
Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

DOI: 10.22034/tjee.2024.61074.4824

Employing Chaos Theory for Exploration–

Exploitation Balance in Deep Reinforcement

Learning

Habib Khodadadi, Vali Derhami*

Department of Computer Engineering, Yazd University, Yazd, Iran.

habib.khodadadi@stu.yazd.ac.ir, Vderhami@yazd.ac.ir
*Corresponding author

Received:03/04/2024, Revised:27/09/2024, Accepted:16/10/2024.

Abstract

Deep reinforcement learning is widely used in machine learning problems and the use of methods to improve its

performance is important. Balance between exploration and exploitation is one of the important issues in reinforcement

learning and for this purpose, action selection methods that involve exploration such as ɛ-greedy and Soft-max are used.

In these methods, by generating random numbers and evaluating the action-value, an action is selected that can maintain

this balance. Over time, with appropriate exploration, it can be expected that the environment becomes better understood

and more valuable actions are identified. Chaos, with features such as high sensitivity to initial conditions, non-periodicity,

unpredictability, exploration of all possible search space states, and pseudo-random behavior, has many applications. In

this paper, numbers generated by chaotic systems are used for the ɛ-greedy action selection method in deep reinforcement

learning to improve the balance between exploration and exploitation; in addition, the impact of using chaos in replay

buffer will also be investigated. Experiments conducted in the Lunar Lander environment demonstrate a significant

increase in learning speed and higher rewards in this environment.

Keywords

Action selection, chaos theory, deep reinforcement learning, exploration and exploitation.

1. Introduction

Reinforcement learning (RL) is a computational approach

for understanding and automating decision-making and

goal-based learning, emphasizing learning based solely

on direct interaction with the environment without relying

on a supervisor or a complete model of the environment

[1]. RL has been used in various issues such as robotics,

resource allocation, and cloud computing [2]. However,

real-world problems have very large state spaces that

classical (discrete) reinforcement learning methods are

unable to solve. Recent advancements in machine

learning have led to the emergence of deep neural

networks which are used for automatic feature extraction

and other applications. One technique for using

reinforcement learning in complex and high-dimensional

problems is to combine it with deep neural networks,

which is called deep reinforcement learning; one type of

these networks, created by combining the Q-learning

method with deep neural networks, is called Deep Q-

Network (DQN) [2]. The importance of exploring the

rewards of various actions cannot be overstated when it

comes to optimizing RL algorithms. By actively seeking

out and evaluating different outcomes, exploration plays

a key role in guiding behavior within the state space,

ultimately aiding in the swift convergence towards an

optimal policy. Furthermore, exploration is essential in

uncovering the underlying reward system of the

environment, thus assisting in the identification of the

most effective policies. For effective learning in

reinforcement learning, actions should be selected in a

way that the environment is explored properly and the

knowledge acquired during learning is utilized

appropriately. Completing these two tasks simultaneously

is not possible, and a balance between exploration and

exploitation must be created in RL. Various methods have

been proposed to create this balance between exploration

and exploitation, but this issue has not been fully resolved

and research in this area is ongoing [1].

Reinforcement learning exploration can be divided into

two primary categories: efficiency and safe exploration.

In terms of efficiency, the goal is to increase the

effectiveness of exploration to allow the agent to explore

with as few steps as necessary. On the other hand, safe

exploration prioritizes ensuring the agent's safety during

the exploration process. Efficiency-based methods can be

divided into two categories imitation-based (Emulate

learning from teacher) and self-taught methods (Learning

from scratch). There are various categories of self-taught

methods, including planning, intrinsic rewards, and

random exploration. In planning, the agent strategically

determines its next actions to improve its understanding

of the environment. On the other hand, in random

exploration, the agent does not deliberately plan its

actions but instead explores the environment and observes

the outcomes of these explorations. In intrinsic reward

methods, the agent is rewarded for visiting new states or

https://tjee.tabrizu.ac.ir/article_18656.html?lang=en

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

114

new behaviors [3]. Some of the methods available in each

of these categories are listed in the related works section.

Based on the chaotic features such as sensitivity to initial

conditions, pseudo-randomness, ergodicity and non-

periodicity, numbers generated by chaotic systems have

been used in various applications such as different types

of encryptions (image [4-5], audio [6], text [7], and video

[8]), evolutionary algorithms [9-11], and prediction [12].

In these applications, various chaotic maps and different

methods have been used for generating chaotic numbers

for use in each of these cases. Chaos theory has shown

positive performance against random data in these

applications. For example, chaos has improved and

increased the speed of finding the global optimum in most

evolutionary algorithms, or many encryption algorithms

are based on chaos. This better performance is due to the

unique properties of chaotic systems. Research on

creating stronger chaotic systems continues, and new

systems are being introduced [13].

Chaotic numbers generated for use in action selection

methods in reinforcement learning and deep

reinforcement learning can also be utilized.

