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Abstract 

The Graph Isomorphism Problem (GIP) is an open problem because of its high computational complexity. No polynomial-

time deterministic algorithm has been proposed yet, and heuristic and meta-heuristic approaches have been the only ways 

to solve it. Even its belonging to the NP-complete problems has not yet been proven. This paper introduces a simple but 

efficient polynomial-time and -space algorithm, to determine the isomorphism of connected unlabeled graphs. The 

proposed algorithm introduces two functions that compute the features for all vertices and edges. The outputs of the 

functions provide a canonical labeling for the given graphs, and comparison of these labels specifies isomorphism of the 

graphs. The experimental results show that  the proposed algorithm correctly detects the isomorphism of the graphs in 

more than 99% of the cases. The algorithm has 𝛰(𝑛3) time, where 𝑛 is the number of vertices of the given graphs. 
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1. Introduction 

Graphs are powerful mathematical structures used to 

represent objects (represented as vertices) and their 

relationships (represented as edges). Graphs can be used 

to model many real-world problems. Many applications 

introduced by researchers in vertex labeling and multi-

labeling as classification [1] and the role of graphs with 

sensitive edges in social networks [2]. 

Automorphism, homomorphism, that are belong to 

Graph Isomorphism (GI) scope are the fundamental 

scope in graph theory in which compare the structure of 

two finite graphs. They are correlated and introduce them 

"isomorphic" if the two graphs are equal in structural 

skeleton or shapes. 

This problem has been studied by computer scientists, 

mathematics, chemistry, and medical sciences over the 

past few decades. This issue has been theoretically and 

practically raised in computer branches in various fields, 

including computer pattern recognition and vision [3-5], 

data mining [6], image processing [7], social networks 

[8], two-dimensional, three-dimensional, and four-

dimensional scenes [9], chemical bonds [10], and cell 

biology [11]. 

For GI, it is necessary to have a one-to-one and spanning 

mapping (bijection) between the vertex sets of two 

graphs with edge-preserving bijection, which is 

ultimately equal to a structure-preserving bijection. At 

least Ω(𝑛!)  time is required to verify the existence of 

bijective mapping between two n-order graphs, because 

all the different ways of mapping from vertex to vertex 

must be explored, and within each of these comparisons 

there must be a correspondence between the edges as 

well, which in turn has a distinct time-complexity and 

this value is considerable ("A straightforward 

enumerative algorithm might require 40 years of running 

time on a very high-speed computer in order to compare 

two 15-node graphs" [12]. In other words, trivial 

isomorphic checking requires Ω(𝑛!), it needs nearly 40 

years to run for two  graphs with 𝑛 = 15 ) . 

Therefore, the techniques that are different from 

reviewing all the cases to determine the graph 

isomorphism have been proposed, in this paper a 

heuristic algorithm to solve the problem of GI for 

unlabeled graphs by canonical labeling is proposed to 

reduce the time complexity and to present a polynomial-

time algorithm to improve the results. 

Babai and Luks have proposed an algorithm [13] that 

computes the canonical labeling of generic graphs in 

𝑂 (𝑒√𝑛+𝑂(1)), which is the best time for GIP algorithms 

at present. In another paper [14], Babai et al. proposed a 

simple algorithm that can perform canonical labeling 

operations on most graph vertices in linear time. In fact, 

it has been shown that the probability that a graph with n 

vertices is labeled with that algorithm is typically of 1 −

√1 𝑛⁄7
 (large enough for order 𝑛). Subsequently, Babai 

and Kučera [15] improved this result and proposed a 

conventional linear tagging algorithm with a probability 

of 𝑒𝑥𝑝(−𝑐𝑛 log 𝑛 log log 𝑛⁄ )  failure whose two major 

drawbacks are the results in small graphs and regular 

graphs. The fastest algorithm for detecting the 

isomorphism of general graphs has the time complexity 

of 𝑂 (𝑒√𝑛 log 𝑛)  for graph with 𝑛  vertices based on 

simple finite group classification method [16]. The most 
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powerful algorithm currently available is the 

Nauty&Traces package [17]. Despite its impressive 

performance in most cases, it is exponential-time for 

some graph families [18]. 

