
Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111
DOI: 10.22034/tjee.2024.57285.4657

An Improved Heuristic Algorithm for

the Graph Isomorphism Problem

Somayeh Check, Ali Nourollah *

Software Systems Research and Development Laboratory / Faculty of Computer Engineering, Shahid Rajaee Teacher

Training University, Tehran, Iran.

somayeh_check@sru.ac.ir, nourollah@sru.ac.ir*
*Corresponding author

Received:01/07/2023, Revised:05/07/2024, Accepted:30/09/2024.

Abstract

The Graph Isomorphism Problem (GIP) is an open problem because of its high computational complexity. No polynomial-

time deterministic algorithm has been proposed yet, and heuristic and meta-heuristic approaches have been the only ways

to solve it. Even its belonging to the NP-complete problems has not yet been proven. This paper introduces a simple but

efficient polynomial-time and -space algorithm, to determine the isomorphism of connected unlabeled graphs. The

proposed algorithm introduces two functions that compute the features for all vertices and edges. The outputs of the

functions provide a canonical labeling for the given graphs, and comparison of these labels specifies isomorphism of the

graphs. The experimental results show that the proposed algorithm correctly detects the isomorphism of the graphs in

more than 99% of the cases. The algorithm has 𝛰(𝑛3) time, where 𝑛 is the number of vertices of the given graphs.

Keywords

Graph isomorphism, polynomial-time algorithm, heuristic algorithm, canonical labeling.

1. Introduction

Graphs are powerful mathematical structures used to

represent objects (represented as vertices) and their

relationships (represented as edges). Graphs can be used

to model many real-world problems. Many applications

introduced by researchers in vertex labeling and multi-

labeling as classification [1] and the role of graphs with

sensitive edges in social networks [2].

Automorphism, homomorphism, that are belong to

Graph Isomorphism (GI) scope are the fundamental

scope in graph theory in which compare the structure of

two finite graphs. They are correlated and introduce them

"isomorphic" if the two graphs are equal in structural

skeleton or shapes.

This problem has been studied by computer scientists,

mathematics, chemistry, and medical sciences over the

past few decades. This issue has been theoretically and

practically raised in computer branches in various fields,

including computer pattern recognition and vision [3-5],

data mining [6], image processing [7], social networks

[8], two-dimensional, three-dimensional, and four-

dimensional scenes [9], chemical bonds [10], and cell

biology [11].

For GI, it is necessary to have a one-to-one and spanning

mapping (bijection) between the vertex sets of two

graphs with edge-preserving bijection, which is

ultimately equal to a structure-preserving bijection. At

least Ω(𝑛!) time is required to verify the existence of

bijective mapping between two n-order graphs, because

all the different ways of mapping from vertex to vertex

must be explored, and within each of these comparisons

there must be a correspondence between the edges as

well, which in turn has a distinct time-complexity and

this value is considerable ("A straightforward

enumerative algorithm might require 40 years of running

time on a very high-speed computer in order to compare

two 15-node graphs" [12]. In other words, trivial

isomorphic checking requires Ω(𝑛!), it needs nearly 40

years to run for two graphs with 𝑛 = 15) .

Therefore, the techniques that are different from

reviewing all the cases to determine the graph

isomorphism have been proposed, in this paper a

heuristic algorithm to solve the problem of GI for

unlabeled graphs by canonical labeling is proposed to

reduce the time complexity and to present a polynomial-

time algorithm to improve the results.

Babai and Luks have proposed an algorithm [13] that

computes the canonical labeling of generic graphs in

𝑂 (𝑒√𝑛+𝑂(1)), which is the best time for GIP algorithms

at present. In another paper [14], Babai et al. proposed a

simple algorithm that can perform canonical labeling

operations on most graph vertices in linear time. In fact,

it has been shown that the probability that a graph with n

vertices is labeled with that algorithm is typically of 1 −

√1 𝑛⁄7
 (large enough for order 𝑛). Subsequently, Babai

and Kučera [15] improved this result and proposed a

conventional linear tagging algorithm with a probability

of 𝑒𝑥𝑝(−𝑐𝑛 log 𝑛 log log 𝑛⁄) failure whose two major

drawbacks are the results in small graphs and regular

graphs. The fastest algorithm for detecting the

isomorphism of general graphs has the time complexity

of 𝑂 (𝑒√𝑛 log 𝑛) for graph with 𝑛 vertices based on

simple finite group classification method [16]. The most

http://doi.org/10.22034/tjee.2024.57285.4657

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

20

powerful algorithm currently available is the

Nauty&Traces package [17]. Despite its impressive

performance in most cases, it is exponential-time for

some graph families [18].