The use of deep reinforcement learning is increasing

widely in machine learning problems, and any

improvement in its performance is important; Since there

is no prior work on the use of chaos in the action selection

part of deep reinforcement learning, in this paper, chaos

in the action selection part of deep reinforcement learning

and replay buffer have been used, leading to an increase

in learning speed and earning more rewards in the tested

environment. The main contributions of this paper are

summarized as follows:

• in order to create a balance between exploration

and exploitation, chaos in the action selection part of

deep reinforcement learning will be used for the first

time (As far as we know) in this paper using a ε-

greedy approach. The ergodicity property of chaos

theory causes the DQN performance to be

significantly improved.

• Using chaos to select samples from the replay

buffer in deep reinforcement learning to further

diversify the selected samples and increase the speed

of network training, which so far has no precedent in

this regard.

The structure of this paper is as follows: First, in part 2

and 3, related works and chaotic systems are briefly

introduced, followed by an overview of reinforcement

learning and deep reinforcement learning in Section 4.

The proposed method in this paper is presented in part 5

and its computational results are discussed in Section 6.

Finally, discussion and conclusion are presented in parts

7 and 8.

2. Related Works

So far, numerous research studies have been conducted in

the field of action selection and improving the balance

between exploration and exploitation. In research [14], a

method called Stochastic Curiosity Maximizing

Exploration (SCME) for incentivizing agents in

reinforcement learning to explore their environment more

effectively has been developed. This paper introduces a

new method called Stochastic Curiosity Maximizing

Exploration (SCME) for SCME uses an intrinsic reward

signal that encourages the agent to visit novel states and

take actions that lead to new experiences. The method

achieves good results compared to existing exploration

algorithms on a range of tasks and environments.

MIMEx [15], a method for generating intrinsic rewards in

reinforcement learning tasks by using masked input

modeling is introduced. The authors propose a novel

reward signal that encourages the agent to focus on

relevant parts of the input by masking out unimportant

information. They validate their approach on a range of

tasks and show that incorporating MIMEx leads to

improved performance compared to traditional reward

mechanisms. Overall, MIMEx offers a promising

approach for enhancing the learning capabilities of

reinforcement learning agents.

The use of adaptive learning rates in fuzzy reinforcement

learning is also mentioned as a way to achieve a balance

between exploration and exploitation [16], where the

learning rate is adjusted considering the "fuzzy visit

value" of the current state.

In another study, Cuckoo Search Algorithm were used

instead of traditional action selection methods for action

selection [17]. In this method, the reinforcement learning

problem is shown as an optimization problem where the

candidate solutions are the values of Q and the objective

function is the Q-function. In each iteration, the Q-

learning algorithm updates combinations of Q values and

actions using the evolutionary optimization algorithm,

and the action with the highest optimized value is selected.

The steps and implementation of the idea were also tested

on several environments such as MAB and Cliff-Walking,

and the effectiveness of this method was confirmed.

In a paper titled "First Return, Then Explore" a new way

to explore is presented by suggesting that agents should

prioritize returning to areas of high reward before

exploring new options [18]. This approach focuses on

encouraging agents to first exploit known strategies

before exploring new options. This can help improve the

efficiency and effectiveness of the learning process,

ultimately leading to better performance in reinforcement

learning tasks. The primary method utilized in this

approach involves remembering visited states and paths,

as well as learning from the goal by assuming the goal

state is known but the path to it is unknown.

Another study has been attempted to determine the

exploration rate through a model of environmental

entropy [19]. Entropy-based exploration (EBE) allows an

agent to effectively explore unfamiliar areas within the

state space. By measuring the agent's progress in a given

state using only action values that are specific to that state,

EBE dynamically navigates the state space, prioritizing

exploration in regions that have not yet been thoroughly

investigated.

Safe exploration methods include using human designer

knowledge to create boundaries for the agent. For

example, in one study, the actions of an agent are limited

by an additional pre-trained module to prevent unsafe

actions [20]. Additionally, in research, the states of the

investigated problem and their advantages are stored in a

shared memory, and states that are frequently visited but

have low advantage receive extra negative rewards. Here,

the agent is allowed to use previous experiences to

identify undesirable states [21].

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

115

In another research, graph-based exploration method has

been used for multi-agent environments [22]. This paper

presents a technique for effective multi-agent Q-learning

by utilizing graph exploration. The approach involves

creating a graph structure to represent the relationships

between agents and states in the environment. This graph

is then used to guide exploration and improve the learning

process. The authors demonstrate the effectiveness of

their approach through experiments on various multi-

agent scenarios.

The history of using chaos in reinforcement learning to

create a balance between exploration and exploitation is

not extensive, and in most cases [23-27], logistic map has

been used to generate random numbers for use in ɛ-greedy

action selection methods. Experiments on the Target

Capturing Task problem have been conducted to compare

chaotic and traditional conditions; the chaotic method has

shown better results with less time and distance spent to

find the target [23-24]. The authors of these papers have

also performed this action on the Shortcut Maze problem

and achieved similar results [25]; furthermore, in another

study, the Tent mapping has been used and found to be

less efficient compared to logistics; the experimental

environment is the same as the Shortcut Maze

environment, which is a type of maze-like environment

[26]. In these papers, SARSA and Q-learning algorithms

have been used as reinforcement learning methods.

