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Abstract

In this article, the estimated analytic solutions for time-fractional Cauchy Reaction-Diffusion Equations (CRDE)

are obtained using a New Elzaki Transform Iterative Method (NETIM). This method is the fusion of the Elzaki
transform and the Iterative approach. The proposed technique is elegant and easy to adopt and comprehend.

The semi-analytical results demonstrate, as this paper shows, a graphical interpretation of the solution using the

mathematical software “Mathematica Wolform” and considering Caputo’s sense derivatives to analytical results,
the suggested strategy is efficient and straightforward.

Keywords. Caputo fractional derivative, Elzaki transform, Cauchy reaction-diffusion equations.

2010 Mathematics Subject Classification. 26A33, 35R11, 33E12.

1. Introduction

The fractional differential equations have fascinated mathematicians, physicists, and engineering researchers in
recent decades [9, 12, 18] (Debnath 1997; Jiwari and Mittal 2011). Fractional derivatives and fractional calculus can
be used to model various problems. But users need help finding the exact solutions they need. Most of the time,
you have to use numerical methods and ways to get close to the answer. Fractional differential equations that are
both linear and nonlinear have been solved in many ways so far. The time-fractional CRDE is one example.The
Adomian decomposition method(ADM) (Wazwaz 1999) [28], homotopy analysis method(HAM), [16, 22], homotopy
perturbation method(HPM) [11]. The fraction of time CRDE can be used to explain various types of systems, like
linear and nonlinear in engineering, biology, ecology, chemistry, geo-hydrodynamics [4], and physics. (Britton 1998;
Grindrop)[6]. Daftardar-gejji and Jafari devised the iterative skill in 2006 to solve linear and nonlinear fractional
differential equations[7].

Many problems in fractional derivatives [21], hydrodynamics [1], chemical diffusion [30], option pricing [10], com-
putational fluid dynamics [25], control theory [29], biological population model [19], quantitative analysis of sediments
loss [24], generalized couette flow of couple stress nanofluid with heat, and mass transfer [2, 3] can be modelled using
partial differential equations (PDEs). Finding numerical solutions to nonlinear PDEs has been focused on in recent
years.

In this article, we solved the time-fractional heat-like and wave-like equations using a new Elzaki transform iterative
method (NETIM) and NIM [13, 14, 17, 20, 27]. The benefit of this new method is that it makes the calculations easy
and gives the closest possible answer [5, 8, 26].

In the present study, in operator form, the given time-fractional CRDE is thought of as [15]

Dβ
ωy(ξ, ω) = v

∂2y(ξ, ω)

∂ξ2
+ p(ξ, ω)y(ξ, ω), ξ ∈ R,ω > 0, 0 < β ≤ 1, (1.1)
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Our goal in this paper is to approximate analytic solutions for time-fractional CRDE with appropriate initial conditions
to apply (NETIM).

2. Background

Definition 2.1. [4] A Caputo fractional derivative of the function y(a, b) is defined as,

Dβ
ay(a, b) =

1

Γ(l − β)

∫ x

0

(a− ȷ)(l−β−1)y(l)(ȷ, b)dȷ, l − 1 < β ≤ l, l ∈ N. (2.1)

dl ≡ dl

dxl and jβx - denote the R-L fractional integral operator of order β > 0 defined as dȷ ≡ dl

dxl and jβx respectively.

Jβ
a y(a, b) =

1

Γβ

∫ a

0

(a− ȷ)(β−1)y(ȷ, b)dȷ, ȷ > 0, k − 1 < β ≤ k, k ∈ N. (2.2)

Definition 2.2. [21] The mittag-leffler function is given by,

Eβ(y) =
∞∑
k=0

yk

Γ(βk + 1)
(β ∈ c, re(β) > 0), (2.3)

Eβ,α is Mittag-Leffler function in two parameters.