No polynomial-time algorithm has been presented yet to

determine the isomorphism of general graphs, even it has

not been proved NP-complete; hence, it is included in the

NP problem class [19]. However, polynomial-time

algorithms are known for specific classes of graphs, such

as trees [20] and planner graphs [21]. In addition, some

polynomial-time algorithms proposed to detect

isomorphism are not suitable for implementation or are

not practical because of their hidden complexity [22].

In the paper published in 2020 [23], an algorithm was

presented that layered the vertices based on their distance

from the center of the graph(Eccentricity), then transmits

the parenthetical code according to the priority of the

layers. The accuracy of the algorithm in detecting

isomorphism on simple connected graphs was greater

than 98%, according to the tests conducted in the article.

In this proposed algorithm, the canonical labeling of each

graph is obtained by computing 𝑓𝑣, which is a value for

each vertex and 𝑓𝑒 which contains two values for each

edge. 𝑓𝑒 includes two values 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗) and 𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗) for

each edge (𝑢, 𝑣) ∈ 𝐸, which assigns a value to each of

the end-vertices of the edge. Calculating the values of 𝑓𝑣

and 𝑓𝑒 is similar to calculating the value of "Betweenness

Centrality" in graph theory, which is a measure of

centrality in a graph based on shortest paths [24].

The results of the proposed algorithm on a set of 10,000

samples of input graphs were 100% accurate, and nearly

100% in the complete set of graphs. One case of

misidentification of the algorithm is discussed in this

paper, and the weakness of the algorithm is analyzed

using this example. In addition, a set of regular graphs is

considered as an input because regular graphs are

problematic graphs in canonical labeling-based GI

algorithms that the proposed algorithm correctly

identifies with an average accuracy above 99.9%.

After giving the preliminary definitions in Section 2,

Section 3 details the proposed algorithm, the results of

the implementation of the algorithm are given in Section

4. The performance of the preposed algorithm is

compared with VF2 algorithm in Section 5, and Section

6 presents the conclusion of this paper.

2. Preliminary definitions

A graph is a set of vertices (𝑉) and edges (𝐸) represented

by 𝐺 = (𝑉, 𝐸). A simple graph is one with no loops and

no parallel edges. An undirected graph is one whose

edges have no direction. A connected graph is a graph

with at least one path between any pair of vertices.

Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) be two given graphs,

𝐺1 and 𝐺2 are isomorphic if there exists a bijective

function 𝜎: 𝑉1 → 𝑉2 such that for every (𝑢, 𝑣) ∈

𝐸1: (𝜎(𝑢), 𝜎(𝑣)) ∈ 𝐸2.

Simply, recognizing isomorphism between two graphs

indicates whether the two graphs have the same

topological structure and are represented by the

expression 𝐺1 ≅ 𝐺2.

The proposed algorithm, which employs the canonical

labeling method, first receives graph 𝐺1 and executes the

function 𝐶(𝐺1) on the graph. Then for graph 𝐺2 it also

calculates the value of 𝐶(𝐺2) . Subsequently, the two

graphs are considered isomorphic if 𝐶(𝐺1) = 𝐶(𝐺2).

Let a simple connected undirected graph 𝐺 = (𝑉, 𝐸) be

given, for some vertices 𝑢, 𝑣 ∈ 𝑉: 𝑃(𝑢, 𝑣) is the set of all

paths between 𝑢 and 𝑣. For some 𝑝 ∈ 𝑃(𝑢, 𝑣), the length

of 𝑝 is defined as the number of edges in path 𝑝, and is

denoted as |𝑝|. The distance between 𝑢 and 𝑣 is defined

as follows:

𝑑𝑖𝑠𝑡(𝑢, 𝑣) = min
∀𝑝∈𝑃(𝑢,𝑣)

{|𝑝|}

For every edge (𝑢, 𝑣) ∈ 𝐸, we introduce two functions:

𝑓𝑣(𝑢) and 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗). 𝑓𝑣(𝑢) denotes the number of shortest

paths to which vertex 𝑢 belongs. 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗) is the number

of shortest paths to which edge (𝑢, 𝑣) belongs.

Function 𝑓𝑣(𝑢) in which for each vertex of the graph

equals the number of shortest paths between other

vertices of the graph passing through vertex 𝑢 is

introduced. Furthermore a function 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗) where all the

edges of an undirected graph are assumed to be bi-

directional edges is introduced.

Every edge is assigned an 𝑓𝑒 value. The value of 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗)

for edge 𝑢 to 𝑣 is the number of shortest paths between

every pair of vertices passing through the directed edge.

