- [1] M. A. Abdelkawy, M. A. Zaky, A. H. Bhrawy, and D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Rom. Rep. Phys., 67(3) (2015), 773–791.
- [2] M. A. Abd-Elkawy and R. T. Alqahtani, Space-time spectral collocation algorithm for the variable-order Galilei invariant advection diffusion equations with a nonlinear source term, Math. Model. Anal., 22(1) (2017), 1–20.
- [3] O. A. Arqub and B. Maayah, Adaptive the Dirichlet model of mobile/immobile advection/dispersion in a timefractional sense with the reproducing kernel computational approach: Formulations and approximations, Int. J. Mod. Phys. B., 37(18) (2023), 2350179.
- [4] O. A. Arqub, Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates, J. Appl. Math. Comput., 59(1) (2019), 227–243.
- [5] O. A. Arqub and N. Shawagfeh, Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media, J. Porous. Media., 22(4) (2019), 411–434.
- [6] A. Babaaghaie and K. Maleknejad, Numerical solutions of nonlinear two-dimensional partial Volterra integrodifferential equations by Haar wavelet, J. Comput. Appl. Math., 317 (2017), 643–651.
- [7] R. Bagley and P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210.
- [8] R. L. Bagley and P. J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J., 23 (1985), 918–925.
- [9] R. T. Baillie, Long memory processes and fractional integration in econometrics, J. Econometrics., 73 (1996), 5–59.
- [10] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods, New York, NY: Springer, 2006.
- [11] W. Chen, J. Zhang, and J. Zhang, A variable-order time fractional derivative model for chloride ions sub-diffusion in concrete structures, Fract. Calc. Appl. Anal., 16(1) (2013), 76–92.
- [12] Y. M. Chen, Y. Q. Wei, D. Y. Liu, and H. Yu, Numerical solution for a class of nonlinear variable-order fractional differential equations with Legendre wavelets, Appl. Math. Lett., 46 (2015), 83–88.
- [13] M. Q. Chen, C. Hwang, and Y. P. Shih, The computation of wavelet-Galerkin approximation on a bounded interval, Int. J. Numer. Methods Eng., 39 (1996), 2921–2944.
- [14] C. M. Chen, F. Liu, V. Anh, and I. Turner, Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term, Appl. Math. Comput., 217(12) (2011), 5729–5742.
- [15] C. F. M. Coimbra, Mechanics with variable-order differential operators, Ann. Phys., 12(11–12) (2003), 692–703.
- [16] G. R. J. Cooper and D.R. Cowan, Filtering using variable-order vertical derivatives, Comput. Geosci., 30(5) (2004), 455–459.
- [17] C. Chui, Wavelets: a mathematical tool for signal analysis, SIAM, 1997.
- [18] H. Dehestani, Y. Ordokhani, and M. Razzaghi, Fractional-order Bessel wavelet functions for solving variable-order fractional optimal control problems with estimation error, Int. J. Syst. Sci., 51(6) (2020), 1032–1052.
- [19] H. Dehestani and Y. Ordokhani, Designing an efficient algorithm for fractional partial integro-differential viscoelastic equations with weakly singular kernel, CMDE, 13(1) (2025), 214–232.
- [20] H. Dehestani, Y. Ordokhani, and M. Razzaghi, Application of the modified operational matrices in multiterm variable-order time-fractional partial differential equations, Math. Meth. Appl. Sci., 42 (2019), 7296–7313.
- [21] H. Dehestani, Y. Ordokhani, and M. Razzaghi, Application of fractional Gegenbauer functions in variable-order fractional delay-type equations with non-singular kernel derivatives, Chaos Solitons Fractals., 140 (2020), 110111.
- [22] K. Diethelm and A. D. Freed, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, in: Scientific Computing in Chemical Engineering II, Springer, (1999), 217–224.
- [23] A. A. El-Sayed and P. Agarwal, Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials, Math. Meth. Appl. Sci., 42(11) (2019), 3978–3991.
