
Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025                                                                                                            Serial no. 111 

DOI: 10.22034/tjee.2024.61074.4824 

 

 

Employing Chaos Theory for Exploration–

Exploitation Balance in Deep Reinforcement 

Learning 
 

Habib Khodadadi, Vali Derhami* 

 

Department of Computer Engineering, Yazd University, Yazd, Iran. 

habib.khodadadi@stu.yazd.ac.ir, Vderhami@yazd.ac.ir 
*Corresponding author 

 

Received:03/04/2024, Revised:27/09/2024, Accepted:16/10/2024. 

 

 

Abstract 

Deep reinforcement learning is widely used in machine learning problems and the use of methods to improve its 

performance is important. Balance between exploration and exploitation is one of the important issues in reinforcement 

learning and for this purpose, action selection methods that involve exploration such as ɛ-greedy and Soft-max are used. 

In these methods, by generating random numbers and evaluating the action-value, an action is selected that can maintain 

this balance. Over time, with appropriate exploration, it can be expected that the environment becomes better understood 

and more valuable actions are identified. Chaos, with features such as high sensitivity to initial conditions, non-periodicity, 

unpredictability, exploration of all possible search space states, and pseudo-random behavior, has many applications. In 

this paper, numbers generated by chaotic systems are used for the ɛ-greedy action selection method in deep reinforcement 

learning to improve the balance between exploration and exploitation; in addition, the impact of using chaos in replay 

buffer will also be investigated. Experiments conducted in the Lunar Lander environment demonstrate a significant 

increase in learning speed and higher rewards in this environment. 
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1. Introduction 

Reinforcement learning (RL) is a computational approach 

for understanding and automating decision-making and 

goal-based learning, emphasizing learning based solely 

on direct interaction with the environment without relying 

on a supervisor or a complete model of the environment 

[1]. RL has been used in various issues such as robotics, 

resource allocation, and cloud computing [2]. However, 

real-world problems have very large state spaces that 

classical (discrete) reinforcement learning methods are 

unable to solve. Recent advancements in machine 

learning have led to the emergence of deep neural 

networks which are used for automatic feature extraction 

and other applications. One technique for using 

reinforcement learning in complex and high-dimensional 

problems is to combine it with deep neural networks, 

which is called deep reinforcement learning; one type of 

these networks, created by combining the Q-learning 

method with deep neural networks, is called Deep Q-

Network (DQN) [2]. The importance of exploring the 

rewards of various actions cannot be overstated when it 

comes to optimizing RL algorithms. By actively seeking 

out and evaluating different outcomes, exploration plays 

a key role in guiding behavior within the state space, 

ultimately aiding in the swift convergence towards an 

optimal policy. Furthermore, exploration is essential in 

uncovering the underlying reward system of the 

environment, thus assisting in the identification of the 

most effective policies. For effective learning in 

reinforcement learning, actions should be selected in a 

way that the environment is explored properly and the 

knowledge acquired during learning is utilized 

appropriately. Completing these two tasks simultaneously 

is not possible, and a balance between exploration and 

exploitation must be created in RL. Various methods have 

been proposed to create this balance between exploration 

and exploitation, but this issue has not been fully resolved 

and research in this area is ongoing [1].  

Reinforcement learning exploration can be divided into 

two primary categories: efficiency and safe exploration. 

In terms of efficiency, the goal is to increase the 

effectiveness of exploration to allow the agent to explore 

with as few steps as necessary. On the other hand, safe 

exploration prioritizes ensuring the agent's safety during 

the exploration process. Efficiency-based methods can be 

divided into two categories imitation-based (Emulate 

learning from teacher) and self-taught methods (Learning 

from scratch). There are various categories of self-taught 

methods, including planning, intrinsic rewards, and 

random exploration. In planning, the agent strategically 

determines its next actions to improve its understanding 

of the environment. On the other hand, in random 

exploration, the agent does not deliberately plan its 

actions but instead explores the environment and observes 

the outcomes of these explorations. In intrinsic reward 

methods, the agent is rewarded for visiting new states or 
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new behaviors [3]. Some of the methods available in each 

of these categories are listed in the related works section. 

Based on the chaotic features such as sensitivity to initial 

conditions, pseudo-randomness, ergodicity and non-

periodicity, numbers generated by chaotic systems have 

been used in various applications such as different types 

of encryptions (image [4-5], audio [6], text [7], and video 

[8]), evolutionary algorithms [9-11], and prediction [12]. 