𝑓𝑣(𝑢) is computed according to equation (1):

𝑓𝑣(𝑢) = |{(𝑣, 𝑤)|

𝑑𝑖𝑠𝑡(𝑣, 𝑤)

= 𝑑𝑖𝑠𝑡(𝑣, 𝑢) + 𝑑𝑖𝑠𝑡(𝑢, 𝑤) ,
∀ 𝑢, 𝑣, 𝑤 ∈ 𝑉 𝑡ℎ𝑎𝑡

𝑢 ≠ 𝑣 𝑎𝑛𝑑 𝑢 ≠ 𝑤 𝑎𝑛𝑑 𝑣 ≠ 𝑤

}| (1)

The range of 𝑓𝑣(𝑢) values is integer numbers and

intervals 0 ≤ 𝑓𝑣 ≤ ∑ 𝑖
|𝑉|−2
𝑖=1 (The maximum value is

obtained in the star graphs for the center vertex).

𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗) is calculated according to equation (2):

𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗) = |{(𝑢, 𝑤)|
𝑑𝑖𝑠𝑡(𝑢, 𝑤) = 𝑑𝑖𝑠𝑡(𝑣, 𝑤) + 1
, ∀ 𝑢, 𝑣, 𝑤 ∈ 𝑉 𝑡ℎ𝑎𝑡 𝑢 ≠ 𝑤

}| (2)

The range of 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗) values is integer numbers in

intervals 1 ≤ 𝑓𝑒 ≤ ⌈
|𝑉|−2

2
⌉ ⌊

|𝑉|−2

2
⌋ (the maximum value is

obtained for the cut edge or bridge)..

3. The Algorithm

In this section, we present an efficient algorithm that can

generate effective canonical labeling based on the

structure of graphs that generate different codes for non-

isomorphic graphs. Despite the maximum positive results

of the code generation algorithm, it is still not possible to

make a deterministic decision regarding the GIP.

The pseudocode for the proposed algorithm is presented

in Alg. 1 in the form of Algorithm

GraphIsomorphismCheck(). As can be seen in the code,

the number of vertices and edges for the two input graphs

are first compared. If they are equal, the canonical labels

for both graphs are generated by the GenCode() function,

and then their isomorphism or non-isomorphism is

determined.

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

21

function GenCode(𝐺)

input: 𝐺 = (𝑉, 𝐸) : graph // a finite simple connected graph where

 // for every vertex v computes the 𝑓𝑣

 // 𝑓𝑣(𝑣): integer,

 // for every edge (𝑢, 𝑣) assumes two 𝑓𝑒

 // 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗): integer, 𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗): integer,

 // for every vertex v: list of all 𝑓𝑒 which start from v,

 // gives the label (𝑓𝑣, 𝑓𝑒) to each vertex

output: GraphCode : list // concatenates the labels as a canonical code of G

begin

 1:for all pairs of vertices 𝑢, 𝑣 ∈ 𝑉 in where 𝑢 ≠ 𝑣 do // using BFS on all vertices

 2: compute 𝑑𝑖𝑠𝑡(𝑢, 𝑣);

 3: for all vertices 𝑣 ∈ 𝑉 do

 4: 𝑓𝑣(𝑣) ← 0

 5: for all pairs of vertices 𝑢,𝑤 ∈ 𝑉 where (𝑣 ≠ 𝑢 and 𝑣 ≠ 𝑤 and 𝑢 ≠ 𝑤) do

 6: if 𝑑𝑖𝑠𝑡(𝑢, 𝑤) = 𝑑𝑖𝑠𝑡(𝑢, 𝑣) + 𝑑𝑖𝑠𝑡(𝑣, 𝑤) then

 7: 𝑓𝑣(𝑣) ← 𝑓𝑣(𝑣) + 1

 8: for all edges (𝑢, 𝑣) ∈ 𝐸 do

 9: 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗) ← 0

10: for all vertices 𝑤 ∈ 𝑉 where 𝑤 ≠ 𝑢 do

11: if 𝑑𝑖𝑠𝑡(𝑢, 𝑤) = 𝑑𝑖𝑠𝑡(𝑣, 𝑤) + 1 then

12: 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗) ← 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗) + 1

13: 𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗) ← 0

14: for all vertices 𝑤 ∈ 𝑉 where 𝑤 ≠ 𝑣 do

15: if 𝑑𝑖𝑠𝑡(𝑣, 𝑤) = 𝑑𝑖𝑠𝑡(𝑢, 𝑤) + 1 then

16: 𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗) ← 𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗) + 1

17: for all vertices 𝑣 ∈ 𝑉 do

18: 𝐿[𝑣] ← ∅; //𝐿[𝑣] is empty list that stores 𝑓𝑣 for every vertex 𝑣

19: for all vertices 𝑢 ∈ 𝑣. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do //𝑣. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 is All the vertices that are adjacent to 𝑣

20: add 𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗) to 𝐿[𝑣];

21: sort(𝐿[𝑣]); // sort list 𝐿[𝑢] as lexicographically

22: 𝐿[𝑣] ← concat(𝑓𝑣(𝑣), 𝐿[𝑣])

23: sort(𝐿); // sort all elements of list 𝐿 as lexicographically

24: 𝐺raph𝐶ode ← concatenation of all elements of list 𝐿;

25: return 𝐺raph𝐶ode;

end of function;

Algorithm GraphIsomorphismCheck (𝐺, 𝐺′)

input: 𝐺 = (𝑉, 𝐸), 𝐺′ = (𝑉′, 𝐸′) // two finite simple connected graphs

output: true // if 𝐺 is isomorphic to 𝐺′

false // else

begin

 1.if |𝑉| ≠ |𝑉′| or |𝐸| ≠ |𝐸′| then

 2. return false;

 3.if GenCode (𝐺)≠ GenCode (𝐺′) then

 4. return false;

 5.return true;

end of Algorithm .

Alg. 1. Pseudo-code of the proposed algorithm.

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

22

The algorithm generates the canonical labeling using 𝑓𝑣

and 𝑓𝑒 which is described in the previous section and

proceeds as follows:

▪ The algorithm calculates the value of 𝑓𝑣

associated with each vertex.

▪ Each edge of the graph is considered to be two

edges in two opposite directions, and the value

of 𝑓𝑒 is calculated for each of them, that is, the

algorithm allocates two values 𝑓𝑒 to each edge.

▪ It then assigns a list of 𝑓𝑒 values of the output

edges to each vertex.

▪ 𝑓𝑒 values within each list are sorted in non-

descending order.

▪ The label of each vertex is formed by

concatenating 𝑓𝑣 with 𝑓𝑒.

▪ Finally, an array with the length of the graph

order is composed of labels for all vertices, and

the array is sorted in a non-descending order.

The output array is the canonical label of the input graph.

Here, a sample graph and implementation of the

proposed algorithm are presented. Considering the graph

in Fig. 1, the algorithm considers the undirected graph (a)

shown in Fig. 1 as the directed graph (á) shown in Fig. 1:

(a)

(á)

Fig. 1. Graph (a) is considered as graph (á) by the

proposed algorithm.

The algorithm calculates the values of 𝑓𝑣 for each vertex

of the graph in Fig. 1, as follows:

𝑓𝑣(1)=0, 𝑓𝑣(2)=4, 𝑓𝑣(3)=8, 𝑓𝑣(4)=0, 𝑓𝑣(5)=0, 𝑓𝑣(6)=0.

The value of 𝑓𝑒 corresponding to the two directions of

each edge is calculated as follows:

𝑒𝑑𝑔𝑒(1,2):

𝑓𝑒(1,2⃗⃗ ⃗⃗ ⃗) = |{(1,2), (1,3), (1,4), (1,5), (1,6)}| = 5

𝑓𝑒(2,1⃗⃗ ⃗⃗ ⃗) = |{(2,1)}| = 1

𝑒𝑑𝑔𝑒(2,3):

𝑓𝑒(2,3⃗⃗ ⃗⃗ ⃗) = |{(2,3), (2,4), (2,5), (2,6)}| = 4

𝑓𝑒(3,2⃗⃗ ⃗⃗ ⃗) = |{(3,2), (3,1)}| = 2

𝑒𝑑𝑔𝑒(3,4):

𝑓𝑒(3,4⃗⃗ ⃗⃗ ⃗) = |{(3,4)}| = 1

𝑓𝑒(4,3⃗⃗ ⃗⃗ ⃗) = |{(4,1), (4,2), (4,3), (4,5), (4,6)}| = 5

𝑒𝑑𝑔𝑒(3,5):

𝑓𝑒(3,5⃗⃗ ⃗⃗ ⃗) = |{(3,5)}| = 1

𝑓𝑒(5,3⃗⃗ ⃗⃗ ⃗⃗ ⃗) = |{(5,1), (5,2), (5,3), (5,4)}| = 4

𝑒𝑑𝑔𝑒(3,6):