- [24] M. S. Hashemi, E. Ashpazzadeh, M. Moharrami, and M. Lakestani, Fractional order Alpert multiwavelets for discretizing delay fractional differential equation of pantograph type, Appl. Numer. Math., 170 (2021), 1–13.
- [25] B. Hussain, A. Afroz, and A. Abdullah, Haar wavelet based numerical method for solving proportional delay variant of Dirichlet boundary value problems, IJNAA., 14(1) (2023), 287–298.
- [26] M. H. Heydari, A. Atangana, Z. Avazzadeh, and M.R. Mahmoudi, An operational matrix method for nonlinear variable-order time fractional reaction–diffusion equation involving Mittag-Leffler kernel, Eur. Phys. J. Plus., 135(2) (2020), 1–19.
- [27] M. H. Heydari, M. R. Hooshmandasl, C. Cattani, and G. Hariharan, An optimization wavelet method for multi variable-order fractional differential equations, Fundam. Inform., 151(1–4) (2017), 255–273.
- [28] J. Jia, X. Zheng, H. Fu, P. Dai, and H. Wang, A fast method for variable-order space-fractional diffusion equations, Numer. Algor., 85(4D) (2020), 1519–1540.
- [29] X. Li and B. Wu, A new reproducing kernel method for variable-order fractional boundary value problems for functional differential equations, J. Comput. Appl. Math., 311 (2017), 387–393.
- [30] F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, in: Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), in: CISM Courses and Lect., Springer, Vienna, 378 (1997), 291–348.
- [31] H. T. C. Pedro, M. H. Kobayashi, J. M. C. Pereira, and C. F. M. Coimbra, Variable-order modeling of diffusiveconvective effects on the oscillatory flow past a sphere, J. Vib. Control., 14(9–10) (2008), 1659–1672.
- [32] L. E. S. Ramirez and C. F. M. Coimbra, A variable-order constitutive relation for viscoelasticity, Ann. Phys., 16(7–8) (2007), 543–552.
- [33] Y. A. Rossikhin and M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15–67.
- [34] S. G. Samko and B. Ross, Integration and differentiation to a variable fractional order, Integral Transforms Spec. Funct., 1(4) (1993), 277–300.
- [35] H. G. Sun, W. Chen, H. Sheng, and Y. Q. Chen, Onmean square displacement behaviors of anomalous diffusions with variable and random orders, Phys. Lett. A., 374 (2010), 906–910.
- [36] M. Tavassoli Kajania, M. Ghasemi, and E. Babolian, Comparison between the homotopy perturbation method and the sine–cosine wavelet method for solving linear integro-differential equations, Comput. Math. Appl., 54 (2007), 1162–1168.
- [37] C. Tseng, Design of variable and adaptive fractional order FIR differentiators, Signal Process., 86(10) (2006), 2554–2566.
- [38] M. Usman, M. Hamid, R. U. Haq, and W. Wang, An efficient algorithm based on Gegenbauer wavelets for the solutions of variable-order fractional differential equations, Eur. Phys. J. Plus., 133 (2018), 327.
- [39] M. Usman, M. Hamid, T. Zubair, R. U. Haq, W. Wang, and M. B. Liu, Novel operational matrices-based method for solving fractional-order delay differential equations via shifted Gegenbauer polynomials, Appl. Math. Comput., 372 (2020), 124985.
- [40] K. Veselic, Damped oscillations of linear systems-A mathematical introduction, Springer, 2011.
- [41] S. Yaghoobi, B. Parsa Moghaddam, and K. Ivaz, An efficient cubic spline approximation for variable-order fractional differential equations with time delay, Nonlinear. Dyn., 87(2) (2017), 815–826.
- [42] H. Zhang, F. Liu, P. Zhuang, I. Turner, and V. Anh, Numerical analysis of a new space-time variable fractional order advection dispersion equation, Appl. Math. Comput., 242 (2014), 541–550.
- [43] H. Zhang, F. Liu, M. S. Phanikumar, and M. M. Meerschaert, A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model, Comput. Math. Appl., 66(5) (2013), 693–701.
|