In these applications, various chaotic maps and different 

methods have been used for generating chaotic numbers 

for use in each of these cases. Chaos theory has shown 

positive performance against random data in these 

applications. For example, chaos has improved and 

increased the speed of finding the global optimum in most 

evolutionary algorithms, or many encryption algorithms 

are based on chaos. This better performance is due to the 

unique properties of chaotic systems. Research on 

creating stronger chaotic systems continues, and new 

systems are being introduced [13].  

Chaotic numbers generated for use in action selection 

methods in reinforcement learning and deep 

reinforcement learning can also be utilized.  

The use of deep reinforcement learning is increasing 

widely in machine learning problems, and any 

improvement in its performance is important; Since there 

is no prior work on the use of chaos in the action selection 

part of deep reinforcement learning, in this paper, chaos 

in the action selection part of deep reinforcement learning 

and replay buffer have been used, leading to an increase 

in learning speed and earning more rewards in the tested 

environment. The main contributions of this paper are 

summarized as follows: 

• in order to create a balance between exploration 

and exploitation, chaos in the action selection part of 

deep reinforcement learning will be used for the first 

time (As far as we know) in this paper using a ε-

greedy approach. The ergodicity property of chaos 

theory causes the DQN performance to be 

significantly improved. 

• Using chaos to select samples from the replay 

buffer in deep reinforcement learning to further 

diversify the selected samples and increase the speed 

of network training, which so far has no precedent in 

this regard. 
 

The structure of this paper is as follows: First, in part 2 

and 3, related works and chaotic systems are briefly 

introduced, followed by an overview of reinforcement 

learning and deep reinforcement learning in Section 4. 

The proposed method in this paper is presented in part 5 

and its computational results are discussed in Section 6. 

Finally, discussion and conclusion are presented in parts 

7 and 8. 
 

2. Related Works 

So far, numerous research studies have been conducted in 

the field of action selection and improving the balance 

between exploration and exploitation. In research [14], a 

method called Stochastic Curiosity Maximizing 

Exploration (SCME) for incentivizing agents in 

reinforcement learning to explore their environment more 

effectively has been developed. This paper introduces a 

new method called Stochastic Curiosity Maximizing 

Exploration (SCME) for SCME uses an intrinsic reward 

signal that encourages the agent to visit novel states and 

take actions that lead to new experiences. The method 

achieves good results compared to existing exploration 

algorithms on a range of tasks and environments. 

MIMEx [15], a method for generating intrinsic rewards in 

reinforcement learning tasks by using masked input 

modeling is introduced. The authors propose a novel 

reward signal that encourages the agent to focus on 

relevant parts of the input by masking out unimportant 

information. They validate their approach on a range of 

tasks and show that incorporating MIMEx leads to 

improved performance compared to traditional reward 

mechanisms. Overall, MIMEx offers a promising 

approach for enhancing the learning capabilities of 

reinforcement learning agents. 

The use of adaptive learning rates in fuzzy reinforcement 

learning is also mentioned as a way to achieve a balance 

between exploration and exploitation [16], where the 

learning rate is adjusted considering the "fuzzy visit 

value" of the current state. 

In another study, Cuckoo Search Algorithm were used 

instead of traditional action selection methods for action 

selection [17]. In this method, the reinforcement learning 

problem is shown as an optimization problem where the 

candidate solutions are the values of Q and the objective 

function is the Q-function. In each iteration, the Q-

learning algorithm updates combinations of Q values and 

actions using the evolutionary optimization algorithm, 

and the action with the highest optimized value is selected. 

The steps and implementation of the idea were also tested 

on several environments such as MAB and Cliff-Walking, 

and the effectiveness of this method was confirmed. 

In a paper titled "First Return, Then Explore" a new way 

to explore is presented by suggesting that agents should 

prioritize returning to areas of high reward before 

exploring new options [18]. This approach focuses on 

encouraging agents to first exploit known strategies 

before exploring new options. This can help improve the 

efficiency and effectiveness of the learning process, 

ultimately leading to better performance in reinforcement 

learning tasks. The primary method utilized in this 

approach involves remembering visited states and paths, 

as well as learning from the goal by assuming the goal 

state is known but the path to it is unknown. 