Considering that in these studies, the environment may

have slight changes, a performance criterion q(n) = tmin/tn

has been introduced; where tmin is the minimum distance

required to reach the target from the beginning and tn is

the actual distance covered, with the best case scenario

having a q(n) value of 1. For example, in the Shortcut

Maze problem, with 900 executions including movement

from the start to finding the target, the average value of q

in the case of using random values in the ɛ-greedy method

in 899 runs was reported as 0.86, and using chaotic system

values in the logistics method it was reported as 0.91 [25].

Additionally, in another research, action selection in the

ɛ-greedy method was compared to chaotic and traditional

ɛ-greedy methods on the Shortcut Maze problem where

logistics, Tent, and Chaotic Neuron mappings were used,

and the chaotic methods showed better performance [27].

In a study related to reinforcement learning, the

application of chaos theory in dynamic programming to

overcome global updates of all states has been examined,

utilizing the logistic chaotic system for this purpose [28].

This method involves executing policy evaluation once in

each stage of policy iteration and updating only a few

states proposed by the chaotic system. The policy

improvement stage then follows, using similar procedures

in the value iteration method, which resulted in better

outputs than the conventional method.

3. Chaotic Systems

Chaotic systems are non-linear dynamic systems that are

very sensitive to their initial conditions and exhibit a

pseudo-random behavior. A slight change in the initial

conditions of such systems will lead to significant changes

in the future. The definability of the system and the

certainty despite the pseudo-random behavior are also

important characteristics of chaotic systems [29].

For a system to be classified as chaotic, it must exhibit the

following properties [29]:

• Sensitivity to initial conditions: This

characteristic of chaotic systems shows that even a

small adjustment to the starting conditions can lead to

substantially different outcomes over time.

• Topological mixing or topological transitivity

(ergodicity): is a characteristic that states chaotic

variables will move through all states within a set

range without repeating. This property can be utilized

as an optimization tool to ensure that no solution is

revisited in the search space, preventing algorithms

from getting stuck in a local optimum. this feature

leads to the generation of diverse and non-repeating

numbers.

• Topological density: refers to the property that

every point within a given space is approached by

periodic orbits in an arbitrary manner.

Substituting chaos for random numbers has been shown

to increase learning speed due to leveraging the special

properties of chaos, especially its ergodicity property [29].

So far, many chaotic systems have been introduced. The

logistics system is a chaotic system. The governing

equation for this system is in the form of (1) [4]:

(1) 𝑥𝑛+1 = 𝜆𝑥𝑛(1 − 𝑥𝑛) 𝑥0 ∈ [0,1]

In which, for values of λ that are in the interval [3.56,4],

the system exhibits chaotic behavior. Giving any initial

value for a chaotic system, the next numbers are obtained

according to the mapping relationship. Of course, it

should be noted that even with very slight changes in the

same initial value, the generated number series will be

completely different from each other.

In Figure 1, the behavior of the logistic system with initial

value x0=0.6000 and parameter value λ=3.9999 is shown;

also, in Figure 2, the first 50 numbers generated by this

system are shown.

Fig. 1. The chaotic behavior of logistic signal in the first

500 iterations with x0=0.6000 and λ=3.9999 is shown in

the plot (horizontal axis shows the number of iterations

and vertical axis shows the value of logistic signal in

each iteration).

In this figure, another characteristic of chaotic systems is

apparent; it can be observed that the generated numbers

are well distributed in the space of 0 to 1 and after several

iterations, different parts of the space are visited.

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

116

Fig. 2. The first 50 numbers of logistic signal with

x0=0.6000 and λ=3.9999.

Another chaotic system is the Zhang system, which is

constructed by combining two chaotic logistic and Tent

systems, and its relationship can be seen in equation (2)

[30].

(2) 𝑥𝑛+1 = 2𝜇|𝑥𝑛|(1 − 2|𝑥𝑛|)

In this paper, logistic and Zhang systems are used to

generate chaotic numbers, which will be used instead of

random numbers in the action selection and replay buffer

of deep reinforcement learning. In order to generate

chaotic numbers using these systems, every time a

random number is given as an initial value to the chaotic

system and its output is used; Also, in addition to this

method, by giving an initial value to the chaotic system,

and using the generated number as the next value for the

input of the system, we can have a sequence of chaotic

numbers with a specific initial value, which can be

reproduced by having the initial value of this sequence. In

this paper, the first method was used to generate chaotic

numbers, and there is no dependence of chaotic numbers

on each other in the form of a sequence.

4. Reinforcement learning and deep reinforcement

learning

Reinforcement learning is the process of learning

appropriate actions from a set of allowable actions for a

specific situation based on received rewards and penalties

[1]. The key idea of reinforcement learning is to use value

functions to find appropriate policies, and dynamic

programming is one of the methods of reinforcement

learning that uses the Bellman equation to calculate the

value of each state from the environment or the value of

state-action pairs (equations 3 and 4) [1]. To calculate the

value of each state, the values of other states are used.

𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′ (3)

𝑄𝜋(𝑠, 𝑎) = ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′ (4)

In these equations, action a is selected from the set of

actions in state s, and the next states s' are members of the

set of states. Vπ(s) is the value of state s under policy π,

Qπ(s, a) is the value of action a in state s under policy π,

𝑃𝑠𝑠′
𝑎 and 𝑅𝑠𝑠′

𝑎
are the transition probability and the

expected reward value to the next state, respectively. Also,

π (s, a) is the probability of selecting action a in state s and

finally, γ is the discount factor.

There are multiple algorithms in reinforcement learning,

and one of the most commonly used ones is the Q-learning

algorithm. In the Q-learning algorithm, all the values of

state-action pairs are stored in a Q-table, where the rows

represent states and the columns represent actions, and

each element in this table is an estimate of the optimal

value of a state-action pair. In each step of the agent's

movement in the environment, this table needs to be

updated, and new estimated values should replace the

previous values using the received rewards. The update

rule of this algorithm is given by equation (5) [17].

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑡+1, 𝑎𝑡+1) −

𝑄(𝑠𝑡 , 𝑎𝑡)) (5)

In this algorithm, α is the learning rate and r is the

instantaneous reward value. Here, the learned state-action

value function Q directly approximates the optimal state-

action value function independently of the policy that

dictates behavior.

Many real-world problems have very large state spaces

and it is not possible to maintain a Q-table, in these cases

an approximator is used to approximate the state-action

value. There are different structures for this purpose, one

of which is using artificial neural networks. The

combination of deep learning and reinforcement learning

has led to the emergence of deep reinforcement learning.

The deep Q-network (DQN) is created by combining the

Q-learning method with deep neural networks, where a

neural network is used to estimate the state-action value

[2]. As shown in Figure 3, in deep reinforcement learning,

various types of neural networks and related concepts are

used to estimate the state-action values due to the large

number of states or continuous state inputs, and the output

of the network is the estimated state-action values.

Since in machine learning there is a need for independent

and identically distributed (IID) samples from the

problem space, previously observed samples are stored in

memory (Replay buffer) and batches of these samples are

randomly selected from this memory for network training

each time [2].

Efforts have been made to increase the speed and

efficiency of DQN, including the use of Double Q-

learning [31] to overcome the problem of overestimation

and prioritized experience replay [32] to utilize more

important experiences in the learning process.

Fig. 3. Deep Q Network: Using a deep network to

estimate the values of state-action pairs.

 One of the important improvements on DQN is the

method Dueling DQN, which as shown in Figure 4 and

equation (6), estimates values V and A (advantage)

instead of directly estimating Q values by the network,

and by combining these values, Q values are estimated,

leading to an improvement in network speed. The reason

for the increase in network speed in this algorithm is

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

117

related to the simplicity of estimating V compared to Q,

because instead of estimating state-action values, which is

a larger space, it only estimates values and the problem

space will be smaller as a result, so the network will reach

a conclusion sooner [33]. It is important to note that in

many cases, estimating the value of each action is

unnecessary; in some cases, knowing which action to take

is crucial, but in many other cases, the choice of action has

no impact on what happens [33].

In RL, at any given moment, there are two strategies for

action selection: one can choose a greedy action, which is

the action with the highest estimated value and therefore

utilizes the current knowledge; or one can choose a

different action, in which case the agent's effort will be

focused on further exploration, allowing the agent to

improve its estimation of other non-greedy actions. For

effective learning, actions should be selected in a way that

the environment is adequately explored and penalties are

avoided. It is not possible to simultaneously perform these

two tasks fully, and a balance between exploration and

exploitation must be established. The use of greedy

policies in action selection limits the agent to a small part

of the environment and hinders the discovery of other

parts of the environment and finding better policies;

therefore, other action selection methods are used.

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑎) (6)

Fig. 4. The upper figure represents the traditional DQN

approach, while the lower figure represents the Dueling

DQN approach. In the DDQN method, the Q value

estimation is obtained from a specific combination of

value estimates and advantage values (Equation 6) [33].

In general, solutions for action selection and maintaining

balance in reinforcement learning are divided into two

categories of direct exploration methods and indirect

exploration methods. In direct exploration methods, it is

assumed that some information about the environment

such as the state transition function and reward function

is available, which is usually not the case in reinforcement

learning problems; therefore, indirect exploration

methods are often used in RL problems [1]. Some indirect

exploration methods include random exploration, greedy

exploration, optimistic initial values exploration, ɛ-greedy

exploration, soft-max exploration, and upper confidence

bound exploration [34].

In the ε -greedy approach, with a probability of 1-ε (where

ε is a positive real number between 0 and 1), the action

with the highest value is selected, and with a probability

of ε, all actions can be chosen (equation 7). The results of

applying this method indicate higher efficiency compared

to the greedy approach. Due to its low computational

overhead, this method has been widely used in many

problems [34].

When choosing an action using the ε-greedy method, we

need to generate a random number and make a decision

based on it. Firstly, by generating a random number and

comparing it with epsilon, a decision is made whether to

select the action with the maximum value or to choose one

of the actions randomly. Secondly, if it is decided based

on the first step to choose one of the actions randomly,

another action will be selected by generating another

random number.

