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Abstract

In this paper, the orthogonal spline collocation method (OSCM) is employed to address the solution of the

Helmholtz equation in two-dimensional problems. It is characterized by discontinuous coefficients with certain
wave numbers. The solution is approximated by employing distinct basis functions, namely, monomial along the

x-direction and Hermite along the y-direction. Additionally, to solve the two-dimensional problems efficiently in

the sense of computational cost with fewer operation counts, the matrix decomposition algorithm (MDA) is used
to convert them into a set of one-dimensional problems. As a consequence, the resulting reduced matrix becomes

non-singular in discrete cases. To assess the performance of the proposed numerical scheme, a grid refinement

analysis is conducted to incorporate various wave coefficients of the Helmholtz equation. The illustrations and
examples demonstrate a higher order of convergence compared to existing methods.
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1. Introduction

Helmholtz interface problems are encountered in numerous scientific and physical phenomena, such as the study
of sound waves traveling from one medium to another [26, 29], radiation from the source of an electromagnetic field
[30], fluid-solid interaction [12] and many more. There are various methods available in the literature to deal with
Helmholtz equation, namely, the finite difference method [21] and the finite element method [24]. In computing the
solution, these methods require a sufficiently small step size which results in a large number of algebraic equations and
expensive computational costs. These equations form sparse matrices that require n3 operations to reach the solution.
To refrain from indulging in numerous computations involving large matrices, the orthogonal spline collocation (OSC)
method [9] can be used as a powerful and efficient method that reduces the number of operations to n. The well-
established scheme exhibits several advantages when compared to existing iterative methods such as finite difference
and boundary element methods. Some of these advantages include the following.

• The scheme easily manages the discontinuities that emerge in interface problems by using monomial basis
functions [32].

• It can be applied to various types of boundary conditions on nonuniform meshes without sacrificing precision.
• The incorporation of high-order polynomial approximation results in a superior order of convergence, con-
tributing to increased accuracy in the solution.

In the past decade, scientists and researchers have preferred OSC method due to its significant applicability with
respect to its ease of implementation. De Boor and Swartz [13] first proposed the OSC method for linear ODEs with
boundary value problems, and this inspired Fairweather and Meade [17] to further develop the solver to generate
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a sequence of approximate solutions that made a large impact on solving PDEs with different types of boundary
conditions. In connection to this, the following authors in the articles [6–8, 15, 27, 28] implemented OSC method for
elliptic and parabolic PDEs with mixed type boundary conditions. More specifically, as this method generates high
optimal accuracy with super-convergence results, it is worth mentioning that the authors of these articles [2–4] have
significantly worked on OSC method to solve Helmholtz equation over compact finite difference schemes [18, 20, 21].
One can refer to the article [5], where the authors have utilized the OSC method to derive approximate solutions for
nonlinear boundary valued problems. The practical applicability of OSC method is that the discontinuity that occurs
at any interior point of the domain can be tackled by considering monomial cubic basis for each divided sub-interval of
the domain. In this regard, some of the applications of OSC method can also be seen in the recent articles [1, 19, 33].
Due to its stability for high order computation, the orthogonal spline collocation method effectively calculates the
estimated solution of the Helmholtz equation. Motivated by the developments in OSCM, we have considered the
two-dimensional Helmholtz equation,

uxx + uyy + γ2
0p(x)u = f(x, y), (x, y) ∈ Ω, (1.1)

u(0, y) = 0, u(1, y) = 0, on ∂Ω, (1.2)

uy(x, 0) = 0, uy(x, 1) = 0, on ∂Ω, (1.3)

where Ω = (a, b)× (c, d) is a rectangular domain, γ2
0 is a wave number or material coefficient, and p(x) is a piecewise

continuous function having finite jumps across a straight line Γi = {(x, y) : x = xi} in Ω.
The present focus of this article is to apply the orthogonal spline collocation method to the Helmholtz equation

with Neumann boundary condition that extends the work of Feng [18]. Neumann boundary conditions, which signify
the derivative of the solution at the boundary points, have several challenges while applying conventional numerical
schemes like finite difference and finite element approaches to deal with the Helmholtz equation. The OSC method
effectively handles these boundary conditions by incorporating them directly into the collocation process, leading
to better accuracy and stability. Consideration of higher degree polynomials generates high order convergence of
solutions. By choosing suitable basis functions, the OSC method can significantly reduce the computational cost
associated with solving sparse linear systems of equations, which arises from the Helmholtz equation with Neumann
boundary conditions. In particular, the MDA algorithm [10] and the almost block diagonal (ABD) solver [14] are very
useful processes in obtaining the solution set.