Another study has been attempted to determine the 

exploration rate through a model of environmental 

entropy [19]. Entropy-based exploration (EBE) allows an 

agent to effectively explore unfamiliar areas within the 

state space. By measuring the agent's progress in a given 

state using only action values that are specific to that state, 

EBE dynamically navigates the state space, prioritizing 

exploration in regions that have not yet been thoroughly 

investigated. 

Safe exploration methods include using human designer 

knowledge to create boundaries for the agent. For 

example, in one study, the actions of an agent are limited 

by an additional pre-trained module to prevent unsafe 

actions [20]. Additionally, in research, the states of the 

investigated problem and their advantages are stored in a 

shared memory, and states that are frequently visited but 

have low advantage receive extra negative rewards. Here, 

the agent is allowed to use previous experiences to 

identify undesirable states [21]. 
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In another research, graph-based exploration method has 

been used for multi-agent environments [22]. This paper 

presents a technique for effective multi-agent Q-learning 

by utilizing graph exploration. The approach involves 

creating a graph structure to represent the relationships 

between agents and states in the environment. This graph 

is then used to guide exploration and improve the learning 

process. The authors demonstrate the effectiveness of 

their approach through experiments on various multi-

agent scenarios. 

The history of using chaos in reinforcement learning to 

create a balance between exploration and exploitation is 

not extensive, and in most cases [23-27], logistic map has 

been used to generate random numbers for use in ɛ-greedy 

action selection methods. Experiments on the Target 

Capturing Task problem have been conducted to compare 

chaotic and traditional conditions; the chaotic method has 

shown better results with less time and distance spent to 

find the target [23-24]. The authors of these papers have 

also performed this action on the Shortcut Maze problem 

and achieved similar results [25]; furthermore, in another 

study, the Tent mapping has been used and found to be 

less efficient compared to logistics; the experimental 

environment is the same as the Shortcut Maze 

environment, which is a type of maze-like environment 

[26]. In these papers, SARSA and Q-learning algorithms 

have been used as reinforcement learning methods. 

Considering that in these studies, the environment may 

have slight changes, a performance criterion q(n) = tmin/tn 

has been introduced; where tmin is the minimum distance 

required to reach the target from the beginning and tn is 

the actual distance covered, with the best case scenario 

having a q(n) value of 1. For example, in the Shortcut 

Maze problem, with 900 executions including movement 

from the start to finding the target, the average value of q 

in the case of using random values in the ɛ-greedy method 

in 899 runs was reported as 0.86, and using chaotic system 

values in the logistics method it was reported as 0.91  [25]. 

Additionally, in another research, action selection in the 

ɛ-greedy method was compared to chaotic and traditional 

ɛ-greedy methods on the Shortcut Maze problem where 

logistics, Tent, and Chaotic Neuron mappings were used, 

and the chaotic methods showed better performance [27]. 

In a study related to reinforcement learning, the 

application of chaos theory in dynamic programming to 

overcome global updates of all states has been examined, 

utilizing the logistic chaotic system for this purpose [28]. 

This method involves executing policy evaluation once in 

each stage of policy iteration and updating only a few 

states proposed by the chaotic system. The policy 

improvement stage then follows, using similar procedures 

in the value iteration method, which resulted in better 

outputs than the conventional method. 

 
3. Chaotic Systems 

Chaotic systems are non-linear dynamic systems that are 

very sensitive to their initial conditions and exhibit a 

pseudo-random behavior. A slight change in the initial 

conditions of such systems will lead to significant changes 

in the future. The definability of the system and the 

certainty despite the pseudo-random behavior are also 

important characteristics of chaotic systems [29].  

For a system to be classified as chaotic, it must exhibit the 

following properties [29]: 

• Sensitivity to initial conditions: This 

characteristic of chaotic systems shows that even a 

small adjustment to the starting conditions can lead to 

substantially different outcomes over time. 

• Topological mixing or topological transitivity 

(ergodicity): is a characteristic that states chaotic 

variables will move through all states within a set 

range without repeating. This property can be utilized 

as an optimization tool to ensure that no solution is 

revisited in the search space, preventing algorithms 

from getting stuck in a local optimum. this feature 

leads to the generation of diverse and non-repeating 

numbers. 

• Topological density: refers to the property that 

every point within a given space is approached by 

periodic orbits in an arbitrary manner. 