(7) 𝑃(𝑆, 𝑎) = {
1 − 𝜀 +

𝜀

𝑁
 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈𝐴 𝑄(𝑆, 𝑏)

𝜀

𝑁
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

5. Proposed Method

In the ε-greedy approach, numbers generated by chaos can

be used instead of random numbers, utilizing the chaotic

property to achieve a better balance between exploration

and exploitation; here, instead of generating random

numbers and making decisions based on them, numbers

generated by the chaotic system are used for decision-

making. Based on previous research [23-27], using

chaotic systems in the action selection component of RL

methods has led to a better balance between exploration

and exploitation in maze-like environments. In this paper,

we will be using chaos in deep reinforcement learning for

the first time. For this purpose, after initial preprocessing

and setting appropriate values, numbers generated by

chaotic systems replace random numbers in the ε-greedy

action selection process, utilizing the chaotic property to

achieve a better balance between exploration and

exploitation.

In addition to the action selection part, in many deep

reinforcement learning algorithms, a part called replay

buffer is used to store samples for training the network.

Each time, a number of samples are randomly selected

from this memory for network training. Here, for selecting

samples from the replay buffer, chaos is used as described

below. we expect that by utilizing chaos in the replay

buffer, a variety of samples will be available for training

the network, leading to improvement. For this purpose,

first chaotic numbers are generated and then they are

mapped to replay buffer samples and these samples are

selected for training the network, which was done

randomly in the traditional mode.

For example, to select 32 samples from a memory of one

million using chaos, first we generate 32 chaotic numbers

with the desired chaotic system, where the numbers

should be between 0 and 1; then we multiply these

numbers by 1014 and round them. The remainder of the

obtained number divided by one million determines the

selected sample. Considering the properties of chaos, we

expect to have a more diverse set of samples for training

the network, leading to improvement.

To test and implement this idea, the Lunar Lander

environment, which is one of the environments available

in OpenAi Gym [35], was used. The components of this

environment include a spacecraft that needs to land on a

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

118

specified surface of a planet (between two yellow flags in

image 5); therefore, the farther the landing distance from

these two flags, the higher the negative score. The action

space of this environment is discrete and has 4 actions,

including do nothing (descending straight down as it falls),

or activating one of the three engines: up, left, or right,

and using them to fly in any direction. However, the state

space of this environment is continuous, with an 8-

dimensional vector including horizontal and vertical

position (-1.5 to 1.5), horizontal and vertical velocity (-5

to 5), angle (-3.14 to 3.14), angular velocity (-5 to 5), and

two binary values indicating contact with the ground on

the left and right foot. Since the state space of this

environment is continuous, deep learning methods and the

use of a neural network as an approximator must be used

to solve it, rather than tabular-based reinforcement

learning methods.

Moving from the top of the screen to the landing pad and

successfully coming to rest will earn you approximately

100-140 points. However, moving away from the landing

pad will result in a loss of reward. Crashing will incur an

additional penalty of -100 points, while successfully

coming to rest will yield an extra +100 points. Each leg

with ground contact will earn you +10 points. Using the

main engine will deduct -0.3 points per frame, while using

the side engine will deduct -0.03 points per frame. Finally,

reaching a successful landing is worth 200 points.

The closer the landing location is to the designated place,

the higher the score, and the farther it is, the lower the

score. The further the spaceship deviates, the lower the

score. The slower/faster the spaceship moves, the score

increases/decreases. Ultimately, if each run earns at least

200 points, it is considered a solution.

Fig. 5. Lunar Lander environment is one of the

environments in OpenAi Gym [35].

6. Experiments results

The Lunar Lander environment and the Dueling DQN

algorithm were used in this study to test the use of chaos

in the action selection part of deep reinforcement learning

and the replay buffer part. Google Colab was used for

implementation. In this study, an ε-greedy action selection

method was used, with epsilon starting at 1 and gradually

decreasing at a rate of 0.95 until reaching 0.1 where it

remained constant. In the replay buffer part, instead of

randomly selecting samples, the Zhang chaotic system

was used to select samples for training the neural network.

In the action selection part, a combination of the Zhang

system and logistics was used; a number generated by the

Zhang system was first obtained, and if it was smaller than

the epsilon value, the logistic system was used for chaotic

selection, otherwise the maximum action was chosen. To

select one of the four operations using the logistic system,

we first generate a chaotic number by providing an initial

value to the logistic system; then we multiply this number

by 1014 and round it. The remainder of dividing the

obtained number by four determines the desired operation.

Since the role of chaos in the study was investigated, all

parameters in both methods remained completely constant

and only the mentioned changes and use of chaos instead

of randomness were applied. The value of µ in the Zhang

equation was set to 2.4140 and the value of λ in the

logistics equation was set to 4.

In figures 6 to 9, the results of using chaos in this

environment are observable. The vertical axis shows the

average reward received in the last 50 runs, while the

horizontal axis represents the runs. Here, the amount of

replay buffer is 1000000, each time, 32 examples of this

memory are selected using chaos to train the neural

network.