Eβ,α(y) =

∞∑
k=0

yk

Γ(βk + α)
β, α ∈ C, R(β), R(α) > 0. (2.4)

Definition 2.3. [31] The Elzaki transform of a function g(p), p > 0 is defined as

E[g(p)] = v

∫ ∞

0

e
−p
v g(p)dp, v ∈ (−T1, T2) and g(p) ∈ A, (2.5)

where

A =

{
g(p)/∃M,T1, T2 > 0, |g(p)| ≤ Me

|p|
Tj , if p ∈ (−1)j × [0,∞)

}
. (2.6)

Definition 2.4. [31] The Elzaki transform of the Caputo fractional derivative is defined as

E[Dnξ
ξ y(ξ, ω)] = v−nβE[y(ξ, ω)]−

n−1∑
k=0

v−nβ+k+2y(k)(0, ω), n− 1 < nβ < n. (2.7)

3. The New Elzaki transform Iterative Method (NETIM)

To analyse this New Elzaki Iterative Transform Method [27, 32], we suppose a fractional partial differential equation
with non-linear, non-homogenous and the initial conditions of the form:

Dnβ
ω y(ξ, ω) + Ly(ξ, ω) +R(y(ξ, ω))+ = g(ξ, ω), n− 1 < nβ ≤ n, y(ξ, 0) = h(ξ). (3.1)

where Dnβ
ω is the Caputo operator fractional derivative, Dnβ

ω = ∂nβ

∂ωnβ , L and R are linear operator and nonlinear
operator respectively, g(ξ, ω) is continuous function.

Operating the Elzaki transform on the Equation (3.1) we have

E
[
Dnβ

ω y(ξ, ω)
]
+ E [L(y(ξ, ω)) +R(y(ξ, ω))] = E [g(ξ, ω] , (3.2)

using the property of Elzaki transformation we obtain

E [y(ξ, ω)]− vnβ
n−1∑
k=0

yk(ξ, 0) + vnβE [Ly(ξ, ω) +Ry(ξ, ω)]− [g(ξ, ω)] = 0. (3.3)
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Operate inverse Elzaki transform on the Eq. (3.3) we get

y(ξ, ω) = E−1[vnβ
n−1∑
k=0

yk(ξ, 0)]− E−1[vnβE[Ly(ξ, ω) +Ry(ξ, ω)− g(ξ, ω)]]. (3.4)

Next, assume that

f(ξ, ω) = E−1[vnβ
n−1∑
k=0

yk(ξ, 0) + vnβE[g(ξ, ω)]], (3.5)

N(y(ξ, ω)) = −E−1[vnβE[Ry(ξ, ω)]], (3.6)

K[y(ξ, ω)] = −E−1[vnβE[Ly(ξ, ω)]]. (3.7)

Thus, Eq. (3.4) written like as

y(ξ, ω) = f(ξ, ω) +K(y(ξ, ω)) +N(y(ξ, ω)), (3.8)

where f,K and N are a known function, linear and non-linear operators of, u respectively. The solution of equation
is given in series form

y(ξ, ω) = (

∞∑
q=0

y(ξ, ω)), (3.9)

we have

K(

∞∑
q=0

y(ξ, ω)) =

∞∑
q=0

K(y(ξ, ω)).

The N is decomposed as, (N-non-linear operator)

N(

∞∑
q=0

yq) = N(y0) +

N(

q∑
j=0

yj)−N(

q−1∑
j=0

yj)

 . (3.10)

Therefore, Eq. (3.10)can be modified in recursive relation form , Defining the

y0 =f,

y1 =K(y0) +N(y0),

......

yq+1 =K(yq) +N(y0 + ...+ yq).

(3.11)

we have

(y1 + y2 + ......+ yq+1) = K(y0 + ....+ yq) +N(y0 + ....+ yq), (3.12)

namely,

∞∑
q=0

yq(ξ, ω) = f +K(

∞∑
q=0

yq(ξ, ω)) +N(

∞∑
q=0

yq(ξ, ω)). (3.13)

The qth-term approximate is given by

y = y1 + y2 + ......+ yq−1. (3.14)
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4. Convergence and error analysis

Theorem 4.1. Let yp(ξ, ω) and yn(ξ, ω) be the members of Banach space H, and the exact solution of Eq. (3.1) be

y(ξ, ω) . The Series solution
∞∑
p=0

yp(ξ, ω) converges to y(ξ, ω), if yp(ξ, ω) ≤ λyp−1(ξ, ω) for λ ∈ (0, 1), that is for any

y > 0, ∃E such that ||yp+n(ξ, ω)|| ≤ y,∀p, n > E.

