- [1] H. Ahmad, K. U. Tariq, and S. M. Raza Kazmi, Stability, modulation instability and traveling wave solutions of (3+ 1) dimensional Schrödinger model in physics, Optical and Quantum Electronics, 56(7) (2024), 1237.
- [2] N. H. Ali, S. A. Mohammed, and J. Manafian, Study on the simplified MCH equation and the combined KdV– mKdV equations with solitary wave solutions, Partial Differential Equations in Applied Mathematics, 9 (2024), 100599.
- [3] F. Badshah, K. U. Tariq, A. Henaish, and J. Akhtar, On some soliton structures for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in mathematical physics, Mathematical Methods in the Applied Sciences, 47(6) (2024), 4756–4772.
- [4] F. Badshah, K. U. Tariq, M. Inc, and R. Javed, On soliton solutions of Fokas dynamical model via analytical approaches, Optical and Quantum Electronics, 56(5) (2024), 743.
- [5] F. Badshah, K. U. Tariq, M. Inc, and M. Zeeshan, On the solitonic structures for the fractional Schrödinger–Hirota equation, Optical and Quantum Electronics, 56(5) (2024), 848.
- [6] F. Badshah, K. U. Tariq, A. Bekir, R. Nadir Tufail, and H. Ilyas, Lump, periodic, travelling, semi-analytical solutions and stability analysis for the Ito integro-differential equation arising in shallow water waves, Chaos, Solitons & Fractals, 182 (2024), 114783.
- [7] A. Bekir, On traveling wave solutions to combined KdV–mKdV equation and modified Burgers–KdV equation, Communications in Nonlinear Science and Numerical Simulation, 14(4) (2009), 1038–1042.
- [8] A. Cevikel, Traveling wave solutions of Fordy–Gibbons equation, Modern Physics Letters B, 38(4) (2024), 2450448.
- [9] P. K. Das, S. M. Mirhosseini-Alizamini, D. Gholami, and H. Rezazadeh, A comparative study between obtained solutions of the coupled Fokas–Lenells equations by Sine-Gordon expansion method and rapidly convergent approximation method, Optik, 283 (2023), 170888.
- [10] B. Dorizzi, B. Grammaticos, A. Ramani, and P. Winternitz, Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable, Journal of Mathematical Physics, 27(12) (1986), 2848–2852.
- [11] A. Fordy and A. Pickering, Analysing negative resonances in the Painleve test, Physics Letters A, 160(4) (1991), 347–354.
- [12] Y. Gu, S. Malmir, J. Manafian, O. A. Ilhan, A. Alizadeh, and A. J. Othman, Variety interaction between k-lump and k-kink solutions for the (3+1)-D Burger system by bilinear analysis, Results in Physics, 43 (2022), 106032.
- [13] T. Han, K. Zhang, Y. Jiang, and H. Rezazadeh, Chaotic Pattern and Solitary Solutions for the (21)-Dimensional Beta-Fractional Double-Chain DNA System, Fractal and Fractional, 8(7) (2024), 415.
- [14] R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge, 2004.
- [15] K. Hosseini, E. Hincal, S. Salahshour, M. Mirzazadeh, K. Dehigia, and B. J. Nath, On the dynamics of soliton waves in a generalized nonlinear Schrödinger equation, Optik, (2022), 170215.
- [16] L. Hu, D. S. Hecht, and G. Gruner, Carbon nanotube thin films: fabrication, properties, and applications, Chemical reviews, 110(10) (2010), 5790–5844.
- [17] X. B. Hu, D. L. Wang, H. W. Tam, and W. M. Xue, Soliton solutions to the Jimbo–Miwa equations and the Fordy–Gibbons–Jimbo–Miwa equation, Physics Letters A, 262(4-5) (1999), 310–320.
- [18] M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publications of the Research Institute for Mathematical Sciences, 19(3) (1983), 943–1001.
- [19] B. Karaman, The use of improved-F expansion method for the time-fractional Benjamin–Ono equation, Revista de la Real Academia de Ciencias Exactas, Fısicas y Naturales. Serie A. Matematicas, 115(3) (2021), 128.
- [20] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear fifth-order integrable equations, Computational Methods for Differential Equations, 10(2) (2022), 445–460.
- [21] X. Liang, Z. Cai, M. Wang, X. Zhao, H. Chen, and C. Li, Chaotic oppositional sine–cosine method for solving global optimization problems, Engineering with Computers, (2022), 1–17.
- [22] Q. Liu, A modified Jacobi elliptic function expansion method and its application to Wick-type stochastic KdV equation, Chaos, Solitons & Fractals, 32(3) (2007), 1215–1223.
- [23] J. Manafian and M. Lakestani, Application of tan (ϕ/2)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity, Optik, 127(4) (2016), 2040–2054.
- [24] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu–Eckhaus equation via tan (ϕ (ξ)) expansion method, Optik, 127(14) (2016), 5543–5551.
- [25] J. Manafian and M. Lakestani, Optical soliton solutions for the Gerdjikov–Ivanov model via tan (ϕ/2)-expansion method, Optik, 127(20) (2016), 9603–9620.