The neural network used is a fully connected feedforward

network with 128 neurons in each of the first and second

layers. The activation function used is ReLu, the loss

function is MSE (Minimum Square Error), and the Adam

algorithm is used for updating the network weights. The

results of the experiments are also shown in Table I; in

this table, the average reward received in all 200 runs, the

reward received in the 200th run, and the average reward

received in the last 50 runs are compared for 4 different

methods.

Fig. 6. Comparison of the rewards received in the Lunar

Lander environment in the chaotic sample selection

mode from the replay buffer with the random sample

selection mode.

Based on figures 6 to 9 and Table I, the superiority of

using chaos over using random mode is clear. When the

chaotic ɛ-greedy method is used instead of random

selection of actions in the ɛ-greedy method, the results are

very promising and the average reward received increases

rapidly and almost climbs to above 200 in the 65th run,

which shows the efficiency of the new method, while in

the traditional method, even until the 200th run, the

average reward received has not reached 200, and

practically the environment has not been learned. The

graph of the average reward received in the traditional

mode (red), the use of chaos only in the replay buffer

(green), the use of chaos only in the part of the action

selection (black) and the use of chaos in both parts of the

replay buffer and action selection (blue) is shown in

Figure 9.

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

119

Fig. 7. Comparison of rewards received in the Lunar

Lander environment in the chaotic action selection mode

versus random action selection mode.

Fig. 8. Comparison of rewards received in the Lunar

Lander environment in the mode of simultaneous use of

chaos in the replay buffer and action selection.

Fig. 9. Comparative chart of the rewards received in the

Lunar Lander environment in the chaos mode;

comparison of figures 6, 7, and 8.

As seen in these figures; The use of chaos causes faster

learning of the problem and the problem converges faster

than the normal state, and the effectiveness of chaos has

been shown with these experiments.

In addition to the epsilon-greedy method, random and

greedy action selection methods were also tested. In the

greedy action selection, at each step, the action with the

highest value is chosen, while in the random action

selection method, one of the actions is chosen randomly

each time. The experimental results showed that using

these two methods did not lead to learning the

environment and did not solve the problem.

Table I. Comparison of rewards received in traditional

mode and chaos mode in the Lunar Lander environment.

Total

rewards in

the 200th

run

Average

reward per

200 runs

Average

reward over

the last 50

runs

Traditional
ɛ-greedy

method

181.4 133.7 185.0

Chaos

only in the

replay

buffer

218.8 151.1 204.6

Chaos

only in

action

selection

247.0 166.5 230.1

Chaos in

both parts
273.0 204.3 237.2

7. Discussion

It should be noted that the aim of this paper is not to

present a new reinforcement learning algorithm, but rather

the results obtained are simply the result of replacing

random numbers with chaotic numbers and no other

parameters have changed. The results of the previous

section showed that replacing random numbers with

chaos in the action selection and replay buffer

significantly improved the performance of the learned

algorithm, primarily due to the special characteristics of

chaos and most importantly its ergodicity property. Here,

no new method has been presented, and there is no claim

of superiority over existing established methods. Since

one of the conventional action selection methods in deep

reinforcement learning is the ɛ-greedy, which uses

random numbers to select one of the actions, chaos was

employed to enhance the efficiency of this method,

yielding favorable results, and a complete comparison

with this method was carried out. In addition to the ɛ-

greedy, which is the basis of this paper, random and

greedy action selection methods were also tested.

However, these methods did not converge under the

conditions described in this paper.

 According to these results, although the use of chaos in

the action selection is much more effective than the use of

chaos in the replay buffer, but the combination of the

effects of both of these is better than the individual cases,

and therefore, the use of chaos in both parts is

recommended. If chaos is used only in the replay buffer,

although it is superior to the random mode, it is not as

good as using chaos in action selection.

Since the methods of generating random numbers are

based on specific algorithms, the possibility of

regenerating and generating similar numbers exists, but in

chaos, this is not the case considering the properties

discussed. Therefore, using chaotic generated numbers in

selecting actions in the ε-greedy method is more

compatible with the goals of this method and improves its

performance as observed in the results.

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

120

Since chaotic numbers can be easily generated from

equations (1) and (2), generating numbers using logistic

and Zhang systems does not impose significant

computational complexity. In an experiment, the time to

generate 1000 uniformly random numbers was

approximately 0.059 seconds, and the time to generate

1000 chaotic numbers using the logistic system was

approximately 0.098 seconds. Although the time in the

experiments used is not overly significant.

Generating chaotic time series with chaotic maps

typically requires more computations compared to using

random number generators, which can lead to longer

processing times. However, the problem can be solved

quickly using chaotic time series, making the

computational overhead of chaotic maps negligible.

Chaos systems with differential equations that need to be

solved numerically are examples of such systems;

however, this paper does not use these types of systems.

