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Abstract

In this work, we obtain Noether, Lie, and Killing symmetries of the Lagrangian of the Berger metric on a squashed

three-sphere. With the help of the result of Noether’s theorem, we have presented the expressions for conservation

laws corresponding to all Noether symmetries.
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1. Introduction

In this paper, we are interested in considering a symmetry analysis and conservation laws for the Berger metric of
the squashed sphere. Assuming local coordinate (θ, ψ, t), the Berger metric of the squashed sphere is given (in Euler
coordinates) by [11]:

4ds2 = a2(dt+ cos θdψ)2 + dθ2 + sin2 θdψ2. (1.1)

In this expression, the squashing parameter is one, corresponding to the round sphere, where a is the radius of the
sphere, and the angles ψ and t obey the periodic identifications ψ → ψ+2ψ, t→ t+4ψ, while the range of θ is [0, ψ].

Today, recent geometric studies have mainly focused on pseudo-Riemannian geometry. Conservation laws of four-
dimensional non-reductive homogeneous spaces were investigated in [6], while conformal Einstein pp-wave as quantum
solutions were considered in [14]. Particular symmetry analysis of conservation laws on pseudo-Reimannian manifolds
was also studied in several cases. Lie symmetries of the wave equation on conformally flat spaces were studied in [2].
Computation of partially invariant solutions for the Einstein Walker manifolds studied in [15]. Symmetry analysis of a
fourth-order nonlinear diffusion and the Buckmaster equation studied through [3, 19]. The invariance of the Perturbed
mKdVKS Equation was investigated in [13]. Conservation laws of a universal KP-like equation in 2 + 1 dimensions
are also considered in [1].

The purpose of this paper is to analyze the Noether, Lie, and Killing symmetries for a class of pseudo-Riemannian
spaces, namely the squashed three-sphere ones equipped with metric (1.1). We give all the possible Noether, Lie, and
Killing symmetries. After the Noether symmetries are determined, we will use a simple and essential way to determine
the conservation laws of the Euler-Lagrange equations through a corollary of the Noether theorem [16]. Of course,
this theorem depends on the availability of a Lagrangian and related Noether symmetries that keep the integral action
invariant. Recently, there has been work [8] in which the relationship of Noether symmetry with the Killing vectors
of some specific spacetimes is mentioned. In [4, 5, 7], Lie point symmetries and conservation laws are calculated. In
another article [21], the authors propose a theorem based on which the Lie symmetries of geodesic equations in a
Riemannian space depends on collineations of the metric. In the article [9], the author tries to analyze the symmetries
of the charged squashed Kaluza-Klein black hole metric.
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This paper is organized in the following way. Section 2 is devoted to obtain data about the isometries of the metric
from a study of the Noether symmetries associated with the corresponding natural Lagrangian. In section 3, we have
collected some results related to Killing vector symmetry on the spaces under consideration. In the last section, we
have presented the expressions for conservation laws corresponding to all Noether symmetries.

2. Noether symmetry

Metric (1.1), together with some choices for the different fields of supergravity background, can be coupled to a
manifold of matter multiplets. The squashed 3-sphere appears as the spatial section of the frozen mixmaster universe
and quantum field theory is explored on this space-time [17]. The squashed sphere can be considered as a space of
harmonic spinors (the null space of the Dirac operator) on a manifold. Indeed, it is a good illustration of the fact that
the number of harmonic spinors is not a topological invariant of the manifold, but depends on the particular metric
too [18]. Homogeneously squashed sphere has been widely used in scalar quantum field theory.