Substituting chaos for random numbers has been shown 

to increase learning speed due to leveraging the special 

properties of chaos, especially its ergodicity property [29]. 

So far, many chaotic systems have been introduced. The 

logistics system is a chaotic system. The governing 

equation for this system is in the form of (1) [4]: 

(1)                                 𝑥𝑛+1 = 𝜆𝑥𝑛(1 − 𝑥𝑛)          𝑥0 ∈ [0,1] 

In which, for values of λ that are in the interval [3.56,4], 

the system exhibits chaotic behavior. Giving any initial 

value for a chaotic system, the next numbers are obtained 

according to the mapping relationship. Of course, it 

should be noted that even with very slight changes in the 

same initial value, the generated number series will be 

completely different from each other. 

In Figure 1, the behavior of the logistic system with initial 

value x0=0.6000 and parameter value λ=3.9999 is shown; 

also, in Figure 2, the first 50 numbers generated by this 

system are shown. 

 

 
Fig. 1.  The chaotic behavior of logistic signal in the first 

500 iterations with x0=0.6000 and λ=3.9999 is shown in 

the plot (horizontal axis shows the number of iterations 

and vertical axis shows the value of logistic signal in 

each iteration). 

 

In this figure, another characteristic of chaotic systems is 

apparent; it can be observed that the generated numbers 

are well distributed in the space of 0 to 1 and after several 

iterations, different parts of the space are visited. 
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Fig. 2.  The first 50 numbers of logistic signal with 

x0=0.6000 and λ=3.9999. 

 

Another chaotic system is the Zhang system, which is 

constructed by combining two chaotic logistic and Tent 

systems, and its relationship can be seen in equation (2) 

[30]. 

(2                 )                             𝑥𝑛+1 = 2𝜇|𝑥𝑛|(1 − 2|𝑥𝑛|) 

In this paper, logistic and Zhang systems are used to 

generate chaotic numbers, which will be used instead of 

random numbers in the action selection and replay buffer 

of deep reinforcement learning. In order to generate 

chaotic numbers using these systems, every time a 

random number is given as an initial value to the chaotic 

system and its output is used; Also, in addition to this 

method, by giving an initial value to the chaotic system, 

and using the generated number as the next value for the 

input of the system, we can have a sequence of chaotic 

numbers with a specific initial value, which can be 

reproduced by having the initial value of this sequence. In 

this paper, the first method was used to generate chaotic 

numbers, and there is no dependence of chaotic numbers 

on each other in the form of a sequence. 
 

4. Reinforcement learning and deep reinforcement 

learning 

Reinforcement learning is the process of learning 

appropriate actions from a set of allowable actions for a 

specific situation based on received rewards and penalties 

[1]. The key idea of reinforcement learning is to use value 

functions to find appropriate policies, and dynamic 

programming is one of the methods of reinforcement 

learning that uses the Bellman equation to calculate the 

value of each state from the environment or the value of 

state-action pairs (equations 3 and 4) [1]. To calculate the 

value of each state, the values of other states are used. 

𝑉𝜋(𝑠) = ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′              (3) 

𝑄𝜋(𝑠, 𝑎) = ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑠′                   (4)          

In these equations, action a is selected from the set of 

actions in state s, and the next states s' are members of the 

set of states. Vπ(s) is the value of state s under policy π, 

Qπ(s, a) is the value of action a in state s under policy π, 

𝑃𝑠𝑠′
𝑎  and 𝑅𝑠𝑠′

𝑎
are the transition probability and the 

expected reward value to the next state, respectively. Also, 

π (s, a) is the probability of selecting action a in state s and 

finally, γ is the discount factor. 

There are multiple algorithms in reinforcement learning, 

and one of the most commonly used ones is the Q-learning 

algorithm. In the Q-learning algorithm, all the values of 

state-action pairs are stored in a Q-table, where the rows 

represent states and the columns represent actions, and 

each element in this table is an estimate of the optimal 

value of a state-action pair. In each step of the agent's 

movement in the environment, this table needs to be 

updated, and new estimated values should replace the 

previous values using the received rewards. The update 

rule of this algorithm is given by equation (5) [17]. 

 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑡+1, 𝑎𝑡+1) −

𝑄(𝑠𝑡 , 𝑎𝑡))                                                                       (5) 

In this algorithm, α is the learning rate and r is the 

instantaneous reward value. Here, the learned state-action 

value function Q directly approximates the optimal state-

action value function independently of the policy that 

dictates behavior. 

