- [1] M. Abdullah, A. Ahmad, N. Raza, M. Farman, and M. Ahmad, Approximate solution and analysis of smoking epidemic model with Caputo fractional derivatives, Int. J. Appl. Comput. Math., 4(5) (2018), 112.
- [2] S. Ahmad, A. Ullah, A. Akgu¨l, and M. De la Sen, A novel homotopy perturbation method with applications to nonlinear fractional order KdV and Burger equation with exponential-decay kernel, J. Funct. Spaces, (2021), 770488.
- [3] M. Al-Refai and D. Baleanu, On an extension of the operator with Mittag-Leffler kernel, Fractals, 30(05) (2022), 2240129.
- [4] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769.
- [5] S. Bhatter, K. Jangid, and S. D. Purohit, A study of the Hepatitis B Virus Infection using Hilfer Fractional Derivative, Proceedings of Institute of Mathematics & Mechanics National Academy of Sciences of Azerbaijan, 48 (2022), 100–117.
- [6] S. Bhatter, K. Jangid, S. Kumawat, D. Baleanu, S. D. Purohit, and D. L. Suthar, A new investigation on fractionalized modeling of human liver, Sci. Rep., 14(1), (2024), 1636.
- [7] M. Caputo, Elasticita e dissipazione; Zanichelli: Bologna, Italy, 1969.
- [8] M. K. U. Dattu, New integral transform: fundamental properties, investigations and applications, J. Adv. Res., 5(4) (2018), 534-539.
- [9] A. Fleck, Where Smoking Is Still Popular. Statista, (2024). https://www.statista.com/chart/29198/share-ofadults-smoking-cigarettes-survey.
- [10] J. F. Gomez-Aguilar, J. J. Rosales-Garcıa, J. J. Bernal-Alvarado, T. Cordova-Fraga, and R. Guzman-Cabrera, Fractional mechanical oscillators, Rev. Mex. Fis., 58(4) (2012), 348–352.
- [11] M. M. Gour, L. K. Yadav, S. D. Purohit, and D. L. Suthar, Homotopy decomposition method to analysis fractional hepatitis B virus infection model, App. Math. Sci. Eng., 31(1) (2023), 2260075.
- [12] Institute for Health Metrics and Evaluation (IHME), Global Burden of Disease 2021: Findings from the GBD 2021 Study, Seattle, WA: IHME, 2024.
- [13] IHME, Global Burden of Disease (2024)–with minor processing by Our World in Data. https://ourworldindata.org.
- [14] P. Jha, Avoidable global cancer deaths and total deaths from smoking, Nat. Rev. Cancer, 9(9) (2009), 655–664.
- [15] S. Kumawat, S. Bhatter, D. L. Suthar, S. D. Purohit, and K. Jangid, Numerical modeling on age-based study of coronavirus transmission, Appl. Math. Sci. Eng., 30(1) (2022), 609–634.
- [16] J. Liu, M. Nadeem, and L. F. Iambor, Application of Yang homotopy perturbation transform approach for solving multi-dimensional diffusion problems with time-fractional derivatives, Sci. Rep., 13(1) (2023), 21855.
- [17] K. S. Miller, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
- [18] G. M. Mittag-Leffler, On the new function Eα(x), 137(2) (1903), 554–558.
- [19] V. F. Morales-Delgadoa, J. F. Gomez-Aguilar, and M. A. Taneco-Hernandez, R. F. Escobar Jim´enez, V. H. Olivares Peregrino, Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel, J. Nonlinear Sci. Appl, 11(8) (2018), 994–1014.
- [20] M. Naeem, H. Yasmin, R. Shah, N. A. Shah, and J. D. Chung, A comparative study of fractional partial differential equations with the help of yang transform, Symmetry, 15(1) (2023), 146.
- [21] R. M. Pandey, A. Chandola, and R. Agarwal, Mathematical model and interpretation of crowding effects on SARS-CoV-2 using Atangana-Baleanu fractional operator, In Methods of Mathematical Modeling, Academic Press, (2022), 41–58.
- [22] K. Pavani and K. Raghavendar, A novel technique to study the solutions of time fractional nonlinear smoking epidemic model, Sci. Rep., 14(1) (2024), 4159.
- [23] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press Massachusetts, U.S., 1998.
- [24] R. Rach, On the Adomian (decomposition) method and comparisons with Picard’s method, J. Math. Anal. Appl., 128(2) (1987), 480–483.
- [25] S. Rezapour, H. Mohammadi, and A. Jajarmi, A new mathematical model for Zika virus transmission, Adv. Differ. Equ., (2020), 1–15.
- [26] M. Roser, Smoking: How large of a global problem is it? And how can we make progress against it?, Our World in Data, (2023).
- [27] H. Singh, D. Baleanu, J. Singh, and H. Dutta, Computational study of fractional order smoking model, Chaos, Solitons & Fractals, 142 (2021), 110440.
- [28] J. Singh, D. Kumar, M. A. Qurashi, and D. Baleanu, A new fractional model for giving up smoking dynamics, Adv. Differ. Equ., (2017), 1–16.
- [29] H. M. Srivastava, R. Shanker Dubey, and M. Jain, A study of the fractional-order mathematical model of diabetes and its resulting complications, Math. Methods Appl. Sci., 42(13) (2019), 4570–4583.
- [30] R. Ullah, M. Khan, G. Zaman, S. Islam, M. A. Khan, S. Jan, and T. Gul, Dynamical features of a mathematical model on smoking, J. Appl. Environ. Biol. Sci, 6(1) (2016), 92–96.
- [31] P. Van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2(3) (2017), 288–303.
- [32] P. Veeresha, D. G. Prakasha, and H. M. Baskonus, Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method, Math. Sci., 13 (2019), 115–128.
- [33] A. M. Wazwaz and R. Rach, Comparison of the Adomian decomposition method and the variational iteration method for solving the Lane-Emden equations of the first and second kinds, Kybernetes, 40(9/10) (2011), 1305– 1318.
- [34] WHO global report on trends in prevalence of tobacco use 2000–2025, fourth edition. Geneva: World Health Organization; 2021, (https://apps.who.int/iris/handle/10665/348537).
- [35] A. Wiman, Ü about the fundamental theorem in the theory of functions Eα(x), Acta Math, 29 (1905), 191–201.
- [36] World Health Organization, Global action plan for the prevention and control of non-communicable diseases 2013-2020, World Health Organization, (2013).
- [37] X. J. Yang, A new integral transform method for solving steady heat-transfer problem, Therm. Sci. 20(3) (2016), 639–642.
- [38] Y. Z. Zhang, A. M. Yang, and Y. Long, Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform, Therm. Sci., 18(2) (2014), 677–681.
|