No polynomial-time algorithm has been presented yet to 

determine the isomorphism of general graphs, even it has 

not been proved NP-complete; hence, it is included in the 

NP problem class [19]. However, polynomial-time 

algorithms are known for specific classes of graphs, such 

as trees [20] and planner graphs [21]. In addition, some 

polynomial-time algorithms proposed to detect 

isomorphism are not suitable for implementation or are 

not practical because of their hidden complexity [22].  

In the paper published in 2020 [23], an algorithm was 

presented that layered the vertices based on their distance 

from the center of the graph(Eccentricity), then transmits 

the parenthetical code according to the priority of the 

layers. The accuracy of the algorithm in detecting 

isomorphism on simple connected graphs was greater 

than 98%, according to the tests conducted in the article. 

In this proposed algorithm, the canonical labeling of each 

graph is obtained by computing 𝑓𝑣, which is a value for 

each vertex and 𝑓𝑒  which contains two values for each 

edge. 𝑓𝑒  includes two values 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  )  and 𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗  )  for 

each edge (𝑢, 𝑣) ∈ 𝐸, which assigns a value to each of 

the end-vertices of the edge. Calculating the values of 𝑓𝑣 

and 𝑓𝑒 is similar to calculating the value of "Betweenness 

Centrality" in graph theory, which is a measure of 

centrality in a graph based on shortest paths [24]. 

The results of the proposed algorithm on a set of 10,000 

samples of input graphs were 100% accurate, and nearly 

100% in the complete set of graphs. One case of 

misidentification of the algorithm is discussed in this 

paper, and the weakness of the algorithm is analyzed 

using this example. In addition, a set of regular graphs is 

considered as an input because regular graphs are 

problematic graphs in canonical labeling-based GI 

algorithms that the proposed algorithm correctly 

identifies with an average accuracy above 99.9%.  

After giving the preliminary definitions in Section 2, 

Section 3 details the proposed algorithm, the results of 

the implementation of the algorithm are given in Section 

4. The performance of the preposed algorithm is 

compared with VF2 algorithm in Section 5, and Section 

6 presents the conclusion of this paper. 

 

2. Preliminary definitions  

A graph is a set of vertices (𝑉) and edges (𝐸) represented 

by 𝐺 = (𝑉, 𝐸). A simple graph is one with no loops and 

no parallel edges. An undirected graph is one whose 

edges have no direction. A connected graph is a graph 

with at least one path between any pair of vertices. 

Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) be two given graphs, 

𝐺1  and 𝐺2 are isomorphic if there exists a bijective 

function 𝜎: 𝑉1 → 𝑉2  such that for every (𝑢, 𝑣) ∈

𝐸1: (𝜎(𝑢), 𝜎(𝑣)) ∈ 𝐸2. 

Simply, recognizing isomorphism between two graphs 

indicates whether the two graphs have the same 

topological structure and are represented by the 

expression 𝐺1 ≅ 𝐺2. 

The proposed algorithm, which employs the canonical 

labeling method, first receives graph 𝐺1 and executes the 

function 𝐶(𝐺1) on the graph. Then for graph 𝐺2 it also 

calculates the value of 𝐶(𝐺2) . Subsequently, the two 

graphs are considered isomorphic if 𝐶(𝐺1) = 𝐶(𝐺2). 

