
تعداد نشریات | 45 |
تعداد شمارهها | 1,381 |
تعداد مقالات | 16,906 |
تعداد مشاهده مقاله | 54,422,673 |
تعداد دریافت فایل اصل مقاله | 17,098,596 |
Numerical solving of multi-term time fractional diffusion-wave equations using shifted Gegenbauer spectral collocation method | ||
Computational Methods for Differential Equations | ||
مقاله 7، دوره 13، شماره 3، مهر 2025، صفحه 815-827 اصل مقاله (354.35 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.61509.2660 | ||
نویسندگان | ||
Mahboubeh Molavi-Arabshahi* ؛ Jalil Rashidinia؛ Shiva Tanoomand | ||
School of Mathematics and Computer Science, Iran University of Science and Technology, Narmak, Tehran 16844, Iran. | ||
چکیده | ||
In this paper, we present a numerical method to approximate the solution of the multi-term time fractional diffusion-wave equation (M-TFDWE). The proposed method represents the solution as a sum of shifted Gegenbauer polynomials (SGPs) with unknown coefficients. By using the operational matrix of fractional integration and integer derivatives based on SGPs, the M-TFDWE is converted into a system of algebraic equations. The convergence analysis of this numerical method is also discussed. Finally, we provide two examples to illustrate the accuracy of the proposed method. | ||
کلیدواژهها | ||
Spectral collocation method؛ Shifted Gegenbauer polynomial؛ Time fractional diffusion wave equation | ||
آمار تعداد مشاهده مقاله: 102 تعداد دریافت فایل اصل مقاله: 244 |