Proof. Let up(ξ, ω) = y0(ξ, ω)+y1(ξ, ω)+y2(ξ, ω)+. . .+yp(ξ, ω) be the sequence of p
th partial sum of series

∞∑
p=0

yp(ξ, ω).

Now consider

||up+1(ξ, ω)− up(ξ, ω)|| = ||yp+1(ξ, ω)||
≤ λ||yp(ξ, ω)||
≤ λ2||yp−1(ξ, ω)||
≤ λ3||yp−2(ξ, ω)||
...

≤ λp+1||y0(ξ, ω)||,

(4.1)

for ∀n, p ∈ E.
Consider

||up(ξ, ω)− un(ξ, ω)|| = ||yp+n(ξ, ω)||
= ||

(
up(ξ, ω)− up−1(ξ, ω)

)
+
(
up−1(ξ, ω)− up−2(ξ, ω)

)
+
(
up−2(ξ, ω)− up−3(ξ, ω)

)
+ . . .+

(
un+1(ξ, ω)− un(ξ, ω)

)
||

≤ ||
(
up(ξ, ω)− up−1(ξ, ω)

)
||+ ||

(
up−1(ξ, ω)− up−2(ξ, ω)

)
||+ ||

(
up−2(ξ, ω)− up−3(ξ, ω)

)
||

+ . . .+ ||
(
un+1(ξ, ω)− un(ξ, ω)

)
||

≤ λp||y0(ξ, ω)||+ λp−1||y0(ξ, ω)||+ λp−2||y0(ξ, ω)||+ . . .+ λp−1||y0(ξ, ω)|| (4.2)

= ||y0(ξ, ω)||
(
λp + λp−1 + . . .+ λp+1

)
= ||y0(ξ, ω)||

(1− λp−n

1− λ

)
λn+1.

Since 0 < λ < 1, and y0(ξ, ω) is bounded, so assume that

y = ||y0(ξ, ω)||
(1− λp−n

1− λ

)
λn+1,

we get the desired result. Also,
∞∑
p=0

yp(ξ, ω) is a Cauchy sequence in H, which implies that there exists y0(ξ, ω) ∈ H

such that lim
p→∞

yp(ξ, ω) = y(ξ, ω). Hence prove. □

Theorem 4.2. Let
q∑

p=0
yp(ξ, ω) be the finite and approximate solution of y(ξ, ω). If ||yp+1(ξ, ω)|| ≤ λ||y0(ξ, ω)|| for

λ ∈ (0, 1), then the maximum absolute error is

||y(ξ, ω)−
q∑

p=0

yp(ξ, ω)|| ≤
λq+1

1− λ
||y0(ξ, ω)||.
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Proof.

||y(ξ, ω)−
q∑

p=0

yp(ξ, ω)|| = ||
∞∑
p=0

yp(ξ, ω)||

≤
∞∑

p=q+1

||yp(ξ, ω)||

≤
∞∑

p=q+1

λq||y0(ξ, ω)||λq+1
(
1 + λ+ λ2 + . . .

)
||y0(ξ, ω)||

≤ λq+1

1− λ
||y0(ξ, ω)||.

(4.3)

□

5. Solutions of the time-fractional CRDE:

Example 5.1. We acknowlege the given linear time fractional (CRDE) [15]:

Dβ
ωy(ξ, ω) =

∂2y(ξ, ω)

∂ξ2
− y(ξ, ω), 0 < β ≤ 1, (5.1)

Subject to the initial condition

y(ξ, 0) = e−ξ + ξ. (5.2)

Operating the Elzaki transform on the Eq. (5.1) and using the initial condition of Eq. (5.2) we get

E[y(ξ, ω)] =
e−ξ + ξ

v2
+

1

v−β
E
[∂2y

∂ξ2
− y

]
, (5.3)

Operating the inverse Elzaki transform on the Eq. (5.3) we have

y(ξ, ω) =e−ξ + ξ + E−1
[ 1

v−β
E[

∂2y

∂ξ2
− y]

]
,

namely,

y(ξ, ω) =e−ξ + ξ + E−1
[ 1

v−β
E[

∂2y

∂ξ2
− y]

]
.