The Lagrangian is practically a function that determines the dynamics (equations of motion) and symmetries of a
dynamical system. The Lagrangian function, L, for a system is defined to be the difference between the kinetic and
potential energies expressed as a function of positions and velocities. Let M is a Riemannian manifold with dimension
n, equipped with the g metric. In a local coordinate x = (x1, . . . , xn), the corresponding Lagrangian for metric (1.1)
is obtained using the following formula

L(s, xµ, ẋµ) =
∑
µ,ν

gµν(x)ẋ
µẋν , µ, ν = 1, · · · , 4, (2.1)

where gµν(x) is a smooth function and (gµν(x)) is a positive definite matrix. Hence, the Lagrangian for metric (1.1)
is

L =
1

4
a2(ṫ+ cos θψ̇)2 +

1

4
θ̇2 +

1

4
sin θ2ψ̇2, (2.2)

where the dot represents the derivative with respect to arc length s. First, we will determine Lie symmetries, and
then discuss Noether symmetries. The Euler-Lagrange (geodesic) equations associated with the natural Lagrangian
for metric (1.1) are

a2

2
(−ẗ+ sin θθ̇ψ̇ − cos θψ̈) = 0,

1

2
(−a2(ṫ− cos θψ̇) sin θψ̇ + sin θ cos θ(ψ̇)2 − θ̈) = 0,

−a2

2
cos θẗ− (

−a2

2
sin θ cos θψ̇ − a2

2
(ṫ− cos θψ̇) sin θ + sin θ cos θψ̇)θ̇ − (

a2

2
cos2 θ +

1

2
sin2 θ)ψ̈ = 0.

(2.3)

A generator of Lie symmetry as a Lie group of transformation keeps the system invariant. Calculations in the Lie
point symmetries method for (2.3) create a system of partial differential equations which the total number of these
equations is 68. After solving the obtained equations, the basis of Lie point symmetries for squashed three-sphere is
three-dimensional, with the following bases:

v1 = ∂s, v2 = ∂θ, v3 = ∂t. (2.4)

We show that notifications about metric isometries can be fully recovered by studying the Noether symmetries related
to the corresponding natural Lagrangian, L. In general, in a local coordinate x = (x1, x2, · · · , xn) assume that

v = ξ(s,x)∂s +
∑
ν

ην(s,x)∂xν , (2.5)

is a vector field, that belongs to tangent space TxM . The expression

v[1] = v +
∑
ν

(
ην,s + ην,sµẋ

µ − ξ,sẋ
ν − ξ,sẋ

µẋν
)
∂ẋν , (2.6)
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is the first prolongation of the vector field (2.5) (see [12]). In this case, v is a Noether symmetry of the Lagrangian L,
if there exists a gauge function, A(s,x), such that

v[1]L+ (Dsξ)L = DsA, (2.7)

where

Ds = ∂s +
∑
µ

ẋµ∂xµ . (2.8)

Using Eq. (2.8), a system of PDEs is obtained by solving which we determine the coefficients of the infinitesimal
generators (2.5) (see [5]).

In case the squashed sphere of dimension three equipped with metric (1.1), DsA = 0. According to (2.5), the
correspondence vector field of Lagrangian (2.2) is

v = ξ(s, θ, ψ, t)∂s + τ(s, θ, ψ, t)∂t + η(s, θ, ψ, t)∂θ + ζ(s, θ, ψ, t)∂ψ. (2.9)

The first prolongation of Eq. (2.9) is as

v[1] = v +

(
τs + τψψ̇ + τθ θ̇ + τtṫ−

[
ξs + ξψψ̇ + ξθ θ̇ + ξtṫ

]
ṫ

)
∂ṫ

+

(
ηs + ηψψ̇ + ηθ θ̇ + ηtṫ−

[
ξs + ξψψ̇ + ξθ θ̇ + ξtṫ

]
θ̇

)
∂θ̇

+

(
ζs + ζψψ̇ + ζθ θ̇ + ζtṫ−

[
ξs + ξψψ̇ + ξθ θ̇ + ξtṫ

]
ψ̇

)
∂ψ̇ (2.10)

which is obtained from formula (2.6), then substituting Lagrangian (2.2), and first prolonged vector field (2.10),
into Eq. (2.7) assuming A(s, θµ) = 0, we find the following system of 20 partial differential equations:

−1

4
ξta

2 =− 1

4
ξθa

2 = −1

2
a2ξθ cos θ = −fs = −1

4
ξt = −1

4
ξθ

=− 1

4
ξψ = −1

2
a2ξt cos θ −

1

4
ξψa

2 =
1

2
ηs − fθ =

1

2
ηθ −

1

4
ξs

=− 1

4
ξsa

2 +
1

2
ζta

2 cos θ +
1

2
a2τt =

1

4
ξψ cos2 θ − 1

4
ξψa

2 cos2 θ − 1

4
ξψ

=+
1

2
ηt +

1

2
a2τθ +

1

2
ζθa

2 cos θ = −ft +
1

2
a2τs +

1

2
ζsa

2 cos θ

=− 1

4
ξθ −

1

4
ξθa

2 cos2 θ +
1

4
ξθ cos

2 θ

=− 1

4
ξta

2 cos2 θ − 1

4
ξt −

1

2
a2ξψ cos θ +

1

4
ξt cos

2 θ

=+
1

2
a2τθ cos θ −

1

2
ζθ cos

2 θ +
1

2
a2 cos2 θζθ +

1

2
ηψ +

1

2
ζθ

=− fψ +
1

2
a2τs cos θ +

1

2
ζs +

1

2
a2ζs cos

2 θ − 1

2
ζs cos

2 θ

=− 1

2
a2ξs cos θ −

1

2
ζt cos

2 θ +
1

2
ζψa

2 cos θ +
1

2
ηa2 sin θ +

1

2
ζta

2 cos2 θ +
1

2
ζt +

1

2
a2τt cos θ +

1

2
τψa

2

=− 1

4
ξs +

1

2
ζψ − 1

2
a2η cos θ sin θ − 1

2
cos2 θζψ +

1

2
τψa

2 cos θ

−1

4
ξsa

2 cos2 θ +
1

2
ζψa

2 cos2 θ +
1

2
η cos θ sin θ +

1

4
ξs cos

2 θ = 0.
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Solving this system of equations gives us the Noether symmetries Lie group associated with the Berger metric (1.1)
possesses a Lie algebra generated by (2.6), whose coefficients are as the follows:

ξ = C1,

η = C3 sinψ + C4 cosψ,

τ =
−C3 cosψ + C4 sinψ

sin θ
+ C5,

ζ =
C3 cosψ − C4 sinψ

tan θ
+ C6,

f = C2,

(2.11)

where Ci ∈ R, i = 1, ..., 6. Now, we can find the Noether symmetries of metric (1.1). The infinitesimal generator of
Noether symmetries associated with the Berger metric (1.1) has five dimensions with the following bases

v1 := ∂s,

v2 := ∂ψ,

v3 := ∂t,

v4 := −cosψ∂t
sin θ

+ sinψ∂θ +
cosψ cos θ∂ψ

sin θ
,

v5 :=
sinψ∂t
sin θ

+ cosψ∂θ +
sinψ cos θ∂ψ

sin θ
,

(2.12)

It should be noted that v1 is not a Killing vector, and {v2,v3,v4,v5} form the basis of a decomposable four-dimensional
Lie algebra g of isometries as su(2,R)× u(1). There exists a basis {ϑ1, · · ·ϑ5} of g such that the non-zero Lie brackets
are

[ϑ1, ϑ3] = ϑ4, [ϑ1, ϑ4] = −ϑ3, [ϑ3, ϑ4] = ϑ1.

Using the Lie algebra structure g, it is possible to study the geometric concepts (such as curvature concepts) of this
space algebraically and independent of the coordinates.

