
تعداد نشریات | 45 |
تعداد شمارهها | 1,390 |
تعداد مقالات | 17,013 |
تعداد مشاهده مقاله | 54,785,712 |
تعداد دریافت فایل اصل مقاله | 17,330,359 |
ارزیابی پاسخ غیرخطی شمع منفرد مدفون در ماسه با استفاده از شبیه سازی عددی | ||
نشریه مهندسی عمران و محیط زیست | ||
مقاله 8، دوره 55، شماره 118، خرداد 1404، صفحه 85-105 اصل مقاله (2.32 M) | ||
نوع مقاله: مقاله کامل پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/ceej.2024.58537.2287 | ||
نویسندگان | ||
نوید حسن پوری نوتاش1؛ روزبه دبیری* 1؛ مسعود حاجی علیلوی بناب2؛ لاریسا خدادادی3؛ فریبا بهروز سرند1 | ||
1گروه مهندسی عمران، واحد تبریز، دانشگاه آزاد اسلامی، تبریز | ||
2گروه مهندسی عمران، دانشکده مهندسی عمران، دانشگاه تبریز | ||
3گروه مهندسی برق، واحد تبریز، دانشگاه آزاد اسلامی، تبریز | ||
چکیده | ||
ارزیابی عملکرد شمع در برابر بارگذاری های لرزهای یکی از مسائل مهم در مهندسی ژئوتکنیک به شمار میرود. رویکردهای مختلفی در ارزیابی این عملکرد مورد استفاده قرار میگیرند که میتوان به رویکردهای پیوسته و گسسته اشاره نمود. هدف مطالعه حاضر بررسی عوامل تأثیرگذار در دقت شبیهسازیهای دوبعدی سیستم شمع- خاک- روسازه تحت ارتعاش زلزله است. ضرورت انجام این بررسیها بهبود دقت تحلیل های دوبعدی به منظور کاهش هزینه های محاسباتی است. مطالعات نشان داده اند که شبیه سازی مناسب المان فصل مشترک و مدل رفتاری مورد استفاده برای خاک تأثیر بسزایی در تخمین دقیق پاسخ شمع بر عهده دارند. بهبود مدل های رفتاری الاستیک- پلاستیک کامل (مانند مور- کولمب و دراکر- پراگر) در تحلیل های دینامیکی نیز موضوع مهم دیگر است. در این زمینه، تخمین دقیق مدول نظیر کرنش برشی مؤثر در تحلیل دینامیک حائز اهمیت است. در مطالعه حاضر اثر این پارامترها در پیشبینی هرچه دقیقتر پاسخ لرزه ای شمع به صورت دوبعدی با استفاده از نرم افزار Abaqus مورد ارزیابی قرار گرفته و با نتایج تجربی گزارش شده از آزمون سانتریفیوژ مقایسه شده است. بر اساس نتایج، تحلیل دوبعدی توانست بیشینه لنگر خمشی مقطع را با خطای کمتر از 1% محاسبه نماید. این در حالی است که میزان خطا در تخمین بیشینه جابهجایی شمع در بهترین حالت حدود 15% به دست آمد. این نتیجه نشان میدهد که اگرچه تحلیل دوبعدی با درنظر گرفتن موارد پیشنهاد شده در مطالعه حاضر توانست دقت بالایی در تخمین بیشینه لنگر خمشی شمع ارائه دهد، اما تحلیل سهبعدی همچنان برای بررسی جابهجایی شمع ضروری است. | ||
کلیدواژهها | ||
شمع؛ المان فصل مشترک؛ کرنش برشی مؤثر؛ حلگر ضمنی و صریح؛ Abaqus | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
ABAQUS INC., “Analysis of Geotechnical Problems with ABAQUS”, ABAQUS, Incorporated., 2003. Abuhajar O, El Naggar H, Newson T, “Seismic soil-culvert interaction”, Canadian Geotechnical Journal Canadian Science Publishing, 2015, 52 (11), 1649-67. https://doi.org/10.1139/cgj-2014-0494 Afshan S, Luquin IA, Gardner L, Gedge G, Jandera M, Saladrigas ER, Rossi B, Stranghoner N, Zhao O, “Design Manual for Structural Stainless Steel”, 4th Edition, SCI, Silwood Park, Ascot, Berkshire (Number:SCI P413), 2017. Ali RS, Idriss R, Allaoua B, Fahim K, “Comparison between 2d and 3d analysis of a mono-pile under lateral cyclic load”, 5ème Congrès Maghrébin en Ingénierie Géotechnique, October, 2016. Alizadeh Sabet S, “Application of a Cosserat Continuum Model to Non-associated Plasticity”, PhD Dissertation, Department of Civil and Structural Engineering, University of Sheffield, 2020. Andreotti G, Calvi GM, “Design of laterally loaded pile-columns considering SSI effects: Strengths and weaknesses of 3D, 2D, and 1D nonlinear analysis”, Earthquake Engineering and