Let a simple connected undirected graph 𝐺 = (𝑉, 𝐸) be 

given, for some vertices 𝑢, 𝑣 ∈ 𝑉: 𝑃(𝑢, 𝑣) is the set of all 

paths between 𝑢 and 𝑣. For some 𝑝 ∈ 𝑃(𝑢, 𝑣), the length 

of 𝑝 is defined as the number of edges in path 𝑝, and is 

denoted as |𝑝|. The distance between 𝑢 and 𝑣 is defined 

as follows: 

𝑑𝑖𝑠𝑡(𝑢, 𝑣) = min
∀𝑝∈𝑃(𝑢,𝑣)

{|𝑝|} 

For every edge (𝑢, 𝑣) ∈ 𝐸, we introduce two functions: 

𝑓𝑣(𝑢) and 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  ). 𝑓𝑣(𝑢) denotes the number of shortest 

paths to which vertex 𝑢 belongs. 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  ) is the number 

of shortest paths to which edge (𝑢, 𝑣) belongs. 

Function 𝑓𝑣(𝑢)  in which for each vertex of the graph 

equals the number of shortest paths between other 

vertices of the graph passing through vertex 𝑢  is 

introduced. Furthermore a function 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  ) where all the 

edges of an undirected graph are assumed to be bi-

directional edges is introduced.  

Every edge is assigned an 𝑓𝑒 value. The value of 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  ) 

for edge 𝑢 to 𝑣 is the number of shortest paths between 

every pair of vertices passing through the directed edge. 

𝑓𝑣(𝑢) is computed according to equation (1): 

𝑓𝑣(𝑢) = |{(𝑣, 𝑤)|

𝑑𝑖𝑠𝑡(𝑣, 𝑤)

= 𝑑𝑖𝑠𝑡(𝑣, 𝑢) + 𝑑𝑖𝑠𝑡(𝑢, 𝑤) ,
∀ 𝑢, 𝑣, 𝑤 ∈ 𝑉 𝑡ℎ𝑎𝑡  

𝑢 ≠ 𝑣 𝑎𝑛𝑑 𝑢 ≠ 𝑤 𝑎𝑛𝑑 𝑣 ≠ 𝑤

}| (1) 

The range of 𝑓𝑣(𝑢)  values is integer numbers and 

intervals 0 ≤ 𝑓𝑣 ≤ ∑ 𝑖
|𝑉|−2
𝑖=1  (The maximum value is 

obtained in the star graphs for the center vertex). 

𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  ) is calculated according to equation (2): 

𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  ) = |{(𝑢, 𝑤)|
𝑑𝑖𝑠𝑡(𝑢, 𝑤) = 𝑑𝑖𝑠𝑡(𝑣, 𝑤) + 1 
, ∀ 𝑢, 𝑣, 𝑤 ∈ 𝑉 𝑡ℎ𝑎𝑡  𝑢 ≠ 𝑤 

}| (2) 

The range of 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  ) values is integer numbers in 

intervals 1 ≤ 𝑓𝑒 ≤ ⌈
|𝑉|−2

2
⌉ ⌊

|𝑉|−2

2
⌋ (the maximum value is 

obtained for the cut edge or bridge).. 

 

3. The Algorithm  

In this section, we present an efficient algorithm that can 

generate effective canonical labeling based on the 

structure of  graphs that generate different codes for non-

isomorphic graphs. Despite the maximum positive results 

of the code generation algorithm, it is still not possible to 

make a deterministic decision regarding the GIP. 

The pseudocode for the proposed algorithm is presented 

in Alg. 1 in the form of Algorithm 

GraphIsomorphismCheck( ). As can be seen in the code,  

the number of vertices and edges for the two input graphs 

are first compared. If they are equal, the canonical labels 

for both graphs are generated by the GenCode() function, 

and then their isomorphism or non-isomorphism is 

determined. 
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function GenCode(𝐺) 

input: 𝐺 = (𝑉, 𝐸) : graph  // a finite simple connected graph where 

    // for every vertex v computes the 𝑓𝑣 

    // 𝑓𝑣(𝑣): integer, 

    // for every edge (𝑢, 𝑣) assumes two 𝑓𝑒 

    // 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  ): integer, 𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗  ): integer, 

    // for every vertex v: list of all 𝑓𝑒 which start from v, 

    // gives the label (𝑓𝑣, 𝑓𝑒) to each vertex 

output: GraphCode : list  // concatenates the labels as a canonical code of G

 
begin 

  1:for all pairs of vertices 𝑢, 𝑣 ∈ 𝑉 in where 𝑢 ≠ 𝑣 do // using BFS on all vertices 