3. Killing vector symmetry

Let M be an n-dimensional pseudo-Riemannian manifold with metric g. Geodesic equations as local space-time
coordinates θ = (θ1, . . . , θn), construct a system of nonlinear second-order ODEs

θ̈i +
∑
j,k

Γijkθ̇j θ̇k = 0, 1 ≤ i ≤ n, (3.1)

in which Γijk represents the Christoffel elements and “·” shows derivative concerning arc length s. Assume the nonlinear

second-order system of n ODEs (3.1) as follows:

Si(s, θ, θ
(1), θ(2)) = 0, 1 ≤ i ≤ n, (3.2)

where θ(t), 1 ≤ t ≤ 2, is the t-th order derivative concerning s. Assume that the action of a one-parameter Lie group
of transformations on the space (s, θ) is given as the following relation:

s̄ 7→ s+ ϵξ(s, θ), θ̄β 7→ θβ + ϵηβ(s, θ), (3.3)

where β = 1, 2, . . . , n, with associated infinitesimal generator

v = σ(s, θ)∂s +
∑
β

φβ∂θβ . (3.4)

The second-order prolongation of vector field (3.4) is given by

v[2] = v +
∑
β

[
φβ,(1)(s, θ, θ

(1))∂θβ
,(1)

+ φβ,(2)(s, θ, . . . , θ
(2))∂θβ

,(2)

]
, (3.5)
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Table 1. Killing Lie algebra for metric (1.1).

[ϑi, ϑj ] ϑ1 ϑ2 ϑ3 ϑ4
ϑ1 0 0 0 ϑ1
ϑ2 0 0 0 0
ϑ3 0 0 0 0
ϑ4 −ϑ1 0 0 0

where

φβ,(1) = Dφβ,(0) − θβ,(1)Dσ, φβ,(2) = Dφβ,(1) − θβ,(2)Dσ, (3.6)

are the prolongation coefficients, and φα,(0) = φα(s, θ), and D is the total derivative operator.

If the system (3.2) has the invariance condition under the one-parameter Lie group of transformations (3.3) then
we have the invariance criteria [10]. Therefore, the vector field v is a Killing vector symmetry of (3.2) iff

v[2]Si|Si=0 = 0. (3.7)

Solving (3.7), we obtain the determining equations as a system of partial differential equations. If these determining
equations have solutions, then these solutions will be the Killing vector symmetry of (3.2).

Theorem 3.1. The infinitesimal generators of Killing vector symmetry regarding Eq. (1.1) are four-dimensional, with
the following bases:

ϑ1 =∂s, ϑ2 = ∂ψ, ϑ3 = ∂t, ϑ4 = s∂s.

Proof. The non-zero elements of the Christoffel symbols regarding to the metric (1.1) are

Γθψψ = −Γψθψ =
1

4
(a2 − 1) sin θ cos θ,

Γθψt = −Γψθt = −Γtθψ =
1

8
a2 sin θ.

(3.8)

Replace the non-zero components (3.8) in (3.1). We earn the folloing geodesic equations for the metric (1.1):

S1 =θ̈ +
1

4
(a2 − 1)ψ̇ψ̇ sin θ cos θ +

1

4
a2ψ̇ṫ sin θ,

S2 =ψ̈ − 1

2
(a2 − 1)θ̇ψ̇ sin θ cos θ − 1

4
a2θ̇ṫ sin θ,

S3 =ẗ− 1

4
a2θ̇ψ̇ sin θ.

(3.9)

According to (3.4), the infinitesimal generator corresponding to the Killing vector symmetry of the system will be:

v = ξ(s, θ, ψ, t)∂s + η1(s, θ, ψ, t)∂θ + η2(s, θ, ψ, t)∂ψ + η3(s, θ, ψ, t)∂t. (3.10)

Applying the prolongation Equation (3.5) and also, the invariance condition (3.7), we have

ξ =C1s+ C2, η1 = 0, η2 = C4, η3 = C3.