Many real-world problems have very large state spaces 

and it is not possible to maintain a Q-table, in these cases 

an approximator is used to approximate the state-action 

value. There are different structures for this purpose, one 

of which is using artificial neural networks. The 

combination of deep learning and reinforcement learning 

has led to the emergence of deep reinforcement learning. 

The deep Q-network (DQN) is created by combining the 

Q-learning method with deep neural networks, where a 

neural network is used to estimate the state-action value 

[2]. As shown in Figure 3, in deep reinforcement learning, 

various types of neural networks and related concepts are 

used to estimate the state-action values due to the large 

number of states or continuous state inputs, and the output 

of the network is the estimated state-action values. 

Since in machine learning there is a need for independent 

and identically distributed (IID) samples from the 

problem space, previously observed samples are stored in 

memory (Replay buffer) and batches of these samples are 

randomly selected from this memory for network training 

each time [2]. 

Efforts have been made to increase the speed and 

efficiency of DQN, including the use of Double Q-

learning [31] to overcome the problem of overestimation 

and prioritized experience replay [32] to utilize more 

important experiences in the learning process. 

 

 
Fig. 3.  Deep Q Network: Using a deep network to 

estimate the values of state-action pairs. 

 

 

 One of the important improvements on DQN is the 

method Dueling DQN, which as shown in Figure 4 and 

equation (6), estimates values V and A (advantage) 

instead of directly estimating Q values by the network, 

and by combining these values, Q values are estimated, 

leading to an improvement in network speed. The reason 

for the increase in network speed in this algorithm is 
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related to the simplicity of estimating V compared to Q, 

because instead of estimating state-action values, which is 

a larger space, it only estimates values and the problem 

space will be smaller as a result, so the network will reach 

a conclusion sooner [33]. It is important to note that in 

many cases, estimating the value of each action is 

unnecessary; in some cases, knowing which action to take 

is crucial, but in many other cases, the choice of action has 

no impact on what happens [33].  

In RL, at any given moment, there are two strategies for 

action selection: one can choose a greedy action, which is 

the action with the highest estimated value and therefore 

utilizes the current knowledge; or one can choose a 

different action, in which case the agent's effort will be 

focused on further exploration, allowing the agent to 

improve its estimation of other non-greedy actions. For 

effective learning, actions should be selected in a way that 

the environment is adequately explored and penalties are 

avoided. It is not possible to simultaneously perform these 

two tasks fully, and a balance between exploration and 

exploitation must be established. The use of greedy 

policies in action selection limits the agent to a small part 

of the environment and hinders the discovery of other 

parts of the environment and finding better policies; 

therefore, other action selection methods are used. 

 

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑎)                                         (6)    

 

 
Fig. 4.  The upper figure represents the traditional DQN 

approach, while the lower figure represents the Dueling 

DQN approach. In the DDQN method, the Q value 

estimation is obtained from a specific combination of 

value estimates and advantage values (Equation 6) [33]. 
 

In general, solutions for action selection and maintaining 

balance in reinforcement learning are divided into two 

categories of direct exploration methods and indirect 

exploration methods. In direct exploration methods, it is 

assumed that some information about the environment 

such as the state transition function and reward function 

is available, which is usually not the case in reinforcement 

learning problems; therefore, indirect exploration 

methods are often used in RL problems [1]. Some indirect 

exploration methods include random exploration, greedy 

exploration, optimistic initial values exploration, ɛ-greedy 

exploration, soft-max exploration, and upper confidence 

bound exploration [34]. 

In the ε -greedy approach, with a probability of 1-ε (where 

ε is a positive real number between 0 and 1), the action 

with the highest value is selected, and with a probability 

of ε, all actions can be chosen (equation 7). The results of 

applying this method indicate higher efficiency compared 

to the greedy approach. Due to its low computational 

overhead, this method has been widely used in many 

problems [34]. 

When choosing an action using the ε-greedy method, we 

need to generate a random number and make a decision 

based on it. Firstly, by generating a random number and 

comparing it with epsilon, a decision is made whether to 

select the action with the maximum value or to choose one 

of the actions randomly. Secondly, if it is decided based 

on the first step to choose one of the actions randomly, 

another action will be selected by generating another 

random number. 