(5.4)

According to the NETIM, we have

y0 =e−ξ + ξ,

K[y(ξ, ω)] =E−1
[ 1

v−β
E[

∂2y

∂ξ2
− y]

]
.

(5.5)

By NETIM ,the given results are obtained

y0(ξ, ω) =e−ξ + ξ,

y1(ξ, ω) =E−1
[ 1

v−β
E[

∂2y0
∂ξ2

− y0]
]
,

=ξ
(−ωβ)

Γ(β + 1)
.

(5.6)
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y2(ξ, ω) =E−1
[ 1

v−β
E[

∂2(y0 + y1)

∂ξ2
]
]
− E−1

[ 1

v−β
y2E[

∂2y0
∂ξ2

]
]

=ξ
[ (−ωβ)2

Γ(2β + 1)
+

(−ωβ)

Γ(2β + 1)

]
− (ξ

(−ωβ)

Γ(2β + 1)
)

=ξ
(−ωβ)2

Γ(2β + 1)
.

(5.7)

Therefore, the approximate analytical solution of the problem in the series form can be obtained as,

y(ξ, ω) =y0(ξ, ω) + y1(ξ, ω) + ...,

y(ξ, ω) =e−ξ + ξ +
[
ξ

(−ω
β
)

Γ(β + 1)
+ ξ

(−ωβ)2

Γ(2β + 1)
+ ...

]
=e−ξ + ξEβ(−ωβ),

(5.8)

where Eβ(ω
β) is mittage leffer function defined by Eq. (2.3).

Setting β = 1, Eq. (5.1) becomes the following equation,

y(ξ, ω) =
∂2y

∂ξ2
− y, (5.9)

with accurate solution

y(ξ, ω) = e−ξ + ξeω.

Remark 5.2. The time-fractional linear Cauchy equation for reaction and diffusion is shown above. Figures 1–6 offer
the approximate solutions to the linear time fractional CRDE for β = 0.2, 0.4, 0.6, 0.8, and 1 and the required solution
for β = 1. The answer is so easy to find that it depends on the values of time-fractional derivatives at all times.

Example 5.3. [23] We acknowledge the given linear time fractional CRDE

Dβ
ωy(ξ, ω) =

∂2y(ξ, ω)

∂ξ2
− (1 + 4ξ2)y(ξ, ω), 0 < β ≤ 1. (5.10)

Subject to the initial condition

y(ξ, 0) = eξ
2

. (5.11)

Operating the Elzaki transform on the Eq. (5.10) and using the initial condition of Eq. (5.11) we have,

E[y(ξ, ω)] =
eξ

2

v2
+

1

v−β
E
[∂2y

∂ξ2
− (1 + 4ξ2)y

]
. (5.12)

Operating the inverse Elzaki transform on the Eq. (5.12) we have

y(ξ, ω) = eξ
2

+ E−1
[ 1

v−β
E
[∂2y

∂ξ2
− (1 + 4ξ2)y

]
, (5.13)

namely,

y(ξ, ω) = eξ
2

+ E−1
[ 1

v−β
E
[∂2y

∂ξ2
− (1 + 4ξ2)y

]
,

According to the NETIM, we have

y0 =eξ
2

,

K[y(ξ, ω)] =E−1
[ 1

v−β
E
[∂2y

∂ξ2
− (1 + 4ξ2)y

]
.

(5.14)
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Figure 1. β = 0.2. Figure 2. β = 0.4. Figure 3. β = 0.6.

Figure 4. β = 0.8. Figure 5. β = 1.0. Figure 6. Exact.

By NETIM method ,the given result are obtained

y0(ξ, ω) = y(ξ, 0) = eξ
2

,

y1(ξ, ω) = E−1
[ 1

v−β
E
[∂2y0
∂ξ2

− (1 + 4ξ2)y0
]

(5.15)

= eξ
2 ωβ

Γ(β + 1)
,

y2(ξ, ω) =E−1
[ 1

v−β
E[

∂2(y0 + y1)

∂ξ2
]
]
,−E−1

[ 1

v−β
E[

∂2(y0)

∂ξ2
]
]

=eξ
2( ω2β

Γ(2β + 1)
− ωβ

Γ(β + 1)

)
+ eξ

2 ωβ

Γ(β + 1)
(5.16)

=eξ
2 ω2β

Γ(2β + 1)
,

Therefore, the approximate analytical solution of the problem in the series form can be obtained as,

y(ξ, ω) =y0(ξ, ω) + y1(ξ, ω) + ...,

y(ξ, ω) =eξ
2[
1 + eξ

2 (ωβ)

Γβ + 1
+ eξ

2 (ω2β)

Γ2β + 1
+ ...