  2: compute 𝑑𝑖𝑠𝑡(𝑢, 𝑣); 

  3: for all vertices 𝑣 ∈ 𝑉 do 

  4:  𝑓𝑣(𝑣) ← 0 

  5:      for all pairs of vertices 𝑢,𝑤 ∈ 𝑉 where (𝑣 ≠ 𝑢 and 𝑣 ≠ 𝑤 and 𝑢 ≠ 𝑤) do  

  6:       if 𝑑𝑖𝑠𝑡(𝑢, 𝑤) = 𝑑𝑖𝑠𝑡(𝑢, 𝑣) + 𝑑𝑖𝑠𝑡(𝑣, 𝑤) then 

  7:    𝑓𝑣(𝑣) ← 𝑓𝑣(𝑣) + 1  

  8: for all edges (𝑢, 𝑣) ∈ 𝐸 do 

  9:  𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  ) ← 0 

10:      for all vertices 𝑤 ∈ 𝑉 where 𝑤 ≠ 𝑢 do  

11:       if 𝑑𝑖𝑠𝑡(𝑢, 𝑤) = 𝑑𝑖𝑠𝑡(𝑣, 𝑤) + 1 then 

12:    𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  ) ← 𝑓𝑒(𝑢, 𝑣⃗⃗ ⃗⃗ ⃗⃗  ) + 1  

13:    𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗  ) ← 0 

14:      for all vertices 𝑤 ∈ 𝑉 where 𝑤 ≠ 𝑣 do  

15:          if 𝑑𝑖𝑠𝑡(𝑣, 𝑤) = 𝑑𝑖𝑠𝑡(𝑢, 𝑤) + 1 then 

16:    𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗  ) ← 𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗  ) + 1  

17: for all vertices 𝑣 ∈ 𝑉 do 

18:     𝐿[𝑣] ← ∅; //𝐿[𝑣] is empty list that stores 𝑓𝑣 for every vertex 𝑣 

19: for all vertices 𝑢 ∈ 𝑣. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do    //𝑣. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 is All the vertices that are adjacent to 𝑣 

20:    add 𝑓𝑒(𝑣, 𝑢⃗⃗ ⃗⃗ ⃗⃗  ) to 𝐿[𝑣]; 

21: sort(𝐿[𝑣]);   // sort list 𝐿[𝑢] as lexicographically 

22: 𝐿[𝑣] ← concat(𝑓𝑣(𝑣), 𝐿[𝑣]) 

23: sort(𝐿); // sort all elements of list 𝐿 as lexicographically 

24: 𝐺raph𝐶ode ← concatenation of all elements of list 𝐿; 

25: return 𝐺raph𝐶ode; 

end  of function; 

 

Algorithm GraphIsomorphismCheck (𝐺, 𝐺′) 

input: 𝐺 = (𝑉, 𝐸), 𝐺′ = (𝑉′, 𝐸′)          // two finite simple connected graphs 

output: true    // if 𝐺 is isomorphic to 𝐺′ 

false  // else 

 
begin 

  1.if  |𝑉| ≠ |𝑉′| or |𝐸| ≠ |𝐸′| then 

  2. return false; 

  3.if  GenCode (𝐺)≠ GenCode (𝐺′) then 

  4. return false; 

  5.return true; 

end of Algorithm .

 

Alg. 1. Pseudo-code of the proposed algorithm. 
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The algorithm generates the canonical labeling using 𝑓𝑣 

and 𝑓𝑒  which is described in the previous section and 

proceeds as follows: 

▪ The algorithm calculates the value of  𝑓𝑣 

associated with each vertex. 

▪ Each edge of the graph is considered to be two 

edges in two opposite directions, and the value 

of 𝑓𝑒 is calculated for each of them, that is, the 

algorithm allocates two values 𝑓𝑒 to each edge. 