 

(7)     𝑃(𝑆, 𝑎) = {
1 − 𝜀 +

𝜀

𝑁
      𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈𝐴 𝑄(𝑆, 𝑏)   

𝜀

𝑁
                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

5. Proposed Method 

In the ε-greedy approach, numbers generated by chaos can 

be used instead of random numbers, utilizing the chaotic 

property to achieve a better balance between exploration 

and exploitation; here, instead of generating random 

numbers and making decisions based on them, numbers 

generated by the chaotic system are used for decision-

making. Based on previous research [23-27], using 

chaotic systems in the action selection component of RL 

methods has led to a better balance between exploration 

and exploitation in maze-like environments. In this paper, 

we will be using chaos in deep reinforcement learning for 

the first time. For this purpose, after initial preprocessing 

and setting appropriate values, numbers generated by 

chaotic systems replace random numbers in the ε-greedy 

action selection process, utilizing the chaotic property to 

achieve a better balance between exploration and 

exploitation. 

In addition to the action selection part, in many deep 

reinforcement learning algorithms, a part called replay 

buffer is used to store samples for training the network. 

Each time, a number of samples are randomly selected 

from this memory for network training. Here, for selecting 

samples from the replay buffer, chaos is used as described 

below. we expect that by utilizing chaos in the replay 

buffer, a variety of samples will be available for training 

the network, leading to improvement. For this purpose, 

first chaotic numbers are generated and then they are 

mapped to replay buffer samples and these samples are 

selected for training the network, which was done 

randomly in the traditional mode.  

For example, to select 32 samples from a memory of one 

million using chaos, first we generate 32 chaotic numbers 

with the desired chaotic system, where the numbers 

should be between 0 and 1; then we multiply these 

numbers by 1014 and round them. The remainder of the 

obtained number divided by one million determines the 

selected sample. Considering the properties of chaos, we 

expect to have a more diverse set of samples for training 

the network, leading to improvement. 

To test and implement this idea, the Lunar Lander 

environment, which is one of the environments available 

in OpenAi Gym [35], was used. The components of this 

environment include a spacecraft that needs to land on a 
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specified surface of a planet (between two yellow flags in 

image 5); therefore, the farther the landing distance from 

these two flags, the higher the negative score. The action 

space of this environment is discrete and has 4 actions, 

including do nothing (descending straight down as it falls), 

or activating one of the three engines: up, left, or right, 

and using them to fly in any direction. However, the state 

space of this environment is continuous, with an 8-

dimensional vector including horizontal and vertical 

position (-1.5 to 1.5), horizontal and vertical velocity (-5 

to 5), angle (-3.14 to 3.14), angular velocity (-5 to 5), and 

two binary values indicating contact with the ground on 

the left and right foot. Since the state space of this 

environment is continuous, deep learning methods and the 

use of a neural network as an approximator must be used 

to solve it, rather than tabular-based reinforcement 

learning methods. 

Moving from the top of the screen to the landing pad and 

successfully coming to rest will earn you approximately 

100-140 points. However, moving away from the landing 

pad will result in a loss of reward. Crashing will incur an 

additional penalty of -100 points, while successfully 

coming to rest will yield an extra +100 points. Each leg 

with ground contact will earn you +10 points. Using the 

main engine will deduct -0.3 points per frame, while using 

the side engine will deduct -0.03 points per frame. Finally, 

reaching a successful landing is worth 200 points. 

The closer the landing location is to the designated place, 

the higher the score, and the farther it is, the lower the 

score. The further the spaceship deviates, the lower the 

score. The slower/faster the spaceship moves, the score 

increases/decreases. Ultimately, if each run earns at least 

200 points, it is considered a solution. 

 

Fig. 5.  Lunar Lander environment is one of the 

environments in OpenAi Gym [35]. 

 

6. Experiments results 

The Lunar Lander environment and the Dueling DQN 

algorithm were used in this study to test the use of chaos 

in the action selection part of deep reinforcement learning 

and the replay buffer part. Google Colab was used for 

implementation. In this study, an ε-greedy action selection 

method was used, with epsilon starting at 1 and gradually 

decreasing at a rate of 0.95 until reaching 0.1 where it 

remained constant. In the replay buffer part, instead of 

randomly selecting samples, the Zhang chaotic system 

was used to select samples for training the neural network. 