]
= eξ

2

Eβ(ω
β), (5.17)
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Figure 7. β = 0.2. Figure 8. β = 0.4. Figure 9. β = 0.6.

Figure 10. β = 0.8. Figure 11. β = 1.0. Figure 12. Exact.

where Eβ(ω
β) is mittage leffer function defined by Eq. (2.3).

Setting β = 1, Eq. (5.10) become the equation,

y(ξ, ω) =
∂2y

∂ξ2
− (1 + 4ξ2)y, (5.18)

with accurate solution

y(ξ, ω) = eξ
2+ω.

Remark 5.4. The time-fractional linear Cauchy equation for reaction and diffusion is shown above. Figures 7–12 offer
the approximate solutions of The linear time fractional CRDE shown above for different values of β = 0.2, 0.4, 0.6, 0.8,
and 1 and the required solution for β = 1. The answer is easiest to find. It depends on the values of time-fractional
derivatives at all times.

Example 5.5. [23] We acknowledge the given linear time fractional CRDE

Dβ
ωy(ξ, ω) =

∂2y(ξ, ω)

∂ξ2
− (4ξ2 − 2ω + 2)y(ξ, ω), 0 < β ≤ 1, (5.19)

Subject to the initial condition

y(ξ, 0) = eξ
2

. (5.20)



CMDE Vol. 13, No. 4, 2025, pp. 1201-1215 1209

Operating the Elzaki transform on the Eq. (5.19) and using the initial condition of Eq. (5.20) we have

E[y(ξ, ω)] =
eξ

2

u2
+

1

u−β
E
[∂2y

∂ξ2
− (4ξ2 − 2ω + 2)y

]
. (5.21)

Operating the inverse Elzaki transform on the Eq. (5.20) we have,

y(ξ, ω) = eξ
2

+ E−1
[ 1

v−β
E
[∂2y

∂ξ2
− (4ξ2 − 2ω + 2)y

]
, (5.22)

namely,

y(ξ, ω) = eξ
2

+ E−1
[ 1

v−β
E
[∂2y

∂ξ2
− (4ξ2 − 2ω + 2)y

]
,

According to the NETIM, we have

y0 =eξ
2

,

K[y(ξ, ω)] =E−1
[ 1

v−β
E
[∂2y

∂ξ2
− (4ξ2 − 2ω + 2)y

]
.

(5.23)

By NETIM method, the given result are obtained

y0(ξ, ω) =y(ξ, 0) = eξ
2

,

y1(ξ, ω) =E−1
[ 1

v−β
E
[∂2y0
∂ξ2

− (4ξ2 − 2ω + 2)y0
]

=2eξ
2 ωβ+1

Γ(β + 2)
,

(5.24)

y2(ξ, ω) =E−1
[ 1

v−β
E[

∂2(y0 + y1)

∂ξ2
]
]
− E−1

[ 1

v−β
E[

∂2(y0)

∂ξ2
]
]

=2eξ
2( ωβ+1

Γ(β + 2)
− ωβ

Γ(β + 1)

)
+ 2eξ

2 ωβ

Γ(β + 1)

=4eξ
2 (β + 2)ω2β+2

Γ(2β + 3)
.

(5.25)

Therefore, the approximate analytical solution of the problem in the series form can be obtained as,

y(ξ, ω) =y0(ξ, ω) + y1(ξ, ω) + ...

y(ξ, ω) =eξ
2

+ 2eξ
2 (ωβ+1)

Γβ + 2
+ 4eξ

2 (β + 2)(ω2β+2)

Γ2β + 3
+ 8eξ

2 (β + 2)(2β + 3)(ω3β+3)

Γ3β + 4
+ ...

=eξ
2

Eβ(ω
2β),

(5.26)

where Eβ(ω
β) is Mittage Leffler function defined by Eq. (2.3).