We find Killing vector symmetries. □

The infinitesimal generators of Killing vector symmetry associated with metric (1.1) satisfy the following commu-
tator tables:
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4. Conservation Law regarding to Eq. (1.1)

A conservation law corresponding to a given system of differential equations is an expression

Divρ = 0,

which becomes zero for all solutions u = f(x) of the system. Here Div is divergence and

ρ = (ρ1(x, u
(n)), · · · , ρm(x, u(n))),

is an m-tuple of smooth functions of θ, u. Let

X =

m∑
i=1

ξi(x, u)∂xi +

q∑
j=1

ϕj(x, u)∂uj ,

is an infinitesimal generator for Noether symmetries and

Qα(x, u) = ϕα −
m∑
i=1

ξiuαi ,

the corresponding characteristic of X. By Noether’s theorem, Q = (Q1, · · · , Qq) is the characteristic of conservation
law for E(L) = 0; namely

Divρ = Q.E(L),

is a conservation law for E(L) = 0. Section 2 states Noether symmetries. For arbitrary ξ, η, τ and ζ we have the
following expression for ρ

ρ =
1

2
ηθ̇ + ζ

(
1

2
a2(ṫ+ cos θψ̇) cos θ +

1

2
sin θ2ψ̇

)
+

1

2
τa2(ṫ+ cos θψ̇)

+ ξ

(
1

4
a2(ṫ+ cos θψ̇)2 − 1

4
θ̇2 +

1

4
sin θ2ψ̇2 − ψ̇

(1
2
a2(ṫ+ cos θψ̇) cos θ +

1

2
sin θ2ψ̇

)
− 1

2
ṫa2(ṫ+ cos θψ̇)

)
.

Now, we can obtain the corresponding conservation law for each Noether symmetry. The nonzero conservation laws
for Noether symmetries are as follows:
1) For Noether symmetry infinitesimal generator ∂s, the expression ρ is

ρ =
1

4
a2(ṫ+ cos θψ̇)2 − 1

4
θ̇2 +

1

4
sin θ2ψ̇2 − ψ̇

(
1

2
a2(ṫ+ cos θψ̇) cos θ +

1

2
sin θ2ψ̇

)
− 1

2
ṫa2(ṫ+ cos θψ̇).

Thus, the conservation law is(
− 1

2
ψ̇a2 cos θ − 1

2
a2ṫ

)
ẗ+

(
− 1

2
a2(ṫ+ cos θψ̇) sin θψ̇ +

1

2
sin θψ̇2 cos θ

− ψ̇
(
− 1

2
a2 sin θψ̇ cos θ − 1

2
a2(ṫ+ cos θψ̇) sin θ + sin θψ̇ cos θ

)
+

1

2
a2 sin θψ̇ṫ

)
θ̇

− 1

2
θ̇θ̈ +

(
− ψ̇

(1
2
a2 cos θ2 +

1

2
sin θ2

)
− 1

2
a2 cos θṫ

)
ψ̈ = 0.

2) For ∂ψ, the expression ρ is

ρ =
1

2
a2 cos θṫ+

1

2
a2 cos θ2ψ̇ +

1

2
ψ̇ − 1

2
a2ψ̇ cos θ2.

Thus, the conservation law is

1

2
a2 cos θẗ+

(
− 1

2
a2 sin θṫ− a2 sin θψ̇ cos θ + sin θψ̇ cos θ

)
θ̇ +

(
1

2
a2 cos θ2 +

1

2
− 1

2
cos θ2

)
ψ̈ = 0.

3) For ∂t, the expression ρ is
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ρ =
1

2
a2(ṫ+ cos θψ̇).

Thus, the conservation law is

1

2
a2ẗ− 1

2
a2 sin θψ̇θ̇ +

1

2
a2 cos θψ̈ = 0.

4) For −cosψ∂t

sin θ
+ sinψ∂θ +

cosψ cos θ∂ψ

sin θ
, the expression ρ is

ρ =
1

2

1

sin θ

(
sinψθ̇ sin θ + cosψa2 cos θ2ṫ+ cosψa2 cos θ3ψ̇ + cosψψ̇ cos θ − cosψψ̇ cos θ3 − cosψa2ṫ− cosψa2ψ̇ cos θ

)
.