According to the numerous tests and experiments that

were conducted with and without the presence of chaos,

we did not encounter the phenomenon of overfitting

caused by the certainty in chaos. In this paper, the

deterministic property of chaos has not been used, and

therefore there is no possibility of overfitting due to the

certainty of chaotic sequences, here to generate the

chaotic number every time by giving a random number to

the chaotic system, its generated number is used. In this

method, the process of selecting an action and the ε-

greedy method occurs outside the network, and the type

of number used for selecting an action (random number

or chaotic number) does not affect the network training

process, we only expect all actions to be tested multiple

times based on the properties of chaos and the best action

to be chosen.

Chaotic numbers produced in this paper can be considered

as random numbers but with more random properties,

which has been proven in tests and experiments. Due to

the property of generated numbers, we have made more

random choices and compared to the use of random

numbers in the ε-greedy method, the algorithm converges

earlier and the problem is learned sooner; Therefore, this

method is more efficient than the traditional method. The

generated chaotic numbers can be easily and without

worry used instead of random numbers because each of

the generated chaotic numbers is independent from the

other numbers and the numbers are not dependent on each

other.

8. Conclusion

For the first time in this paper, the use of chaos in deep

reinforcement learning is presented in order to balance

between exploration and exploitation. The proposed

method was discussed and evaluated on the Lunar Lander

environment and favorable results were obtained. Here,

chaos was used both in the replay buffer to select samples

for neural network training, and in the action selection

part with the help of the ɛ-greedy method, which instead

of random numbers, generated chaotic numbers were used.
The results of using chaos in choosing the action well and

much better than the traditional mode has been able to

learn the problem and win more awards. Also, chaotic

selection of samples in replay buffer was better than

random selection of samples, and the combined use of

chaos is more effective in both parts.

Given the variety and diversity of chaotic systems and

somewhat different behaviors of some chaotic systems in

different environments, selecting and deploying the

desired system for a specific application can be

challenging; although, considering the successful

experience of chaos in numerous applications, generally,

replacing random numbers with chaotic numbers is

desirable in most cases.

Considering the lack of research in the field of using chaos

in deep reinforcement learning, this topic could be a

suitable area of work. It is possible to examine the effect

of using other chaotic systems or their combination in this

field. Additionally, exploring the development of the

proposed method in other deep reinforcement learning

architectures such as actor-critic structures or other

reinforcement learning methods can be considered.

9. References

دولتشاهی، 1] محمدباقر اعلمیان، فریناز درهمی، ولی یادگیری »[

 .1396، انتشارات دانشگاه یزد، «تقویتی

افزایش سرعت فرآیند »[سید علی خوشرو، سید حسین خواسته، 2]

، 14، مجله کنترل، جلد «با مکانیزم آثار شایستگی DQNیادگیری

 . 1399، 13-23، صفحات 4شماره
[3] P. Ladosz, L. Weng, M. Kim, H. Oh, “Exploration in

deep reinforcement learning: A survey”, Information

Fusion, vol. 85, pp. 1-22, 2022.

[4] H. Khodadadi, A. Zandvakili, “A New Method for

Encryption of Color Images based on Combination of

Chaotic Systems”, Journal of AI and Data Mining, vol. 7,

no. 3, pp. 377-383, 2019.

[5] R.B. Naik, U. Singh, “A review on applications of

chaotic maps in pseudo-random number generators and

encryption”, Annals of Data Science, vol. 11, no. 1, pp.

25-50, 2024.

[6] H. Liu, A. Kadir, Y. Li, “Audio encryption scheme by

confusion and diffusion based on multi-scroll chaotic

system and one-time keys”, Optik, vol. 127, no. 19, pp.

7431-7438, 2016.

[7] M.S Azzaz, M.A. Krimil, “A new chaos-based text

encryption to secure gps data”, In 2018 International

Conference on Smart Communications in Network

Technologies (SaCoNeT), October 2018, Algiers,

Algeria , pp. 294-299.

[8] H. Xu, X. Tong, X. Meng, “An efficient chaos pseudo-

random number generator applied to video encryption”,

Optik, vol. 127, no. 20, pp. 9305-9319, 2016.

[9] K. Chen, B. Xue, M. Zhang, F. Zhou, “Novel chaotic

grouping particle swarm optimization with a dynamic

regrouping strategy for solving numerical optimization

tasks”, Knowledge-Based Systems, 194, 105-123, 2020.
بر یآشوب گونه مبتن یکژنت یتمالگور» مجید محمدپور، حمید پروین، [10]

برق یمجله مهندس یا«،پو یساز ینهحل مسائل به یبرا یحافظه و خوشه بند

 . 1395، 318-299، صفحات 3، شماره 46جلد یز، دانشگاه تبر

پروین، [11] حمید رضایی، وحیده نجاتیان، یتمالگور یکارائه »صمد

مجله یا«،پو سازیینهحل مسائل به ی بر ازدحام ذرات برا یمبتن یتیچندجمع

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

121

تبر یمهندس دانشگاه شماره 48جلد یز،برق صفحات 3، ،1405-1423 ،

1397.

[12] Z. Liang, Z. Xiao, J. Wang, L. Sun, B. Li, Y. Hu, Y.

Wu, “An improved chaos similarity model for

hydrological forecasting”, Journal of Hydrology, vol. 577,

pp. 123-133, 2019.