▪ It then assigns a list of 𝑓𝑒 values of the output 

edges to each vertex. 

▪ 𝑓𝑒  values within each list are sorted in non-

descending order. 

▪ The label of each vertex is formed by 

concatenating 𝑓𝑣 with 𝑓𝑒.  

▪ Finally, an array with the length of the graph 

order is composed of labels for all vertices, and 

the array is sorted in a non-descending order. 

The output array is the canonical label of the input graph. 

Here, a sample graph and implementation of the 

proposed algorithm are presented. Considering the graph 

in Fig. 1, the algorithm considers the undirected graph (a) 

shown in Fig. 1 as the directed graph (á) shown in Fig. 1: 

 

(a) 
 

(á) 

 
Fig. 1. Graph (a) is considered as graph (á) by the 

proposed algorithm. 

 

The algorithm calculates the values of 𝑓𝑣 for each vertex 

of the graph in Fig. 1, as follows: 

𝑓𝑣(1)=0, 𝑓𝑣(2)=4, 𝑓𝑣(3)=8, 𝑓𝑣(4)=0, 𝑓𝑣(5)=0, 𝑓𝑣(6)=0. 

The value of 𝑓𝑒  corresponding to the two directions of 

each edge is calculated as follows: 

 

𝑒𝑑𝑔𝑒(1,2): 

𝑓𝑒(1,2⃗⃗ ⃗⃗  ⃗) = |{(1,2), (1,3), (1,4), (1,5), (1,6)}|  = 5 

𝑓𝑒(2,1⃗⃗ ⃗⃗  ⃗) = |{(2,1)}|  = 1 
 

𝑒𝑑𝑔𝑒(2,3): 

𝑓𝑒(2,3⃗⃗ ⃗⃗  ⃗) = |{(2,3), (2,4), (2,5), (2,6)}|  = 4 

𝑓𝑒(3,2⃗⃗ ⃗⃗  ⃗) = |{(3,2), (3,1)}|  = 2 
 

𝑒𝑑𝑔𝑒(3,4): 

𝑓𝑒(3,4⃗⃗ ⃗⃗  ⃗) = |{(3,4)}|  = 1 

𝑓𝑒(4,3⃗⃗ ⃗⃗  ⃗) = |{(4,1), (4,2), (4,3), (4,5), (4,6)}|  = 5 
 

𝑒𝑑𝑔𝑒(3,5): 

𝑓𝑒(3,5⃗⃗ ⃗⃗  ⃗) = |{(3,5)}|  = 1 

𝑓𝑒(5,3⃗⃗ ⃗⃗ ⃗⃗  ⃗) = |{(5,1), (5,2), (5,3), (5,4)}|  = 4 
 

𝑒𝑑𝑔𝑒(3,6): 

𝑓𝑒(3,6⃗⃗ ⃗⃗  ⃗) = |{(3,6)}|  = 1 

𝑓𝑒(6,3⃗⃗ ⃗⃗  ⃗) = |{(6,1), (6,2), (6,3), (6,4)}|  = 4 
 

𝑒𝑑𝑔𝑒(5,6): 

𝑓𝑒(5,6⃗⃗ ⃗⃗  ⃗) = |{(5,6)}|  = 1 

𝑓𝑒(6,5⃗⃗ ⃗⃗  ⃗) = |{(6,5)}|  = 1 

 

This algorithm uses  𝑓𝑣 and 𝑓𝑒 values to assign a list of 

them to each vertex: 

𝑉(1) ← (0, [5]), 

𝑉(2) ← (4, [1,4]), 

𝑉(3) ← (8, [1,1,1,2]), 

𝑉(4) ← (0, [5]), 

𝑉(5) ← (0, [1,4]), 

      𝑉(6) ← (0, [1,4]), 

and then sorts the list values in non-descending order. 

