, Multiscale Modeling & Simulation, 15(2) (2017), 948–976.[10] L. Beilina, Inverse problems and applications, 2015.[11] A. Bensoussan, J. L. Lions, and G. Papanicolaou, Finite Asymptotic Analysis for Periodic Structures, NorthHolland, Amsterdam, 1978.[12] X. Blanc and C. Le Bris, Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings, Netw. Heterog. Media, 5(1) (2010), 1–29.[13] B. Canuto and O. Kavian, Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., 32 (2001), 963–986.[14] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford University Press, Oxford, 1999.[15] D. Colton, H. Engl, A. K. Louis, J. McLaughin, and W. Rundell, Surveys on Solution, Methods for Inverse Problems, Springer-Verlag, Wien, 2000.[16] R. Du and P. Ming, Heterogeneous multiscale finite element method with novel numerical integration schemes, COMMUN. MATH. SCI., 8 (2010), 863–885.[17] B. Engquist, The heterogeneous multi-scale methods, Commun. Math. Sci., 1 (2003), 87–132.[18] C. Frederick and B. Engquist, Numerical methods for multiscale inverse problems, Commun. Math. Sci., 15(2) (2017), 305–328.[19] A. Gloria, Reduction of the resonance error. Part 1: Approximation of homogenized coefficients, Math. Models Methods Appl. Sci., 21(8) (2011), 1601–1630.[20] O. Jecker, Optimization based methods for highly heterogeneous multiscale problems and multiscale methods for elastic waves, No. 7467. EPFL, 2017.[21] P. Ljung, R. Maier, and A. Maalqvist, A space-time multiscale method for parabolic problems, Multiscale Modeling & Simulation, 20(2) (2022), 714–740.[22] A. Maalqvist and A. Persson, Multiscale techniques for parabolic equations, Numer. Math., 138(1) (2018), 191–217.[23] A. Maalqvist and D. Peterseim, Localization of elliptic multiscale problems, Math. Comp., 83(290) (2014), 2583– 2603.[24] A. Maalqvist and D. Peterseim, Numerical homogenization by localized orthogonal decomposition, Vol. 5 of SIAM Spotlights, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2020.[25] P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for parabolic homogenization problems, J. AMS, 18(1) (2006), 121– 156.[26] J. Nolen, G. A. Pavliotis, and A. M. Stuart, Multiscale Modelling and Inverse Problems, Inverse Problems, Springer, 18(1) (2010), 1– 32. |