𝑓𝑒(3,6⃗⃗ ⃗⃗ ⃗) = |{(3,6)}| = 1

𝑓𝑒(6,3⃗⃗ ⃗⃗ ⃗) = |{(6,1), (6,2), (6,3), (6,4)}| = 4

𝑒𝑑𝑔𝑒(5,6):

𝑓𝑒(5,6⃗⃗ ⃗⃗ ⃗) = |{(5,6)}| = 1

𝑓𝑒(6,5⃗⃗ ⃗⃗ ⃗) = |{(6,5)}| = 1

This algorithm uses 𝑓𝑣 and 𝑓𝑒 values to assign a list of

them to each vertex:

𝑉(1) ← (0, [5]),

𝑉(2) ← (4, [1,4]),

𝑉(3) ← (8, [1,1,1,2]),

𝑉(4) ← (0, [5]),

𝑉(5) ← (0, [1,4]),

 𝑉(6) ← (0, [1,4]),

and then sorts the list values in non-descending order.

Finally, this algorithm forms an array from sorted lists

and performs lexical sorting on array cells:
[(0, [1,4]), (0, [1,4]), (0, [5]), (0, [5]), (4, [1,4]), (8, [1,1,1,2])]
The length of this array is |𝑉| , that's actually the

canonical labeling of the graph in Fig. 1.

4. Experiments

The set of input graphs for the algorithm is as follows:

1. All simple connected graphs with 3 to 9 vertex

number [25]

2. 10,000 samples of simple connected graph with

10 to 20 vertex number [26]

3. 10 samples of relatively large random connected

graph with 100 to 600 vertex number [27]

4. All regular graphs with 8 to 32 vertex number

[28]

All the non-isomorphic graphs of simple connected

graphs with small order known to date are included in Set

1. Because the total number of known graphs with 10

vertices is more than 11 million, and as the degree of the

graph increases, this value becomes much larger, so Set

2 includes a part of these graphs. The production

functions of random graphs are applied to simple

connected graphs with at least 100 vertices in Set 3. In

this set, the number of vertices and edges are optionally

selected, and the graph is created using random graph

generating functions. The last dataset consists of all

regular graphs with maximum order of 32.

In each dataset, the graphs are categorized according to

their order. The implementation of this algorithm is

evaluated using a batch of them. At runtime, if the unit is

detected as an isomorphism between any graph pairs that

are non-isomorphic, one unit is added to the algorithm

error rate.

1 2

4

6 5

3

1 2

4

6 5

3

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

23

From the results presented in Tables Ⅰ and Table Ⅱ, it can

be concluded that the size and order of the input graphs

have no effect on the correct detection of the proposed

algorithm.

Table Ⅰ. Algorithm performance on simple graphs of set

1 and 2.

Graph

Order

The number of graph

pairs

Algorithm output

correctness

percentage

3 1 100%

4 15 100%

5 210 100%

6 6,216 100%

7 363,378 100%

8 61,788,286 100%

9 ,252,66034,081 99.999%

10 49,995,000 99.9999%

11 49,995,000 99.9999%

12 49,995,000 99.9999%

13 49,995,000 100%

14 49,995,000 100%

15 49,995,000 100%

16 49,995,000 100%

17 49,995,000 100%

18 49,995,000 100%

19 49,995,000 100%

20 49,995,000 100%

Table Ⅱ. Algorithm performance on relatively large

simple graphs.

Graph

Order

(|𝑽|)

Graph

Size

(|𝑬|)

The

number of

graph pairs

Algorithm

output

correctness

percentage

100 1000 45 100%

200 2000 45 100%

300 3000 45 100%

400 4000 45 100%

500 5000 45 100%

600 6000 45 100%

It is important to note that isomorphism detection

algorithms that are based on canonical labeling have poor

performance on regular graphs. Therefore, in this paper,

the proposed algorithm is tested by using regular graphs

as input. The results of the proposed algorithm on these

types of graphs are shown in Table Ⅲ.

According to the table Ⅲ, the lower bound for regular

graphs with 8 ≤ |𝑉| ≤ 32 is 99.42%.

Table Ⅲ. Algorithm performance on regular graphs.

