- [1] R. V. Alexander and W. Jianhong, A non-local pde model for population dynamics with state-selective delay: local theory and global attractors, J. Comput. Appl. Math., 190(1–2) (2006), 99–113.
- [2] S. Bhalekar, Stability and bifurcation analysis of a generalized scalar delay differential equation, Chaos, 26(8) (2016), 1–6.
- [3] S. Bhalekar and V. Daftardar-Gejji, Fractional ordered Liu system with time-delay, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 2178–2191.
- [4] S. Bhalekar and D. Varsha,A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 1(5) (2011), 1–9.
- [5] E. Bonyah, A. Atangana, and A. A. Elsadany, A fractional model for predator-prey with omnivore, Chaos, 29.1 (2019), 013136.
- [6] J. Chen, Y. Shen, X. Li, S. Yang, and S. Wen, Bifurcation and stability analysis of commensurate fractional-order van der Pol oscillator with time-delayed feedback, Indian J. Phys., 94 (2019), 1615–1624.
- [7] H. Cheng Dai and C. Jinde, Comparative study on bifurcation control methods in a fractional-order delayed predator-prey system, Sci. China. Tech. Sci., 62 (2019), 298–307.
- [8] R. Chinnathambi and F. A. Rihan, Stability of fractional-order prey–predator system with time-delay and Monod–Haldane functional response, Nonlinear Dyn., 92 (2018), 1637–1648.
- [9] R. Chinnathambi, F. A. Rihan, and H. J. Alsakaji, A fractional-order predator–prey model with Beddington–DeAngelis functional response and time-delay, J. Anal., 27 (2019), 525–538.
- [10] C. Huang, J. Cao, M. Xiao, A. Alsaedi, and F. E. Alsaadi, Controlling bifurcation in a delayed fractional predator–prey system with incommensurate orders, Appl. Math. Comput.,293 (2017), 293–310.
- [11] C. Huang, H. Li, T. Li, and S. Chen, Stability and Bifurcation Control in a Fractional Predator–Prey Model via Extended Delay Feedback, Int. J. Bifurcat. Chaos, 29(11) (2019), 1950150.
- [12] T. Huang and Z. Liu, Dynamics of a fractional-order predator-prey model with omnivores, Eco. Model., 476 (2023), 110–121.
- [13] C. Huang, Y. Qiao, L. Huang, and R. P. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays, Adv. Differ. Equ., 186 (2018), 1–26.
- [14] C. Huang, X. Song, B. Fang, M. Xiao, and J. Cao, Modeling, analysis and bifurcation control of a delayed fractional-order predator–prey model, Int. J. Bifurcat. Chaos, 28(9) (2018), 1850117.
- [15] M. Jafari Khanghahi and R. Khoshsiar Ghaziani, Bifurcation analysis of a modified May–Holling–Tanner predator–prey model with Allee effect, Bull. Iranian Math. Soc., 48.6 (2022), 3405–3437.
- [16] A. Jhinga and V. Daftardar-Gejji,A new numerical method for solving fractional delay differential equations, Comput. Appl. Math., 166(8) (2019), 1–18.
- [17] Z. Jiang and L. Wang, Global Hopf bifurcation for a predator–prey system with three delays, Int. J. Bifurcat. Chaos, 27(7) (2017), 1750108.
- [18] M. A. Khan and S. Ali, Dynamics of a fractional-order predator-prey model, Math. Methods Appl. Sci., 44(8) (2021), 6340–6355.
- [19] S. Li, C. Huang, S. Guo, and X. Song, Fractional modeling and control in a delayed predator-prey system: extended feedback scheme, Adv. Differ. Equ., 358 (2020), 1–18.
- [20] Y. Li and V. G. Romanovski,Hopf Bifurcations in a predator–prey model with an omnivore, Qual. Theory Dyn. Sys., 18(3) (2019), 1201–1224.
- [21] T. Li, Y. Wang, and X. Zhou,Bifurcation analysis of a first time-delay chaotic system, Adv. Differ. Equ., 78 (2019), 1–18.
- [22] Z. Li, W. Zhang, C. Huang, and J. Zhaou, Bifurcation for a fractional-order Lotka-Volterra predator–prey model with delay feedback control, AIMS Mathematics, 6(1) (2020), 675–687.