For the notational convenience, we have assumed that w2 = γ2
0p(x). Further, the solution u(x, y) is assumed to

satisfy the following natural jump conditions across the interface Γi:

[u] = α, [ux] = β, [uy] = 0. (1.4)

This might occur for the second or higher order partial derivatives of u(x, y) and the source function f(x, y) with
respect to x. To this end, the article is organized as follows: Section 2 describes basic notations and the formulation
of OSCM to solve the Equations (1.1)-(1.3). In section 3, the matrix decomposition algorithm is applied to the linear
system of collection equations, which gives an almost block diagonal matrix. Finally, the performance of this method
for Helmholtz equation for different values of wave number with respect to the Neumann boundary conditions is carried
out in the numerical section 4.

2. Orthogonal Spline Collocation Method

In this section, OSCM with monomial cubic basis is applied in the x-direction and Hermite cubic basis functions
in the y-direction to obtain the collocation solution of Eqs. (1.1)-(1.3). In this procedure, the following assumptions
have been considered.

Suppose πx = {xi}Ni=0 and πy = {yj}Nj=0 denote the partitions of [a, b] and [c, d] such that xi = ihx, i = 0, . . . , N,
and yj = jhy, j = 0, . . . , N , where hx and hy are the step sizes. Then we set Ii = [xi−1, xi] and Ij = [yj−1, yj ], where
i, j = 1, . . . , N. Further, we define

M3
−1(πx) = {Φ : Φ ∈ PC[0, 1], Φ|Ii ∈ P3, i = 1, 2, . . . , N} ,
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where PC[0, 1] represents the space of continuous piecewise functions on [0, 1] and P3 is a polynomial of degree ≤ 3.
Similarly,

M3
1(πy) =

{
χ : χ ∈ C1[0, 1], χ|Ij ∈ P3, j = 1, 2, . . . , N

}
,

M3,0
−1(πx) = M3

−1(πx) ∩ {χ : χ(0) = χ(1) = 0},

M3,0
1 (πy) = M3

1(πy) ∩ {χ : χ(0) = χ(1) = 0}.

Next, the collocation points considered as {ξi}2Ni=1 on [0, 1] are actually two-point Gauss-Legendre quadrature points,
which are defined by

ξ2i−1 = xi−1 +
1

2

(
1− 1√

3

)
hi, and ξ2i = xi−1 +

1

2

(
1 +

1√
3

)
hi, i = 1, 2, · · · , N.

If x = ξ2i−1, then x− xi−1 = 1
2 (1 + ρ1)h, where ρ1 = − 1√

3
. Likewise, if x = ξ2i, then we have x− xi−1 = 1

2 (1 + ρ2)h,

where ρ2 = −ρ1.
To arrive at an approximate solution for the problems in Eqs. (1.1) and (1.3) through OSCM estimation, we define

U ∈ M3,0
−1 ⊗M3,0

1 such that

Uxx(ξi, ξj) + Uyy(ξi, ξj) + w2U(ξi, ξj) = f(ξi, ξj), i, j = 1, 2, 3, · · · , 2N. (2.1)

Let the monomial basis functions for M3,0
−1 be as follows:

{Φm}4N+2
m=1 = {Φ1,Φ2, . . . ,Φm,Φm+1, . . . ,Φ4N ,Φ4N+1,Φ4N+2},

{Φ4(k−1)+j}Nk=1 = (x− xk−1)
j−1, j = 1, 2, 3, 4 and Φ4N+1 = 1, Φ4N+2 = (x− xN ),

and the Hermite basis function for M3,0
1 be

{Ψn}2Nn=1 = {v0, v1, · · · , vN−1, vN , s1, · · · , sN−1},

where vi, i = 0, 1, 2, · · · , N are value functions and sj , j = 1, 2, · · · , N − 1 are slope functions for Hermite cubic basis
functions. In this context, see [31] for the expressions of vi and sj .