Regular

Graph

Type

The number

of

graph pairs

Algorithm

output

correctness

percentage

8-3-3 10 100%

8-4-3 15 100%

8-5-3 3 100%

9-4-3 120 100%

9-6-3 6 100%

10-3-3 171 99.42%

10-4-3 1,711 99.77%

10-5-3 1,770 100%

10-6-3 210 99.52%

11-4-3 34,980 99.89%

11-6-3 35,245 99.97%

12-3-3 3,570 99.97%

12-4-3 1,191,196 99.97%

12-5-3 30,791,628 99.98%

13-4-3 58,077,253 99.997%

14-3-3 129,286 99.998%

14-4-3 53,359,615 99.9999%

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

24

1

2

3

4
5

6

7

8

9

16-3-3 8,239,770 99.9999%

18-3-3 79,694,785 100%

20-3-4 16,632,028 99.99999%

20-3-5 16,718,653 99.9998%

23-4-5 7,669,486 99.9998%

24-3-6 28,678,951 99.9999%

32-3-7 461,092,528 100%

4.1. Conflicts in the algorithm

The two graphs 𝐺1 and 𝐺2 shown in Table Ⅳ are simple

connected 9-vertex non-isomorphic graphs, and because

the canonical labels obtained for both graphs in the

algorithm experiment were identical, they were identified

as one of the algorithm errors.

According to the drawing shown in Table Ⅳ of the

graphs 𝐺1 and 𝐺2, vertices 𝑉(1), 𝑉(2), 𝑉(3), 𝑉(6), 𝑉(7)

and 𝑉(8) in both graphs have identical status in their

topology, and the generated codes are identical.

The generated codes for vertices V(4) and V(5) are

shifted; it means that 𝑉(4) in 𝐺1 is equivalent to 𝑉(5) in

𝐺2 and 𝑉(5) in 𝐺1 is equivalent to 𝑉(4) in 𝐺2 because in

both graphs, vertices are connected at equal distances

from each other. Since the algorithm is designed based

on the shortest path between vertices in the graph, in both

graphs the values of 𝑓𝑣 and 𝑓𝑒 are the same and

eventually the same canonical label is obtained, although

it is not correct.

To check it, by removing 𝑉(4) with its connections in 𝐺1,

we have a path graph 𝑃3(𝑉(1), 𝑉(2), 𝑉(3)) and a star

graph 𝑆4 (𝑉(5), 𝑉(6), 𝑉(7), 𝑉(8)) and a single vertex

𝑉(9) while by removing 𝑉(5) with its connections in 𝐺2,

it decomposes to two path graphs

𝑃4 (𝑉(1), 𝑉(2), 𝑉(3), 𝑉(4)) and 𝑃3 (𝑉(6), 𝑉(7), 𝑉(8))

and a single vertex 𝑉(9).

Table Ⅳ. Two graphs that are detected isomorphic in proposed algorithm.

𝐺2 𝐺1

𝑉(1) ← [0, [8]]
𝑉(2) ← [7, (1,7)]
𝑉(3) ← [12, [2, 6]]
𝑉(4) ← [19, [1, 3, 4]]]
𝑉(5) ← [15, [3, 5]]
𝑉(6) ← [13, [1, 1, 6]]
𝑉(7) ← [0, [8]]
𝑉(8) ← [0, [8]]
𝑉(9) ← [0, [8]]

𝑉(1) ← [0, [8]]
𝑉(2) ← [7, (1,7)]
𝑉(3) ← [12, [2, 6]]
𝑉(4) ← [15, [3, 5]]
𝑉(5) ← [19, [1, 3, 4]]]
𝑉(6) ← [13, [1, 1, 6]]
𝑉(7) ← [0, [8]]
𝑉(8) ← [0, [8]]
𝑉(9) ← [0, [8]]

Canonical Labeling for two graphs:

[[0, [8]], [0, [8]], [0, [8]], [0, [8]], [7, [1, 7]], [12, [2, 6]], [13, [1, 1, 6]], [15, [3, 5]], [19, [1, 3, 4]]]

4.2. Complexity analysis of the proposed algorithm

To calculate the complexity of the proposed algorithm, we

assumed a graph with 𝑛 vertices and 𝑒 edges. Distance

computing for all pairs of vertices requires 𝑂(𝑛3). Lines

3-7 of the algorithm require 𝑂(𝑛. 𝑒) and lines 8-11 of the

algorithm require 𝑂(𝑛. 𝑒). Consequently, the overall time

complexity of the algorithm is 𝑂(𝑛3) for dense and sparse

graphs.

The space complexity of the algorithm is equal to the

number of 𝑓𝑒s stored for each vertex of the graph. This

number is the degree of the vertex, and in a graph equals

the sum of the degrees of the all vertices in that graph. In

9

1

2

3

4

5

6

7

8

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

25

the other words, the algorithm's storage space equals

∑ 𝑑𝑒𝑔(𝑣𝑖) = 2𝑒𝑣𝑖∈𝑉 or O(𝑒).