Finally, this algorithm forms an array from sorted lists 

and performs lexical sorting on array cells: 
[(0, [1,4]), (0, [1,4]), (0, [5]), (0, [5]), (4, [1,4]), (8, [1,1,1,2])] 
The length of this array is |𝑉| , that's actually the 

canonical labeling of the graph in Fig. 1. 

 

4. Experiments 

The set of input graphs for the algorithm is as follows: 

1. All simple connected graphs with 3 to 9 vertex 

number [25] 

2. 10,000 samples of simple connected graph with  

10 to 20 vertex number [26] 

3. 10 samples of relatively large random connected 

graph with 100 to 600 vertex number [27] 

4. All regular graphs with 8 to 32 vertex number 

[28] 

All the non-isomorphic graphs of simple connected 

graphs with small order known to date are included in Set 

1. Because the total number of known graphs with 10 

vertices is more than 11 million, and as the degree of the 

graph increases, this value becomes much larger, so Set 

2 includes a part of these graphs. The production 

functions of random graphs are applied to simple 

connected graphs with at least 100 vertices in Set 3. In 

this set, the number of vertices and edges are optionally 

selected, and the graph is created using random graph 

generating functions. The last dataset consists of all 

regular graphs with maximum order of 32. 

In each dataset, the graphs are categorized according to 

their order. The implementation of this algorithm is 

evaluated using a batch of them. At runtime, if the unit is 

detected as an isomorphism between any graph pairs that 

are non-isomorphic, one unit is added to the algorithm 

error rate.

 

1 2 

4 

6 5 

3 

1 2 

4 

6 5 

3 
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From the results presented in Tables Ⅰ and Table Ⅱ, it can 

be concluded that the size and order of the input graphs 

have no effect on the correct detection of the proposed 

algorithm. 

 

Table Ⅰ. Algorithm performance on simple graphs of set 

1 and 2. 

Graph 

Order 

The number of graph 

pairs 

Algorithm output 

correctness 

percentage 

3 1 100% 

4 15 100% 

5 210 100% 

6 6,216 100% 

7 363,378 100% 

8 61,788,286 100% 

9 ,252,66034,081  99.999% 

10 49,995,000 99.9999% 

11 49,995,000 99.9999% 

12 49,995,000 99.9999% 

13 49,995,000 100% 

14 49,995,000 100% 

15 49,995,000 100% 

16 49,995,000 100% 

17 49,995,000 100% 

18 49,995,000 100% 

19 49,995,000 100% 

20 49,995,000 100% 

 

Table Ⅱ. Algorithm performance on relatively large 

simple graphs. 

Graph 

Order 

(|𝑽|) 

Graph 

Size 

(|𝑬|) 

The 

number of 

graph pairs 

Algorithm 

output 

correctness 

percentage 

100 1000 45 100% 

200 2000 45 100% 

300 3000 45 100% 

400 4000 45 100% 

500 5000 45 100% 

600 6000 45 100% 

 

It is important to note that isomorphism detection 

algorithms that are based on canonical labeling have poor 

performance on regular graphs. Therefore, in this paper, 

the proposed algorithm is tested by using regular graphs 

as input. The results of the proposed algorithm on these 

types of graphs are shown in Table Ⅲ. 

According to the table Ⅲ, the lower bound for regular 

graphs with 8 ≤ |𝑉| ≤ 32 is 99.42%. 

 

Table Ⅲ. Algorithm performance on regular graphs. 

Regular 

Graph 

Type 

The number 

of 

graph pairs 

Algorithm 

output 

correctness 

percentage 

8-3-3 10 100% 

8-4-3 15 100% 

8-5-3 3 100% 

9-4-3 120 100% 

9-6-3 6 100% 

10-3-3 171 99.42% 

10-4-3 1,711 99.77% 

10-5-3 1,770 100% 

10-6-3 210 99.52% 

11-4-3 34,980 99.89% 

11-6-3 35,245 99.97% 

12-3-3 3,570 99.97% 

12-4-3 1,191,196 99.97% 

12-5-3 30,791,628 99.98% 

13-4-3 58,077,253 99.997% 

14-3-3 129,286 99.998% 

14-4-3 53,359,615 99.9999% 
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6 