In the action selection part, a combination of the Zhang 

system and logistics was used; a number generated by the 

Zhang system was first obtained, and if it was smaller than 

the epsilon value, the logistic system was used for chaotic 

selection, otherwise the maximum action was chosen. To 

select one of the four operations using the logistic system, 

we first generate a chaotic number by providing an initial 

value to the logistic system; then we multiply this number 

by 1014 and round it. The remainder of dividing the 

obtained number by four determines the desired operation. 

Since the role of chaos in the study was investigated, all 

parameters in both methods remained completely constant 

and only the mentioned changes and use of chaos instead 

of randomness were applied. The value of µ in the Zhang 

equation was set to 2.4140 and the value of λ in the 

logistics equation was set to 4. 

In figures 6 to 9, the results of using chaos in this 

environment are observable. The vertical axis shows the 

average reward received in the last 50 runs, while the 

horizontal axis represents the runs. Here, the amount of 

replay buffer is 1000000, each time, 32 examples of this 

memory are selected using chaos to train the neural 

network. 

The neural network used is a fully connected feedforward 

network with 128 neurons in each of the first and second 

layers. The activation function used is ReLu, the loss 

function is MSE (Minimum Square Error), and the Adam 

algorithm is used for updating the network weights. The 

results of the experiments are also shown in Table I; in 

this table, the average reward received in all 200 runs, the 

reward received in the 200th run, and the average reward 

received in the last 50 runs are compared for 4 different 

methods. 

 
Fig. 6.  Comparison of the rewards received in the Lunar 

Lander environment in the chaotic sample selection 

mode from the replay buffer with the random sample 

selection mode. 

 

Based on figures 6 to 9 and Table I, the superiority of 

using chaos over using random mode is clear. When the 

chaotic ɛ-greedy method is used instead of random 

selection of actions in the ɛ-greedy method, the results are 

very promising and the average reward received increases 

rapidly and almost climbs to above 200 in the 65th run, 

which shows the efficiency of the new method, while in 

the traditional method, even until the 200th run, the 

average reward received has not reached 200, and 

practically the environment has not been learned. The 

graph of the average reward received in the traditional 

mode (red), the use of chaos only in the replay buffer 

(green), the use of chaos only in the part of the action 

selection (black) and the use of chaos in both parts of the 

replay buffer and action selection (blue) is shown in 

Figure 9.  
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Fig. 7.  Comparison of rewards received in the Lunar 

Lander environment in the chaotic action selection mode 

versus random action selection mode. 

 

 
Fig. 8.  Comparison of rewards received in the Lunar 

Lander environment in the mode of simultaneous use of 

chaos in the replay buffer and action selection. 

 

 
Fig. 9.  Comparative chart of the rewards received in the 

Lunar Lander environment in the chaos mode; 

comparison of figures 6, 7, and 8. 

 
As seen in these figures; The use of chaos causes faster 

learning of the problem and the problem converges faster 

than the normal state, and the effectiveness of chaos has 

been shown with these experiments. 

In addition to the epsilon-greedy method, random and 

greedy action selection methods were also tested. In the 

greedy action selection, at each step, the action with the 

highest value is chosen, while in the random action 

selection method, one of the actions is chosen randomly 

each time. The experimental results showed that using 

these two methods did not lead to learning the 

environment and did not solve the problem. 

 

Table I. Comparison of rewards received in traditional 

mode and chaos mode in the Lunar Lander environment. 

 

Total 

rewards in 

the 200th 

run 

Average 

reward per 

200 runs 

Average 

reward over 

the last 50 

runs 

Traditional 
ɛ-greedy  

method 

181.4 133.7 185.0 

Chaos 

only in the 

replay 

buffer 

218.8 151.1 204.6 

Chaos 

only in 

action 

selection 

247.0 166.5 230.1 

Chaos in 

both parts 
273.0 204.3 237.2 

 

 

7. Discussion 

It should be noted that the aim of this paper is not to 

present a new reinforcement learning algorithm, but rather 

the results obtained are simply the result of replacing 

random numbers with chaotic numbers and no other 

parameters have changed. The results of the previous 

section showed that replacing random numbers with 

chaos in the action selection and replay buffer 

significantly improved the performance of the learned 

algorithm, primarily due to the special characteristics of 

chaos and most importantly its ergodicity property. Here, 

no new method has been presented, and there is no claim 

of superiority over existing established methods. Since 

one of the conventional action selection methods in deep 

reinforcement learning is the ɛ-greedy, which uses 

random numbers to select one of the actions, chaos was 

employed to enhance the efficiency of this method, 

yielding favorable results, and a complete comparison 

with this method was carried out. In addition to the ɛ-

greedy, which is the basis of this paper, random and 

greedy action selection methods were also tested. 