5. Performance Comparison

In this section, we compare the performance of the

proposed algorithm with the latest release of a well-

known GI algorithm called VF2 [29] which is an

improved matching algorithm that can be used for both

graph and subgraph isomorphism.

The input graphs for this experimental comparison are the

benchmark graph families in [22], containing 25 random

graphs with Edge Probability 1 𝑠𝑞𝑟𝑡(𝑛)⁄ , where 𝑛 is the

number of nodes. The order of these graphs ranges from

100 to 500; in each order, there are five different graphs

of the same size (Table Ⅴ).

The accuracy of VF2 and the proposed algorithm in the

case of the following test graphs is 100%.

The experiments were carried out on a laptop ASUS, CPU:

AMD RADEON R4, 5 COMPUTE CORES 2C+3G, 2.50

GHz, Memory: 8GB, OS: 64-bit Windows 10 Enterprise,

which is implemented in the Python environment.

This comparison was performed in terms of run time and

space; the comparison of two algorithms in terms of

runtime is shown in Fig. 5 and their comparison in terms

storage space is shown in Fig. 6.

Table Ⅴ. Benchmark graphs with their properties.

Properties

Benchmark

order of

graphs

size of

graphs

1-5 100 500

6-10 200 1414

11-15 300 2598

16-20 400 4000

21-25 500 5590

Fig. 5. Runtime of the proposed algorithm vs. VF2 (in Seconds) on selected benchmark of graphs.

Fig. 6. Storage space of the proposed algorithm vs. VF2

(KB) on selected benchmark of graphs.

The difference in time and memory is due to the

difference in the methods of the two algorithms; thus, the

proposed algorithm converts each graph separately into a

canonical label and then compares the two labels, but the

VF2 algorithm stores both graphs simultaneously in the

system's main memory. It loads and performs peer-to-peer

traversal and displays the results as the corresponding

vertices. The advantage of isomorphic detection

algorithms with canonical labeling is that they create an

identifier for each graph, which can be used to display the

basic structure of the graph by reverse engineering on that

label, while other algorithms do not have this capability.

Because the VF2 algorithm has been changing and

optimizing since its introduction (2001), it can be said that

its good runtime results are not far from expected.

According to the above results, the proposed algorithm

also has good efficiency in the set of relatively high order

graphs.

6. Conclusion

0
1
2
3
4
5
6
7
8

R
U

N
TI

M
E

(S
EC

O
N

D
S)

BENCHMARK OF GRAPHS

proposed algorithm VF2

0
2
4
6
8

10

SP
A

C
E

O
F

M
EM

O
R

Y
(K

B
)

BENCHMARK OF GRAPHS

proposed algorithm VF2

https://pallini.di.uniroma1.it/Graphs.html
https://pallini.di.uniroma1.it/Graphs.html

Tabriz Journal of Electrical Engineering (TJEE), vol. 55, no. 1, 2025 Serial no. 111

26

According to the results obtained from the accuracy of

isomorphism detection in the experimental results, the

proposed algorithm is not input sensitive, and can be used

for large graphs.

Regarding how the algorithm is tested, it can be said that

the results are obtained from a complete and accurate

review because, in each case, all the graphs registered so

far are checked, and the input graphs at each stage have

the initial condition of isomorphism (the number of

vertices and edges are equal). In other words, all results

are obtained by applying strict conditions to the algorithm

(The input non-isomorphic graphs have the same

isomorphism properties, and the only non-isomorphic

response is expected due to the generated code). This is

while many proposed algorithms use random input

datasets, which means that they lack deterministic

complexity.

Although the results obtained from the algorithm for

general graphs are not completely deterministic, but it can

be said that the proposed heuristic algorithm has a good

ability to cover the properties of a general graph.

7. References

[1] A. Rafiee, P. Moradi, A. Ghaderzadeh, “A swarm

intelligence based multi-label feature selection

method hybridized with a local search strategy”,

Tabriz Journal of Electrical Engineering, vol. 51, no.

4, pp. 443-454, 2021.

[2] S. Mokhtarizadeh, B. Zamani Dehkordi, M. Mosleh,

Ali Barati, “Influence Maximization using Time

Delay based Harmonic Centrality in Social

Networks”, Tabriz Journal of Electrical Engineering,

vol. 51, no. 3, pp. 359-370, 2021.

[3] E.K. Wong, “Model matching in robot vision by

subgraph isomorphism”, Pattern Recognition, vol. 25,

no. 3, pp. 287-304, 1992.

[4] A. Kandel, H. Bunke, M. Last, “Applied Graph

Theory in Computer Vision and Pattern Recognition”,

Berlin, Springer, 2007.