[13] Z. Hua, Y. Zhou, “Exponential chaotic model for

generating robust chaos”, IEEE transactions on systems,

man, and cybernetics: systems, vol. 51, no. 6, pp. 3713-

3724, 2019.

[14] J.T. Chien, P.C. Hsu, “Stochastic curiosity

maximizing exploration”, In 2020 International Joint

Conference on Neural Networks (IJCNN), July 2020,
Glasgow, UK, pp. 1-8.

[15] T. Lin, A. Jabri, “MIMEx: intrinsic rewards from

masked input modeling”, arXiv preprint

arXiv:2305.08932, 2023.

[16] V. Derhami, V.J. Majd, M.N. Ahmadabadi,

“Exploration and exploitation balance management in

fuzzy reinforcement learning”, Fuzzy sets and systems,

vol. 161, no. 4, pp. 578-595, 2010.

[17] B.H. Abed-alguni, “Action-selection method for

reinforcement learning based on cuckoo search

algorithm”, Arabian Journal for Science and Engineering,

vol. 43, no. 12, pp. 6771-6785, 2018.

[18] A. Ecoffet, J. Huizinga, J. Lehman, K.O. Stanley, J.

Clune, “First return, then explore”, Nature, vol. 590, no.

7847, pp. 580-586, 2021.

[19] M. Usama, D.E. Chang, “Learning-driven

exploration for reinforcement learning”, In 2021 21st

International Conference on Control, Automation and

Systems (ICCAS), (2021, October).) (pp. 1146-1151).

IEEE.

[20] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C.

Paduraru, and Y. Tassa, “Safe exploration in continuous

action spaces”, arXiv preprint arXiv:1801.08757, 2018.

[21] T.G. Karimpanal, S. Rana, S. Gupta, T. Tran, S.

Venkatesh, “Learning transferable domain priors for safe

exploration in reinforcement learning", In 2020

International Joint Conference on Neural Networks

(IJCNN),July 2020, Glasgow, UK, pp. 1-10.

[22] A. Zhaikhan, A.H. Sayed, “Graph Exploration for

Effective Multiagent Q-Learning”, IEEE Transactions on

Neural Networks and Learning Systems, pp. 1-12, 2024.

[23] K. Morihiro, T. Isokawa, N. Matsui, H. Nishimura,

“Effects of chaotic exploration on reinforcement learning

in target capturing task”, International Journal of

Knowledge-based and Intelligent Engineering Systems,

vol. 12, no. 5-6, pp.369-377, 2008.

[24] K. Morihiro, T. Isokawa, N. Matsui, H. Nishimura,

“Reinforcement learning by chaotic exploration generator

in target capturing task”, In International Conference on

Knowledge-Based and Intelligent Information and

Engineering Systems, 2005, Melbourne, Australia, pp.

1248-1254.

[25] K. Morihiro, N. Matsui, H. Nishimura, “Effects of

chaotic exploration on reinforcement maze learning”, In

International Conference on Knowledge-Based and

Intelligent Information and Engineering Systems, (pp.

833-839). Springer, Berlin, Heidelberg.

[26] K. Morihiro, N. Matsui, H. Nishimura, “Chaotic

exploration effects on reinforcement learning in shortcut

maze task”, International Journal of Bifurcation and

Chaos, vol. 16, no. 10, pp. 3015-3022, 2006.

[27] A.B Potapov, and M.K Ali, “Learning, exploration

and chaotic policies”, International Journal of Modern

Physics C, vol. 11, no. 07, pp. 1455-1464, 2000.

[28] H. Khodadadi, V. Derhami, “Improving Speed and

Efficiency of Dynamic Programming Methods through

Chaos”, Journal of AI and Data Mining, vol. 9, no. 4, pp.

487-496, 2021.

[29] B. Zarei, M.R Meybodi, “Improving learning ability

of learning automata using chaos theory”, The Journal of

Supercomputing, vol. 77, no. 1, pp. 652-678, 2021.

[30] X. Zhang, Y. Cao, “A novel chaotic map and an

improved chaos-based image encryption scheme”, The

Scientific World Journal, Article ID 713541, 2014.

[31] H. Van Hasselt, A. Guez, D. Silver, “Deep

reinforcement learning with double q-learning”, In

Proceedings of the AAAI conference on artificial

intelligence, (Vol. 30, No. 1), Phoenix, Arizona USA.

[32] T. Schaul, J. Quan, I. Antonoglou, D. Silver,

“Prioritized experience replay”, arXiv preprint

arXiv:1511.05952, 2015.

[33] Z. Wang,T. Schaul, M. Hessel, H. Hasselt,

M .Lanctot, N. Freitas, “Dueling network architectures for

deep reinforcement learning”, In International conference

on machine learning, June 2016, PMLR, pp. 1995-2003.

[34] RS. Sutton, AG, Barto, “Reinforcement learning: An

introduction”, 2nd Ed, The MIT Press, London, 2018.

[35] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,

J. Schulman, J. Tang, W. Zaremba, “Open ai gym”,

ArXiv:1606.01540, 2016.