- [23] J. Liu, Bifurcation analysis of a delayed predator-prey system with stage structure and Holling-II functional response, Adv. Differ. Equ., 208 (2015), 1–26.
- [24] L. Liu, P. Lv, B. Liu, and T. Zhang,Dynamics of a predator-prey model with fear effect and time delay, Complexity, 1 (2021), 9184193.
- [25] C. Liu, Z. Wang, and B. Meng, Dynamical analysis of fractional-order Holling type-II food chain model, Math. Biosci. Eng., 18(5) (2021), 5221–5235.
- [26] A. J. Lotka, Elements of Physical Biology. Baltimore, MD, USA: Williams and Wilkins, 1925.
- [27] T. Ma, X. Meng, and Z. Chang, Dynamics and optimal harvesting control for a stochastic one-predator-two-prey time delay system with jumps, Complexity, 1 (2019), 5342031.
- [28] T. G. Moln´ar, T. Insperger, and G. St´ep´an, Analytical estimations of limit cycle amplitude for delay-differential equations, Electron. J. Qual. Theo., 77 (2016), 1–10.
- [29] R. K. Naji and S. J. Majeed, The dynamical analysis of a delayed prey-predator model with a refuge-stage structure prey population, Iran. J. Math. Sci. Info., 15(1) (2020), 135–159.
- [30] T. Namba, K. Tanabe, and N. Maeda, Omnivory and stability of food webs, Appl. Math. Comput.,5 (2008), 73–85.
- [31] R. J. Nirmala, K. Balachandran, L. Rodriguez-Germa, and J. J. Trujillo, Controllability of nonlinear fractional delay dynamical systems, Rep. Math. Phys., 77(1) (2016), 87–104.
- [32] P. Panja, Stability and dynamics of a fractional-order three-species predator–prey model, Theor. Biosci., 138 (2019), 251–259.
- [33] J. P., Previte and K. A. Hoffman, Period doubling cascades in a predator-prey model with a scavenger, SIAM Rev., 55 (2013), 523–546.
- [34] F. A. Rihan, Q. M. Al-Mdallal, H. J. AlSakaji, and A. Hashish, A fractional-order epidemic model with time-delay and nonlinear incidence rate, Chaos Solitons Fractals, 126 (2019), 97–105.
- [35] F. Rihan and C. Rajivganthi, Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators, Chaos Solitons Fractals, 141 (2020), 110365.
- [36] N. H. Sweilam, M. M. Khader, and A. M. S. Mahdy, Numerical studies for fractional-order logistic differential equation with two different delays, J. Appl. Math., 1 (2012), 764894.
- [37] K. Tanabe and T. Namba, Omnivory creates chaos in simple food web models, Ecol. Appl., 5 (2005), 3411–3414.
- [38] H. T. Tuan and H. Trinh, A qualitative theory of time delay nonlinear fractional-order systems, Siam J. Control Optima., 58(3) (2020), 1491–1518.
- [39] V. Volterra, Variazioni e uttuazioni del numero dindividui in specie animali conviventi, Memoria della Regia Accademia Nazionale dei Lincei, 2 (1926), 31–113.
- [40] Z. Wang and X. Wang, Stability and hopf bifurcation analysis of a fractional-order epidemic model with time delay, Math. Probl. Eng., 1 (2018), 2308245.
- [41] X. Wang, Z. Wang, and J. Xia, Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders, J. Franklin Inst., 356 (2019), 8278–8295.
- [42] R. Yafia, M. A. Aziz-Alaoui, H. Merdan, and J. J. Tewa, Bifurcation and stability in a delayed predator–prey model with mixed functional responses, Int. J. Bifurcat. Chaos, 25(7) (2017), 1540014.
- [43] J. Yuan, L. Zhau, M. Xiao, and C. Huang, Fractional dynamics based-enhancing control scheme of a delayed predator-prey model, IEEE Access, 9 (2021), 59715–59724.
- [44] Y. Zhang and X. Wang, Stability analysis of a delayed predator-prey model with fractional derivatives, Chaos Solitons Fractals, 158 (2022), 112–123.
- [45] Y. Zhao and J. Li, Control strategies for stabilizing a delayed fractional-order predator-prey system, App. Math. Model., 112 (2023), 231–245.
|