Setting β = 1, Eq. (5.19) become the equation,

y(ξ, ω) =
∂2y

∂ξ2
− (4ξ2 − 2ω + 2)y, (5.27)

with accurate solution

y(ξ, ω) = eξ
2+ω2

.

Remark 5.6. The time-fractional linear Cauchy equation for reaction and diffusion is shown above. Figures 13–18
offer the approximate solutions to The linear time CRDE for β = 0.2, 0.4, 0.6, 0.8, and 1 and the required solution
for β = 1. The answer is so easiest to find that it depends on the values of time-fractional derivatives at all times.
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Figure 13. β = 0.2. Figure 14. β = 0.4. Figure 15. β = 0.6.

Figure 16. β = 0.8. Figure 17. β = 1.0. Figure 18. Exact.

Example 5.7. [23] We acknowledge the given linear time fractional CRDE

Dβ
ωy(ξ, ω) =

∂2y(ξ, ω)

∂ξ2
+ 2ωy(ξ, ω), 0 < β ≤ 1. (5.28)

Subject to the initial condition

y(ξ, 0) = eξ. (5.29)

Operating the Elzaki transform on the Eq. (5.28) and using the initial condition of Eq. (5.29) we get

E[y(ξ, ω)] =
eξ

v2
+

1

v−β
E
[∂2y

∂ξ2
+ 2ωy

]
. (5.30)

Operating the inverse Elzaki transform on the Eq. (5.30) we have

y(ξ, ω) = eξ + E−1
[ 1

u−β
E
[∂2y

∂ξ2
+ 2ωy

]]
, (5.31)

namely,

y(ξ, ω) = eξ + E−1
[ 1

v−β
E
[∂2y

∂ξ2
+ 2ωy

]]
.
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Table 1. Compare the solution with the 10th order approximation calculation of Eq. (5.1) and the
accurate calculation for β=1.

β
(ξ, ω) 0.2 0.4 0.6 0.8 YNETIM (1) YExact(1) |YExact − YNETIM |

(0.2,0.3) 0.919727 0.932625 0.942174 0.953907 0.966894 0.966894 3.16802× 10−13

(0.4,0.5) 0.843819 0.875931 0.883486 0.895248 0.912932 0.940037 5.14745× 10−11

(0.6,0.7) 0.75944 0.832719 0.833698 0.83597 0.846763 0.918048 1.46326× 10−8

(0.8,0.9) 0.651812 0.797536 0.794016 0.78052 0.774585 0.900045 1.77552× 10−8

By NETIM method ,the given result are obtained

y0 = eξ,

K[y(ξ, ω)] = E−1
[ 1

v−β
E
[∂2y

∂ξ2
+ 2ωy

]
.

(5.32)

By iterative method ,the following result are obtained

y0(ξ, ω) =y(ξ, 0) = eξ,

y1(ξ, ω) =E−1
[ 1

v−β
E
[∂2y0
∂ξ2

+ 2ωy0
]]

=eξ(
ωβ

Γ(β + 1)
+

2ωβ+1

Γ(β + 2)
),

(5.33)

y2(ξ, ω) =E−1
[ 1

v−β
E[

∂2(y0 + y1)

∂ξ2
]
]
− E−1

[ 1

u−β
E[

∂2(y0)

∂ξ2
]
]

=eξ
( ω2β

Γ(2β + 1)
+

2(β + 2)ω2β+1

Γ(2β + 2)
+

4(β + 2)ω2β+2

Γ(2β + 3)

)
.

(5.34)

Therefore, the approximate analytical solution of the problem in the series form can be obtained as,

y(ξ, ω) =y0(ξ, ω) + y1(ξ, ω) + ...,

y(ξ, ω) =eξ + eξ(
ωβ

Γ(β + 1)
+

2ωβ+1

Γ(β + 2)
) + eξ

( ω2β

Γ(2β + 1)
+

2(β + 2)ω2β+1

Γ(2β + 2)
+

4(β + 2)ω2β+2

Γ(2β + 3)

)
+ ...