- [26] J. Manafian and M. Lakestani, N-lump and interaction solutions of localized waves to the (2+1)-dimensional variable-coefficient Caudrey–Dodd–Gibbon–Kotera–Sawada equation, Journal of Geometry and Physics, 150 (2020), 103598.
- [27] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order KdV like equation with prime number p= 3 via a generalized bilinear differential operator, Partial Differential Equations in Applied Mathematics, 9 (2024), 100600.
- [28] B. Radha and C. Duraisamy, The homogeneous balance method and its applications for finding the exact solutions for nonlinear equations, Journal of Ambient Intelligence and Humanized Computing, 12 (2021), 6591–6597.
- [29] H. Rezazadeh, A. Korkmaz, M. Eslami, and S. M. Mirhosseini-Alizamini, A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method, Optical and Quantum Electronics, 51 (2019), 1–12.
- [30] S. T. R. Rizvi, A. R. Seadawy, S. Ahmed, and K. Ali, Einstein’s vacuum field equation: lumps, manifold periodic, generalized breathers, interactions and rogue wave solutions, Optical and Quantum Electronics, 55(2) (2023), 181.
- [31] S. T. R. Rizvi, A. R. Seadawy, S. Ahmed, M. Younis, and K. Ali, Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation, Chaos, Solitons & Fractals, 151 (2021), 111251.
- [32] A. Seadawy, A. Ali, A. Altalbe, and A. Bekir, Exact solutions of the (3+ 1)-generalized fractional nonlinear wave equation with gas bubbles, Scientific Reports, 14(1) (2024), 1862.
- [33] L. Tang, Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with βderivative in optical fibers, Optical and Quantum Electronics, 56(2) (2024), 175.
- [34] K. U. Tariq and R. Javed, Some traveling wave solutions to the generalized (3+ 1)-dimensional Korteweg–de Vries–Zakharov–Kuznetsov equation in plasma physics, Mathematical Methods in the Applied Sciences, 46(12) (2023), 12200–12216.
- [35] K. U. Tariq, E. Tala-Tebue, H. Rezazadeh, M. Younis, A. Bekir, and Y. Chu, Construction of new exact solutions of the resonant fractional NLS equation with the extended Fan sub-equation method, Journal of King Saud UniversityScience, 33(8) (2021), 101643.
- [36] K. U. Tariq, A.-M. Wazwaz, and R. Javed, Construction of different wave structures, stability analysis and modulation instability of the coupled nonlinear Drinfel’d–Sokolov–Wilson model, Chaos, Solitons & Fractals, 166 (2023), 112903.
- [37] K. U. Tariq, A. M. Wazwaz, and S. M. Raza Kazmi, On the dynamics of the (2+ 1)-dimensional chiral nonlinear Schrödinger model in physics, Optik, 285 (2023), 170943.
- [38] K. J. Wang, Resonant Y-type soliton, X-type soliton and some novel hybrid interaction solutions to the (3+ 1)-dimensional nonlinear evolution equation for shallow-water waves, Physica Scripta, 99(2) (2024), 025214.
- [39] M. Wang, B. Tian, and T. Y. Zhou, Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain, Chaos, Solitons & Fractals, 152 (2021), 111411.
- [40] A. M. Wazwaz, Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo–Miwa and YTSF equations, Applied Mathematics and Computation, 203(2) (2008), 592–597.
- [41] J. Weiss, M. Tabor, and G. Carnevale, The Painleve property for partial differential equations, Journal of Mathematical Physics, 24(3) (1983), 522–526.
- [42] U. Younas, J. Ren, and M. Bilal, Dynamics of optical pulses in fiber optics, Modern Physics Letters B, 36(05) (2022), 2150582.
- [43] U. Younas, T. A. Sulaiman, and J. Ren, Propagation of M-truncated optical pulses in nonlinear optics, Optical and Quantum Electronics, 55(2) (2023), 102.
- [44] U. Younas, T. A. Sulaiman, and J. Ren, Diversity of optical soliton structures in the spinor Bose–Einstein condensate modeled by three-component Gross–Pitaevskii system, International Journal of Modern Physics B, 37(01) (2023), 2350004.
- [45] U. Younas, T. A. Sulaiman, J. Ren, and A. Yusuf, Lump interaction phenomena to the nonlinear ill-posed Boussinesq dynamical wave equation, Journal of Geometry and Physics, 178 (2022), 104586.
- [46] E. M. E. Zayed, M. E. Alngar, R. Shohib, and A. Biswas, Highly dispersive solitons in optical couplers with metamaterials having Kerr law of nonlinear refractive index, Inst Physical Optics, (2024).
- [47] M. Zhang, X. Xie, J. Manafian, O. A. Ilhan, and G. Singh, Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation, Journal of Advanced Research, 38 (2022), 131–142.
- [48] R. F. Zinati and J. Manafian, Applications of He’s semi-inverse method, ITEM and GGM to the Davey-Stewartson equation, The european physical journal plus, 132 (2017), 1–26.
|