Structural Dynamic, John Wiley & Sons, Ltd, 2021, 50 (3), 863-888. https://doi.org/10.1002/eqe.3379 Arulmoli K, Muraleetharan KK, Hossain MM, Fruth LS, “VELACS (Verification of Liquefaction Analyses by Centrifuge Studies) Laboratory Testing Program: Soil Data Report”, The Earth Technology Corporation, Project No. 90-0562, Washington, D.C., 1992. Basarah YI, Numanoglu OA, Hashash YMA, Dashti S, “Impact of Hysteretic Damping on Nonlinear Dynamic Soil-Underground Structure-Structure Interaction Analyses”, American Society of Civil Engineers, 2019, 208-218. https://doi.org/10.1061/9780784482100.022 BS EN 10088-5, “Stainless Steel-Part 5: Technical delivery conditions for bars, rod, wire sections and bright products of corrosion resisting steels for construction purposes”, British Standard. 2009. Castro G, “Redistribution research”, Memorandum to Void Redistribution Research Team By GEI Consultants, University of California, Davis, CA, 2001. Damians IP, Yu Y, Lloret A, Bathurst RJ, Josa A, “Equivalent interface properties to model soil-facing interactions with zero-thickness and continuum element methodologies”, Manzanal D, Sfriso AO, editors. From Fundam to Appl Geotech 6th Int Symp Deform Charact Soils, Buenos Aires, IOS Press, November, 2015. Darendeli MB, “Development of a new family of normalized modulus reduction and material damping curves”, Ph.D. Dissertation, Faculty of the Graduate School of The University of Texas at Austin, 2001. Dassault Systèmes, “Abaqus 6.14 Analysis user’s guide Volume III: Materials”, Abaqus 6.14 Documentation, 2014a. Dassault Systèmes, “Abaqus 6.14 Analysis user’s guide Volume IV: Elements”, Abaqus 6.14 Documentation, 2014b. Dassault Systèmes, “Abaqus Version 6.14”, 2014c. Desai CS, “Constitutive modeling and computer methods in geotechnical engineering”, Acta Geotechnica Slovenia, 2010, 7 (1), 5-29. Corpus ID: 210044235 Desai CS, Zaman MM, Lightner JG, Siriwardane HJ, “Thin‐layer element for interfaces and joints”, International Journal of Numerical Analitical and Methods in Geomechnics, John Wiley & Sons, Ltd, 1984,8 (1), 19-43. https://doi.org/10.1002/NAG.1610080103 Eurocode 3, “Design of steel structures-Part 1-4: General rules-Supplementary rules for stainless steels, EN 1993-1-4”, European Standard, 2006. Garoz D, Gilabert FA, Sevenois RDB, Spronk SWF, Van Paepegem W, “Consistent application of periodic boundary conditions in implicit and explicit finite element simulations of damage in composites”, Composites Part B: Engineering, Elsevier, 2019, 168, 254-266. https://doi.org/10.1016/J.COMPOSITESB.2018.12.023 Garoz D, Gilabert FA, Sevenois RDB, Spronk SWF, Rezaei A, Van Paepegem W, “Definition of periodic boundary conditions in explicit dynamic simulations of micro-or meso-scale unit cells with conformal and non-conformal meshes”, ECCM 2016-Proceeding of the 17th European Conference on Composite Materials, European Society for Composite Materials (ESCM), Munich, Germany, 2016. Gazetas G, Dobry R, “Horizontal response of piles in layered soils”, Journal of Geotechnical Engineering, American Society of Civil Engineers, 1984, 110 (1), 9410 (1984) 110, 1 (20) 20-40. https://doi.org/10.1061/(ASCE)0733- Gohl WB, “Response of pile foundations to simulated earthquake loading : experimental and analytical results volume II”, Ph.D. Dissertation, Department of Civil Engineering, University of British Columbia, Vancouver, 1991. Groholski DR, Hashash YMA, Kim B, Musgrove M, Harmon J, Stewart JP, “Simplified Model for Small-Strain Nonlinearity and Strength in 1D Seismic Site Response Analysis”, Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, 2016, 142 (9), 04016042. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001496 Hasanpouri Notash N, Dabiri R, Hajialilue Bonab M, Khodadadi L, Behrouz Sarand F, “A finite element modeling of drained triaxial test on loose sand using different constitutive models”, AUT Journal of Civil Engineering, Amirkabir University of Technology, 2022, 6 (3), 339-358. https://doi.org/10.22060/ajce.2023.22031.5817 Hasanpouri Notash N, Dabiri R, Hajialilue Bonab M, Khodadadi L, Behrouz Sarand F, “Evaluation of the inertial and kinematic interactions effects on the seismic behavior of single piles embedded in sand using different theoretical approaches”, Geotechnical and Geological Engineering, Springer, 2024, 42 (1), 285-305. https://doi.org/10.1007/s10706-023-02571-w Hashash YMA, Musgrove MI, Harmon JA, Ilhan O, Xing G, Numanoglu O, Groholski DR, Phillips CA, Park D, “DEEPSOIL 7”, Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign, 2020. Hazzar L, Hussien MN, Karray M, “Two-dimensional modelling evaluation of laterally loaded piles based on three-dimensional analyses”, Geomechanics and Geoengineering, Taylor & Francis, 2019, 15 (4), 263-280. https://doi.org/10.1080/17486025.2019.1640897 Helwany S, “Applied Soil Mechanics: With ABAQUS Applications”, John Wiley & Sons, 2007. Hibbitt, Karlsson, Sorensen, “ABAQUS/Explicit User’s Manual”, Hibbitt, Karlsson and Sorensen, Incorporated, 2000. Hudson M, Idriss IM, Beikae M, “User’s Manual for QUAD4M: A computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base”, University of California, 1994. Hussein AF, El Naggar MH, “Seismic behaviour of piles in non-liquefiable and liquefiable soil”, Bulletin of Earthquale Engineering, Springer Science and Business Media B.V., 2022, 20 (1), 77-111. https://doi.org/10.1007/s10518-021-01244-4 Idriss I, Sun J, “User’s manual for SHAKE91: A computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits”, University of California, 1992. Ishibashi I, Zhang X, “Unified dynamic shear moduli and damping ratios of sand and clay”, Soils and Foundations, Elsevier, 1993, 33 (1), 182-191. https://doi.org/10.3208/SANDF1972.33.182 Itasca, “FLAC manual (fast lagrangian analysis of continua)”, Itasca Consult Group, Incorporated, ,version 7,USA, 2011. Kagawa T, Kraft LM, “Lateral load-deflection relationships of piles subjected to dynamic loadings”, Soils Found, Elsevier, 1980, 20 (4), 19-36. Kamai R, Boulanger RW, “Simulations of a centrifuge test with lateral spreading and void redistribution effects”, Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, 2013, 139 (8), 1250-1261. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000845 Lee KZZ, Chang NY, Ko HY, “Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking”, Geotextile and Geomembranes, Elsevier, 2010, 28 (4), 317-334. https://doi.org/10.1016/J.GEOTEXMEM.2009.09.008 Liu H, “Dynamic analysis of subway structures under blast loading”, Geotechnical and Geological Engineering, Springer, 2009, 27 (6), 699-711. https://doi.org/10.1007/S10706-009-9269-9 Luo C, Yang X, Zhan C, Jin X, Ding Z, “Nonlinear 3D finite element analysis of soil-pile-structure interaction system subjected to horizontal earthquake excitation”, Soil Dynamic and Earthquake Engineering, Elsevier, 2016, 84, 145-156. https://doi.org/10.1016/J.SOILDYN.2016.02.005 Madabhushi G, Knappett J, Haigh S, “Design of pile foundations in liquefiable soils”, Imperial College Press, 2010. Menq F-Y, “Dynamic Properties of Sandy and Gravelly Soils”, Ph.D. Dissertation, Faculty of the Graduate School of The University of Texas at Austin, 2003. Ochmański M, Mašín D, Duque J, “An approach for 2D modelling of laterally loaded piles”, Soils and Foundations, Elsevier, 2023, 63 (1), 101263. https://doi.org/10.1016/j.sandf.2022.101263 Oettl G, Stark RF, Hofstetter G, “A comparison of elastic-plastic soil models for 2D FE analyses of tunnelling”, Computers in Geotechnics, Elsevier, 1998, 23 (1-2), 19-38. https://doi.org/10.1016/S0266-352X(98)00015-9 Oztoprak S, Bolton MD, “Stiffness of sands through a laboratory test database”, Geotechnique, Thomas Telford Ltd, 2013, 63 (1), 54-70. https://doi.org/10.1680/GEOT.10.P.078 Peiris T, Thambiratnam D, Perera N, Gallage C, “Soil-Pile interaction of pile embedded in Deep-Layered marine sediment under seismic excitation”, Structural Engineering International, Taylor & Francis, 2014, 24 (4), 521-531. https://doi.org/10.2749/101686614X13854694314720 PLAXIS, “PLAXIS 2D reference manual”, Rotterdam, Netherlands, Balkema, 2012. Popescu R, Prevost JH, “Centrifuge validation of a numerical model for dynamic soil liquefaction”, Soil Dynamic and Earthquake Engineering, Elsevier, 1993, 12 (2), 73-90. https://doi.org/10.1016/0267-7261(93)90047-U Pradhan SK, Desai CS, “DSC model for soil and interface including liquefaction and prediction of centrifuge test”, Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, 2006, 132 (2), 214-222. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(214) Rahmani A, Taiebat M, Finn WDL, Ventura CE, “Evaluation of p-y springs for nonlinear static and seismic soil-pile interaction analysis under lateral loading”, Soil Dynamic and Earthquake Engineering, Elsevier, 2018, 115, 438-447. https://doi.org/10.1016/J.SOILDYN.2018.07.049 Roy K, Hawlader B, Kenny S, Moore I, “Finite element modeling of lateral pipeline-soil interactions in dense sand”, Canadian Geotechnical Journal, NRC Research Press, 2016, 53 (3), 490-504. https://doi.org/10.1139/CGJ-2015-0171 Saberi M, Annan CD, Konrad JM, “Implementation of a soil-structure interface constitutive model for application in geo-structures”, Soil Dynamic and Earthquake Engineering, Elsevier, 2019, 116, 714-731. https://doi.org/10.1016/j.soildyn.2018.11.001 Sadiq S, Van Nguyen Q, Jung H, Park D, “Effect of flexibility ratio on seismic response of cut-and-cover box tunnel”, Advances in Civil Engineering, Wiley, 2019. https://doi.org/10.1155/2019/4905329 Schanz T, Vermeer PA, “Angles of friction and dilatancy of sand”, Geotechnique, Thomas Telford Ltd, 1996, 46 (1), 145-151. https://doi.org/10.1680/geot.1996.46.1.145 Schnabel PB, Lysmer J, Seed HB, “SHAKE: A computer program for earthquake response analysis of horizontally layered sites”, Earthquake Engineering Research Center, 1972. Sharma KG, Desai CS, “Analysis and Implementation of Thin‐Layer Element for Interfaces and Joints”, Journal of Engineering Mechanics, American Society of Civil Engineers, 1992, 118 (12), 2442-2462. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:12(2442) Shin H, Kim JB, “Physical interpretations for cap parameters of the modified Drucker-Prager cap model in relation to the deviator stress curve of a particulate compact in conventional triaxial testing”, Powder Technology, Elsevier, 2015, 280, 94-102. https://doi.org/10.1016/j.powtec.2015.04.023 Shin H, Kim JB, Kim SJ, Rhee KY, “A simulation-based determination of cap parameters of the modified Drucker-Prager cap model by considering specimen barreling during conventional triaxial testing”, Computational Materials Science, Elsevier, 2015,100 (PA), 31-38. https://doi.org/10.1016/j.commatsci.2014.10.024 Subba Rao KS, Allam MM, Robinson RG, “Interfacial friction between sands and solid surfaces”, Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, Thomas Telford-ICE Virtual Library, 1998, 131 (2), 75-82. https://doi.org/10.1680/IGENG.1998.30112 Vallejos J, “Hydrostatic compression model for sandy soils”, Canadian Geotechnical Journal, 2008, 45 (8), 1169-1179. https://doi.org/10.1139/T08-048 Vitharana N, “Rational prediction of lateral behaviour of concrete piles incorporating pile (concrete) non-linearity”, Proceding 14th International Conference of Soil Mechanics and Foundation Engineering Recent Development in Foundation Technics, 1997, 915-920. Wang D, Zhao C, “Strain-threshold-and frequency-dependent seismic simulation of nonlinear soils”, Earthquake Science, 2014, 27 (6), 615-626. https://doi.org/10.1007/S11589-014-0102-Z Wilson DW, “Soil-pile-superstructure interaction in liquefying sand and soft clay”, Ph.D. Dissertation, University of California Davis, 1998. Wu G, Finn WDL, “Dynamic nonlinear analysis of pile foundations using finite element method in the time domain”, Canadian Geotechnical Journal, National Research Council of Canada, 1997, 34 (1),44-52. https://doi.org/10.1139/T96-088 Yasseri S, “Seismic Design of Subsea Jumper per ISO: Part I-Preliminaries”, International Journal of Coastal and Offshore Engineering, 2020, 4 (1), 31-43. https://doi.org/10.29252/ijcoe.4.1.31 Yoshida N, Kobayashi S, Suetomi I, Miura K, “Equivalent linear method considering frequency dependent characteristics of stiffness and damping”, Soil Dynamic and Earthquake Engineering, Elsevier, 2002, 22 (3), 205-222. https://doi.org/10.1016/S0267-7261(02)00011-8 Yussof MM, Silalahi JH, Kamarudin MK, Chen PS, Parke GAR, “Numerical evaluation of dynamic responses of steel frame structures with different types of haunch connection under blast load”, Applied Science, Multidisciplinary Digital Publishing Institute, 2020, 10 (5), 1815. https://doi.org/10.3390/app10051815 Zaman M, “Influence of interface behavior in dynamic soil-structure interaction problems”, Ph.D. Dissertation, Faculty of The Civil Engineering and Engineering Mechanics, University of Arizona, 1982. Zhang L, Goh SH, Liu H, “Seismic response of pile-raft-clay system subjected to a long-duration earthquake: centrifuge test and finite element analysis”, Soil Dynamic and Earthquake Engineering, Elsevier, 2017, 92, 488-502. https://doi.org/10.1016/J.SOILDYN.2016.10.018 | ||
آمار تعداد مشاهده مقاله: 150 تعداد دریافت فایل اصل مقاله: 3 |