7 

8 

9 

16-3-3 8,239,770 99.9999% 

18-3-3 79,694,785 100% 

20-3-4 16,632,028 99.99999% 

20-3-5 16,718,653 99.9998% 

23-4-5 7,669,486 99.9998% 

24-3-6 28,678,951 99.9999% 

32-3-7 461,092,528 100% 

 

4.1. Conflicts in the algorithm 

The two graphs 𝐺1 and 𝐺2 shown in Table Ⅳ are simple 

connected 9-vertex non-isomorphic graphs, and because 

the canonical labels obtained for both graphs in the 

algorithm experiment were identical, they were identified 

as one of the algorithm errors. 

According to the drawing shown in Table Ⅳ of the 

graphs 𝐺1 and 𝐺2, vertices 𝑉(1), 𝑉(2), 𝑉(3), 𝑉(6), 𝑉(7) 

and 𝑉(8)  in both graphs have identical status in their 

topology, and the generated codes are identical.  

The generated codes for vertices V(4) and V(5) are 

shifted; it means that 𝑉(4) in 𝐺1 is equivalent to 𝑉(5) in 

𝐺2 and 𝑉(5) in 𝐺1 is equivalent to 𝑉(4) in 𝐺2 because in 

both graphs, vertices are connected at equal distances 

from each other. Since the algorithm is designed based 

on the shortest path between vertices in the graph, in both 

graphs the values of 𝑓𝑣  and 𝑓𝑒  are the same and 

eventually the same canonical label is obtained, although 

it is not correct.  

To check it, by removing 𝑉(4) with its connections in 𝐺1, 

we have a path graph 𝑃3(𝑉(1), 𝑉(2), 𝑉(3)) and a star 

graph 𝑆4 (𝑉(5), 𝑉(6), 𝑉(7), 𝑉(8) ) and a single vertex 

𝑉(9) while by removing 𝑉(5) with its connections in 𝐺2, 

it decomposes to two path graphs 

𝑃4 (𝑉(1), 𝑉(2), 𝑉(3), 𝑉(4) ) and 𝑃3  (𝑉(6), 𝑉(7), 𝑉(8) ) 

and a single vertex 𝑉(9).

 

Table Ⅳ. Two graphs that are detected isomorphic in proposed algorithm. 

𝐺2 𝐺1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑉(1) ← [0, [8]] 
𝑉(2) ← [7, (1,7)] 
𝑉(3) ← [12, [2, 6]] 
𝑉(4) ← [19, [1, 3, 4]]] 
𝑉(5) ← [15, [3, 5]] 
𝑉(6) ← [13, [1, 1, 6]] 
𝑉(7) ← [0, [8]] 
𝑉(8) ← [0, [8]] 
𝑉(9) ← [0, [8]] 

 

𝑉(1) ← [0, [8]] 
𝑉(2) ← [7, (1,7)] 
𝑉(3) ← [12, [2, 6]] 
𝑉(4) ← [15, [3, 5]] 
𝑉(5) ← [19, [1, 3, 4]]] 
𝑉(6) ← [13, [1, 1, 6]] 
𝑉(7) ← [0, [8]] 
𝑉(8) ← [0, [8]] 
𝑉(9) ← [0, [8]] 

Canonical Labeling for two graphs: 

[[0, [8]], [0, [8]], [0, [8]], [0, [8]], [7, [1, 7]], [12, [2, 6]], [13, [1, 1, 6]], [15, [3, 5]], [19, [1, 3, 4]]] 

 

 

4.2. Complexity analysis of the proposed algorithm 

To calculate the complexity of the proposed algorithm, we 

assumed a graph with 𝑛  vertices and 𝑒  edges. Distance 

computing for all pairs of vertices requires 𝑂(𝑛3). Lines 

3-7 of the algorithm require 𝑂(𝑛. 𝑒) and lines 8-11 of the 

algorithm require 𝑂(𝑛. 𝑒). Consequently, the overall time 

complexity of the algorithm is 𝑂(𝑛3) for dense and sparse 

graphs.  

