- [1] R. Amin, I. Mahariq, K. Shah, M. Awais, and F. Elsayed, Numerical solution of the second order linear and nonlinear integro-differential equations using Haar wavelet method, Arab Journal of Basic and Applied Sciences, 28(1) (2021), 11–19.
- [2] S. Amiri, Effective numerical methods for nonlinear singular two-point boundary value Fredholm integro-differential equations, Iranian Journal of Numerical Analysis and Optimization, 13(3) (2023), 444–459.
- [3] S. H. Behiry and H. Hashish, Wavelet methods for the numerical solution of Fredholm integro-differential equations, Int. J. Appl. Math., 11(1) (2002), 27–35.
- [4] S. H. Behiry and S. I. Mohamed, Solving high-order nonlinear Volterra–Fredholm integro-differential equations by differential trasform method, Nat. Sci., 4(8) (2012), 581–587.
- [5] A. H. Bhrawy, E. Tohidi, and F. Soleymani, A new Bernoulii matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals, Appl. Math. Comput., 219 (2012), 482– 497.
- [6] J. Chen, M. F. He, and Y. Huang, A fast multiscale Galerkin method for solving second order linear fredholm integro-differential equation with Dirichlet boundary conditions, J. Comput. Appl. Math., 364 (2020), 112352.
- [7] J. Chen, M. He, and T. Zeng, A multiscale Galerkin method for second-order boundary value problems of Fredholm integro-differential equation II: Effcient algorithm for the discrete linear system, J. Vis. Commun. Image Represent., 58 (2019), 112–118.
- [8] J. Chen, Y. Huang, H. Rong, T. Wu, and T. Zeng, A multiscale Galerkin method for second-order boundary value problems of Fredholm integro-differential equation, J. Comput. Appl. Math., 290 (2015), 633–640.
- [9] M. Dehghan and A. Saadatmandi, Chebyshev finite difference method for Fredholm integro-differential equation, Int. J. Comput. Math. 85 (2008), 123–130.
- [10] D. S. Dzhumabaev, On one approach to solve the linear boundary value problems for Fredholm integro-differential equations, J. Comput. Appl. Math., 294 (2016), 342–357.
- [11] O. A. Gegele, O. P. Evans, and D. Akoh, Numerical solution of higher order linear Fredholm integro-differential equations, Applied Journal of Engineering, 8 (2014), 243–247.
- [12] S. Islam, I. Aziz, and M. Fayyaz, A new approach for numerical solution of integro-differential equations via Harr wavelets, Int. J. Comput. Math., 90(9) (2013), 1971–1989.
- [13] R. Jalilian and T. Tahernezhad, Exponential spline method for approximation solution of Fredholm integrodifferential equation, Int. J. Comput. Math., 97(4) (2020), 791–801.
- [14] P. Kanwal, Linear integral equations theory and technique, London, Academic Press, 1971.
- [15] G. Long, G. Nelakanti, and X. Zhang, Iterated fast multiscale Galerkin methods for Fredholm integral equations of second kind with weakly singular kernels, Appl. Numer. Math., 62 (2012), 201–211.
- [16] F. Mirzaee, Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials, Comput. Methods Differ. Equ., 5(2) (2017), 88–102.
- [17] A. Molabahrami, Direct computation method for solving a general nonlinear Fredholm integro-differential equation under the mixed conditions: Degenerate and non-degenerate kernels, J. Comput. Appl. Math., 282 (2015), 34–43.
- [18] Y. Ordokhani, An application of Walsh functions for Fredholm–Hammerstein integro-differential equations, Int. J. Contemp. Math. Sci., 5(22) (2010), 1055–1063.
- [19] P. K. Pandey, Non-standard difference method for numerical solution of linear Fredholm integro-differential type two-point boundary value problems, Open Access Lib. J., 2 (2015), 1–10.
- [20] M. A. L. Ramadan, K. M. Raslan, and M. A. E. G. Nassear, A rational Chebyshev functions approach for Fredholm-Volterra integro-differential equations, Comput. Methods Differ. Equ., 3(4) (2015), 284-297.
- [21] M. Razzaghi and S. Yousefi, Legendre wavelets method for the nonlinear Volterra Fredholm integral equations, Math. Comput. Simul., 70 (2005), 1–8.
- [22] A. Saadatmandi and M. Dehghan, Numerical solution of high-order linear Fredholm integro-differential–difference equation with variable coefficients, Comput. Math. Appl., 59 (2010), 2996–3004.
- [23] T. L. Saaty, Modern nonlinear equations, New York, Dover publications., 1981.
- [24] A. Shidfar, A. Molabahrami, A. Babaei, and A. Yazdanian, A series solution of the nonlinear Volterra and Fredholm integro-differential equations, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 205–215.
- [25] H. R. Thiem, A model for spatio spead of an epidemic, J. Math. Biol., 4 (1977), 337–351.
- [26] Q. Xue, J. Niu, D. Yu, and C. Ran, An improved reproducing kernel method for fredholm integro-differential type two-point boundary value problems, Int. J. Comput. Math., 95 (2017), 1015–1023.
- [27] S. Yalcinbas, Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations, Appl. Math. Comput., 127 (2002), 195–206.
- [28] S. Yalcinbas and M. Sezer, The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput., 112 (2000), 291–308.
- [29] S. Yang, X. Luo, F. Li, and G. Long, A fast multiscale Galerkin method for the first kind ill-posed integral equations via iterated regularization, Appl. Math. Comput., 219 (2013), 10527–10537.
- [30] S. Yeganeh, Y. Ordokhani, and A. Saadatmandi, A Sinc-collocation method for second-order boundary value problems of nonlinear integro-differential equation, J. Inf. Comput. Sci., 7(2) (2012), 151–160.
- [31] W. Yulan, T. Chaolu, and P. Jing, New algorithm for second-order boundary value problems of integro-differential equation, J. Comput. Appl. Math., 229 (2009), 1–6.
- [32] F. Zhang, Matrix Theory, Springer, New York, 2011.
|