However, these methods did not converge under the 

conditions described in this paper. 

 According to these results, although the use of chaos in 

the action selection is much more effective than the use of 

chaos in the replay buffer, but the combination of the 

effects of both of these is better than the individual cases, 

and therefore, the use of chaos in both parts is 

recommended. If chaos is used only in the replay buffer, 

although it is superior to the random mode, it is not as 

good as using chaos in action selection. 

Since the methods of generating random numbers are 

based on specific algorithms, the possibility of 

regenerating and generating similar numbers exists, but in 

chaos, this is not the case considering the properties 

discussed. Therefore, using chaotic generated numbers in 

selecting actions in the ε-greedy method is more 

compatible with the goals of this method and improves its 

performance as observed in the results. 
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Since chaotic numbers can be easily generated from 

equations (1) and (2), generating numbers using logistic 

and Zhang systems does not impose significant 

computational complexity. In an experiment, the time to 

generate 1000 uniformly random numbers was 

approximately 0.059 seconds, and the time to generate 

1000 chaotic numbers using the logistic system was 

approximately 0.098 seconds. Although the time in the 

experiments used is not overly significant. 

Generating chaotic time series with chaotic maps 

typically requires more computations compared to using 

random number generators, which can lead to longer 

processing times. However, the problem can be solved 

quickly using chaotic time series, making the 

computational overhead of chaotic maps negligible. 

Chaos systems with differential equations that need to be 

solved numerically are examples of such systems; 

however, this paper does not use these types of systems. 

According to the numerous tests and experiments that 

were conducted with and without the presence of chaos, 

we did not encounter the phenomenon of overfitting 

caused by the certainty in chaos. In this paper, the 

deterministic property of chaos has not been used, and 

therefore there is no possibility of overfitting due to the 

certainty of chaotic sequences, here to generate the 

chaotic number every time by giving a random number to 

the chaotic system, its generated number is used. In this 

method, the process of selecting an action and the ε-

greedy method occurs outside the network, and the type 

of number used for selecting an action (random number 

or chaotic number) does not affect the network training 

process, we only expect all actions to be tested multiple 

times based on the properties of chaos and the best action 

to be chosen.  

Chaotic numbers produced in this paper can be considered 

as random numbers but with more random properties, 

which has been proven in tests and experiments. Due to 

the property of generated numbers, we have made more 

random choices and compared to the use of random 

numbers in the ε-greedy method, the algorithm converges 

earlier and the problem is learned sooner; Therefore, this 

method is more efficient than the traditional method. The 

generated chaotic numbers can be easily and without 

worry used instead of random numbers because each of 

the generated chaotic numbers is independent from the 

other numbers and the numbers are not dependent on each 

other. 

 

8.  Conclusion 

For the first time in this paper, the use of chaos in deep 

reinforcement learning is presented in order to balance 

between exploration and exploitation. The proposed 

method was discussed and evaluated on the Lunar Lander 

environment and favorable results were obtained. Here, 

chaos was used both in the replay buffer to select samples 

for neural network training, and in the action selection 

part with the help of the ɛ-greedy method, which instead 

of random numbers, generated chaotic numbers were used. 
The results of using chaos in choosing the action well and 

much better than the traditional mode has been able to 

learn the problem and win more awards. Also, chaotic 

selection of samples in replay buffer was better than 

random selection of samples, and the combined use of 

chaos is more effective in both parts. 

Given the variety and diversity of chaotic systems and 

somewhat different behaviors of some chaotic systems in 

different environments, selecting and deploying the 

desired system for a specific application can be 

challenging; although, considering the successful 

experience of chaos in numerous applications, generally, 

replacing random numbers with chaotic numbers is 

desirable in most cases. 

Considering the lack of research in the field of using chaos 

in deep reinforcement learning, this topic could be a 

suitable area of work. It is possible to examine the effect 

of using other chaotic systems or their combination in this 

field. Additionally, exploring the development of the 

proposed method in other deep reinforcement learning 

architectures such as actor-critic structures or other 

reinforcement learning methods can be considered.  
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