The space complexity of the algorithm is equal to the 

number of 𝑓𝑒s stored for each vertex of the graph. This 

number is the degree of the vertex, and in a graph equals 

the sum of the degrees of the all vertices in that graph. In 
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the other words, the algorithm's storage space equals 

∑ 𝑑𝑒𝑔(𝑣𝑖) = 2𝑒𝑣𝑖∈𝑉  or O(𝑒). 

 
5. Performance Comparison 

In this section, we compare the performance of the 

proposed algorithm with the latest release of a well-

known GI algorithm called VF2 [29] which is an 

improved matching algorithm that can be used for both 

graph and subgraph isomorphism.  

The input graphs for this experimental comparison are the 

benchmark graph families in [22], containing 25 random 

graphs with Edge Probability 1 𝑠𝑞𝑟𝑡(𝑛)⁄ , where 𝑛 is the 

number of nodes. The order of these graphs ranges from 

100 to 500; in each order, there are five different graphs 

of the same size (Table Ⅴ). 

The accuracy of VF2 and the proposed algorithm in the 

case of the following test graphs is 100%. 

The experiments were carried out on a laptop ASUS, CPU: 

AMD RADEON R4, 5 COMPUTE CORES 2C+3G, 2.50 

GHz, Memory: 8GB, OS: 64-bit Windows 10 Enterprise, 

which is implemented in the Python environment. 

This comparison was performed in terms of run time and 

space; the comparison of two algorithms in terms of 

runtime is shown in Fig. 5 and their comparison in terms 

storage space is shown in Fig. 6. 

 

 

 

Table Ⅴ. Benchmark graphs with their properties. 

Properties  

Benchmark 

order of 

graphs 

size of 

graphs 

1-5 100 500 

6-10 200 1414 

11-15 300 2598 

16-20 400 4000 

21-25 500 5590 

 

 

 

 

 

 

 

 

 
Fig. 5. Runtime of the proposed algorithm vs. VF2 (in Seconds) on selected benchmark of graphs. 

 

 

 

 
Fig. 6. Storage space of the proposed algorithm vs. VF2 

(KB) on selected benchmark of graphs. 

 

The difference in time and memory is due to the 

difference in the methods of the two algorithms; thus, the 

proposed algorithm converts each graph separately into a 

canonical label and then compares the two labels, but the 

VF2 algorithm stores both graphs simultaneously in the 

system's main memory. It loads and performs peer-to-peer 

traversal and displays the results as the corresponding 

vertices. The advantage of isomorphic detection 

algorithms with canonical labeling is that they create an 

identifier for each graph, which can be used to display the 

basic structure of the graph by reverse engineering on that 

label, while other algorithms do not have this capability. 

Because the VF2 algorithm has been changing and 

optimizing since its introduction (2001), it can be said that 

its good runtime results are not far from expected. 

According to the above results, the proposed algorithm 

also has good efficiency in the set of relatively high order 

graphs. 

 

6. Conclusion 
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According to the results obtained from the accuracy of 

isomorphism detection in the experimental results, the 

proposed algorithm is not input sensitive, and can be used 

for large graphs. 

Regarding how the algorithm is tested, it can be said that 

the results are obtained from a complete and accurate 

review because, in each case, all the graphs registered so 

far are checked, and the input graphs at each stage have 

the initial condition of isomorphism (the number of 

vertices and edges are equal). In other words, all results 

are obtained by applying strict conditions to the algorithm 

(The input non-isomorphic graphs have the same 

isomorphism properties, and the only non-isomorphic 

response is expected due to the generated code). This is 

while many proposed algorithms use random input 

datasets, which means that they lack deterministic 

complexity. 

Although the results obtained from the algorithm for 

general graphs are not completely deterministic, but it can 

be said that the proposed heuristic algorithm has a good 

ability to cover the properties of a general graph. 
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