=eξEβ(ω
β + ω2β),

(5.35)

where Eβ(ω
β) is Mittage Leffler function defined by Eq. (2.3). Setting β = 1, Eq. (5.28) becomes the equation

y(ξ, ω) =
∂2y

∂ξ2
+ 2ωy, (5.36)

with accurate solution

y(ξ, ω) = eξ+ω+ω2

. (5.37)

Remark 5.8. The time-fractional linear Cauchy equation for reaction and diffusion is shown above. Figures 19–24
offer the approximate solutions to The linear time CRDE for β = 0.2, 0.4, 0.6, 0.8, and 1 and the required solution
for β = 1. The answer is so easiest to find that it depends on the values of time-fractional derivatives at all times.
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Figure 19. β = 0.2. Figure 20. β = 0.4. Figure 21. β = 0.6.

Figure 22. β = 0.8. Figure 23. β = 1.0. Figure 24. Exact.

Table 2. Compare the solution with the 10th order approximation calculation of Eq. (5.10)and the
accurate calculation for β=1.

β
(ξ, ω) 0.2 0.4 0.6 0.8 YNETIM (1) YExact(1) |YExact − YNETIM |

(0.2,0.3) 4.51611 2.59859 1.92565 1.59604 1.40495 1.40495 1.741015× 10−12

(0.4,0.5) 6.75882 3.91477 2.81346 2.26262 1.93479 1.71601 2.93381× 10−10

(0.6,0.7) 10.3077 6.16201 4.35585 3.43815 2.88637 2.09594 8.6493× 10−9

(0.8,0.9) 16.4298 10.2893 7.21822 5.62638 4.66459 2.55998 1.08849× 10−7

Table 3. Compare the solution with the 10th order approximation calculation of Eq. (5.19)and the
accurate calculation for β=1.

β
(ξ, ω) 0.2 0.4 0.6 0.8 YNETIM (1) YExact(1) |YExact − YNETIM |

(0.2,0.3) 1.73885 1.44206 1.28613 1.19511 1.13883 1.13883 5.19939× 10−8

(0.4,0.5) 3.46067 2.43033 1.93841 1.66983 1.50681 1.33643 9.96264× 10−6

(0.6,0.7) 8.36514 5.05954 3.54042 2.77389 2.33928 1.69893 3.7× 10−4

(0.8,0.9) 22.435 12.4614 7.75524 5.46862 4.25676 2.33965 6.4× 10−3
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Table 4. Compare the solution with the 10th order approximation calculation of Eq. (5.28) and the
accurate calculation for β=1.

β
(ξ, ω) 0.2 0.4 0.6 0.8 YNETIM (1) YExact(1) |YExact − YNETIM |

(0.2,0.3) 6.59189 3.98393 2.69147 2.05623 1.72576 1.80399 0.078224
(0.4,0.5) 14.1542 8.70024 5.56162 3.86536 2.94868 2.58571 0.209508
(0.6,0.7) 28.5516 18.3435 11.7039 7.7702 5.5245 4.01485 0.464953
(0.8,0.9) 54.6337 37.0208 24.2375 15.9735 10.9595 6.75309 1.34544

Figure 25. β = 0.2 Figure 26. β = 0.4.

Figure 27. β = 0.6. Figure 28. β = 0.8.

Remark 5.9. Figures 25–28 depict the absolute error between approximate and accurate calculation for β=1; by
comparison, it is clear that by computing additional iterations, the efficiency and accuracy of this method (NETIM)can
be significantly improved. We use a few iterations in this post. The precision of the estimated solution will be
substantially enhanced if we employ additional iterations. As a result, the recommended method for solving the linear
differential equation is precise and efficient.

6. Conclusion

This study found an approximation for the linear time fractional Cauchy Reaction-Diffusion Equation (CRDE)
using the new Elzaki transform iterative method (NETIM). NETIM combines the new iterative method (NIM) and
the Elzaki transform to get accurate and close analytical solutions for the time-fractional linear CRDE. The numbers
show that the NETIM is faster, more accurate, and requires less calculation than other methods.
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The method will help scientists and researchers who work on the subject of partial and ordinary differential equations
a lot because it can cut down on the amount of work that needs to be done when compared to traditional methods.
It also gives very accurate numerical results. The main benefit of the process is how quickly it gets to the answer.
The numbers found here are in line with its higher level of exactness. It can be said that the NETIM method is so
effective and powerful at finding semi-analytical solutions.
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