[5] M.A. Abdulrahim, M. Misra, “A graph isomorphism

algorithm for object recognition”, Pattern Analysis

and Applications, vol. 1, no. 3, pp. 189-201, 1998.

[6] T. Washio, H. Motoda, “State of the art of graph-

based data mining”, ACM SIGKDD Explorations

Newsletter, vol. 5, no. 1, pp. 59-68, 2003.

[7] D. Conte, P. Foggia, C. Sansone, M. Vento, “Graph

matching applications in pattern recognition and

image processing”, In IEEE International Conference

on Image Processing, September 2003, Barcelona,

Spain, pp. 21-24.

[8] S. Wasserman, K. Faust, “Social Network Analysis:

Methods and Applications”, Cambridge University

Press, 1994.

[9] A. Sanfeliua, R. Alquézarb, J. Andradea, J. Climentc,

F. Serratosad, J. Vergésa, “Graph-based

representations and techniques for image processing

and image analysis”, Pattern Recognition, vol. 35, no.

3, pp. 639-650, 2002.

[10] D.H. Rouvray, A.T. Balaban, “Chemical applications

of graph theory”, Academic Press London, 1979.

[11] T. Aittokallio, B. Schwikowski, “Graph–based

methods for analysing networks in cell biology”,

Briefings in Bioinformatics, vol. 7, no. 3, pp. 243-255,

2006.

[12] G. Valiente, “Algorithms on Trees and Graphs”,

Springer-Verlag, 2002.

[13] L. Babai, E.M. Luks, “Canonical labeling of graphs”,

In 15th Annual ACM Symposium on Theory of

Computing, December 1983, New York, United

States, pp. 171–183.

[14] L. Babai, P. Erdos, M. Selkow, “Random graph

isomorphism”, SIAM Journal on Computing, vol. 9,

no. 3, pp. 628-635, 1980.

[15] L. Babai, L. Kucera, “Canonical labeling of graphs in

linear average time”, In 20th IEEE Symposium on

Foundations of Computer Science, October 1979,

San Juan, USA, pp. 39-46.

[16] L. Babai, “Graph isomorphism in quasi-polynomial

time”, In 48th Annual ACM Symposium on Theory

of Computing, June 2016, New York, United States,

pp. 684-697.

[17] B.D. McKay, A. Piperno, “Practical graph

isomorphism II”, Journal of Symbolic Computation,

vol. 60, pp. 94-112, 2014.

[18] T. Miyazaki, “The complexity of McKay’s canonical

labeling algorithm”, Groups and Computation, vol.

28, no. 2, pp. 239-256, 1996.

[19] R.M. Karp, “Reducibility Among Combinatorial

Problems”, In Symposium on the Complexity of

Computer Computations, March 1972, Yorktown

Heights, New York, pp. 85-103.

[20] A.V. Aho, J.E. Hopcroft, J.D. Ullman, “The Design

and Analysis of Computer Algorithms”, Addison-

Wesley, 1974.

[21] J.E. Hopcroft, J.K. Wong, “Linear time algorithm for

isomorphism of planar graphs”, In 6th Annual ACM

Symposium on Theory of Computing, April 1974,

Washington, USA, pp. 172-184.

[22] B.D. McKay, A. Piperno, "Nauty Traces", Available:

http://pallini.di.uniroma1.it.

[23] A. Nourollah, S. Check, “A Heuristic Algorithm for

Graph Isomorphism Problem Based on Eccentricity”,

Computing Sciences and Information Technologies,

vol. 17, no. 2, pp. 45-51, 2019 (in Persian).

[24] L.C. Freeman, “A set of measures of centrality based

on betweenness”, Sociometry, vol. 40, no. 1, pp. 35-

41, 1977.

[25] ANU College of Engineering & Computer Science.

"collections of non-isomorphic graphs," Available:

http://users.cecs.anu.edu.au/~bdm/data/graphs.html.

[26] Database of interesting graphs. "The House of

Graphs," Available: https://hog.grinvin.org.

[27] Generate graphs. "Generate all unlabeled simple

graphs on a given number of vertices," Available:

http://combos.org/nauty.

[28] Regular Graphs Page. "Connected regular graphs,"

Available: http://www.mathe2.uni-

bayreuth.de/markus/reggraphs.html.

[29] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, “An

improved algorithm for matching large graphs”, In

Proceedings of the 3rd IAPR-TC-15 International

Workshop on Graph-based Representations, May

2001, Ischia, Italy, pp. 149-159.