Thus, the conservation law is(
1

2
cosψa2 cos θ2 − 1

2
cosψa2

)
ẗ

sin θ
+

(
1

sin θ

(1
2
sinψθ̇ cos θ − cosψ sin θa2 cos θṫ− 3

2
cosψ sin θa2 cos θ2ψ̇

− 1

2
cosψψ̇ sin θ +

3

2
cosψψ̇ cos θ2 sin θ +

1

2
cosψa2 sin θψ̇

)
− 1

sin θ2
((1

2
sinψθ̇ sin θ +

1

2
cosψa2 cos θ2ṫ+

1

2
cosψa2 cos θ3ψ̇ +

1

2
cosψψ̇ cos θ − 1

2
cosψψ̇ cos θ3

− 1

2
cosψa2ṫ− 1

2
cosψa2ψ̇ cos θ

)
cos θ

))
θ̇ +

1

2
sinψθ̈ +

1

sin θ

((1
2
cosψθ̇ sin θ − 1

2
sinψa2 cos θ2ṫ

− 1

2
sinψa2 cos θ3ψ̇ − 1

2
sinψψ̇ cos θ +

1

2
sinψψ̇ cos θ3 +

1

2
sinψa2ṫ+

1

2
sinψa2ψ̇ cos θ

)
ψ̇
)

+
1

sin θ

((1
2
cosψa2 cos θ3 +

1

2
cosψ cos θ − 1

2
cosψ cos θ3 − 1

2
cosψa2 cos θ

)
ψ̈
)
= 0,

5) For
sinψ∂t

sin θ
+ cosψ∂θ +

sinψ cos θ∂ψ

sin θ
, the expression ρ is

ρ =
1

2

1

sin θ

(
cosψθ̇ sin θ − sinψa2 cos θ2ṫ− sinψa2 cos θ3ψ̇ − sinψψ̇ cos θ

+ sinψψ̇ cos θ3 + sinψa2ṫ+ sinψa2ψ̇ cos θ

)
.

Thus, the conservation law is(
−1

2
sinψa2 cos θ2 +

1

2
sinψa2

)
ẗ

sin θ
+

(
1

sin θ

(1
2
cosψθ̇ cos θ + sinψ sin θa2 cos θṫ+

3

2
sinψ sin θa2 cos θ2ψ̇

− 1

2
sinψψ̇ sin θ − 3

2
sinψψ̇ cos θ2 sin θ − 1

2
sinψa2 sin θψ̇

)
− 1

sin θ2
((1

2
cosψθ̇ sin θ − 1

2
sinψa2 cos θ2ṫ

− 1

2
sinψa2 cos θ3ψ̇ − 1

2
sinψψ̇ cos θ +

1

2
sinψψ̇ cos θ3 +

1

2
sinψa2ṫ+

1

2
sinψa2ψ̇ cos θ

)
cos θ

))
θ̇ +

1

2
cosψθ̈

+
1

sin θ

((
− 1

2
sinψθ̇ sin θ − 1

2
cosψa2 cos θ2ṫ− 1

2
cosψa2 cos θ3ψ̇ − 1

2
cosψψ̇ cos θ +

1

2
cosψψ̇ cos θ3

+
1

2
cosψa2ṫ+

1

2
cosψa2ψ̇ cos θ

)
ψ̇
)
+

1

sin θ

((
− 1

2
sinψa2 cos θ3

− 1

2
sinψ cos θ +

1

2
sinψ cos θ3 +

1

2
sinψa2 cos θ

)
ψ̈
)
= 0.
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5. Conclusion

In this research, we obtained some practical and useful information by finding and analyzing the symmetries of
the Euler-Lagrange equations of the Berger metric on a squashed three-sphere. In this case, the Euler-Lagrange
equations were determined and we observed that we have a 5-dimensional Lie algebra of Noether symmetries. Then
we determined the Lie algebra structure of isometries as su(2,R) × u(1) which provides the possibility to investigate
the geometric concepts (such as curvature concepts) of the Berger metric on a squashed three-sphere algebraically.
For the obtained Noether symmetries, the related conservation laws are also calculated.
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