With the help of the above defined basis functions, the collocation approximation is expressed in the form

U(x, y) =

4N+2∑
m=1

2N∑
n=1

Um,n Φm(x)Ψn(y). (2.2)

Substituting Eq. (2.2) into Eq. (2.1) leads to the following structure of the collocation equations:

(A1 ⊗B2 +B1 ⊗A2) u = F, (2.3)

where

A1 =
[
a
(1)
i,j

]4N+2

i,j=1
, a

(1)
i,j = Φ′′

j (ξi) + w2 Φj(ξi),

A2 =
[
a
(2)
i,j

]2N
i,j=1

, a
(2)
i,j = Ψ′′

j (ξi),

B1 =
[
b
(1)
i,j

]4N+2

i,j=1
, b

(1)
i,j = Φj(ξi),

B2 =
[
b
(2)
i,j

]2N
i,j=1

, b
(2)
i,j = Ψj(ξi).

To solve (2.3), A2 and B2 are formulated into the generalized eigenvalues and corresponding eigenfunctions as
follows.

A2 φ = λB2 φ. (2.4)
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As the matrices A2 and B2 contain the second derivative of the Hermite basis Ψ, the following classical eigenvalue
problem is considered,

u′′(y) = λu(y), 0 < y < 1, (2.5)

u′(0) = u′(1) = 0. (2.6)

We note that the generalized eigenvalues and corresponding eigenfunctions of (2.4) give the Hermite cubic collocation
approximations to the eigenvalues and corresponding eigenfunctions of (2.5)-(2.6). It is worth mentioning that these
values can be obtained by using the Eqs. (3.2.1− 3.2.4), (3.2.13− 3.2.16), and Appendix of [11].

Therefore, the 2N generalized eigenvalues of the Equations (2.5)-(2.6) are given by

λ−
0 = 0, λ−

N = − 9

h2
,

λ±
j = −12

h2

(
8 + ηj ± µj

7− ηj

)
, j = 1, 2, · · · , N − 1,

where

ηj = cos

(
jπ

N

)
, µj =

√
43 + 40 ηj − 2 η2j .

As the system (2.3) is a two-dimensional problem and to reduce it to a set of independent one-dimensional problems,
two real non-singular matrices Z and Λ are required.

Hence, from Appendix [11], we now define

Z = 3
√
3


C Λ−

α C̃ Λ+
α

0 | −S Λ−
β 0 | −S Λ+

β

 , (2.7)

and

Λ = diag
(
λ−
0 , λ

−
1 , · · · , λ

−
N−1, λ

−
N , λ+

1 , · · · , λ
+
N−1

)
, (2.8)

where

S =

√
2

N
sin

(mnπ

N

)N−1

m,n=1
, C̃ =

√
2

N
cos

(mnπ

N

)N,N−1

m=0,n=1
, C =

√
2

N
cos

(mnπ

N

)N

m=0,n=0
,

Λ±
α = diag(α±

1 , α
±
2 , . . . , α

±
N−1), Λ−

β = diag
(
β−
1 , β−

2 , . . . , β−
N−1

)
, Λ+

β = diag
(
1, β+

1 , β+
2 , . . . , β+

N−1,
1√
3

)
,

α±
j = (5 + 4ηj ∓ µj)ν

±
j , β±

j = 18 sin
(jπ
N

)
ν±j ,

ν±j =
[
27(1 + ηj)(8 + ηj ∓ µj)

2 + (1− ηj)(11 + 7ηj ∓ 4µj)
2
]− 1

2

.

Next, we have discussed the method of finding the solution of (2.3) using the matrices Z and Λ.

3. Matrix Decomposition Algorithm

In this section, a matrix decomposition algorithm (MDA) is implemented to convert the two-dimensional problem
to a set of one-dimensional problems. The detailed application of this algorithm for two dimensional elliptic boundary
value problems can be found in the following articles [6, 7, 9, 10, 16, 25]. Henceforth, the matrices Z and Λ of the
previous section are used to decompose the matrix system (2.3) as follows.

Pre-multiply the matrix
(
I ⊗ZT BT

2

)
to Equation (2.3), we get(

I ⊗ZT BT
2

)
(A1 ⊗B2 +B1 ⊗A2) u =

(
I ⊗ZT BT

2

)
F. (3.1)

Further, the expression (3.1) is rewritten as(
I ⊗ZT BT

2

)
(A1 ⊗B2 +B1 ⊗A2) (I ⊗Z)

(
I ⊗Z−1

)
u =

(
I ⊗ZT BT

2

)
F. (3.2)
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Now the left-hand side of the expression (3.2) can be simplified as

(A1 ⊗ I +B1 ⊗ Λ)
(
I ⊗Z−1

)
u =

(
I ⊗ZT BT

2

)
F. (3.3)

Note that in (3.3), the following facts are used:

ZT BT
2 A2 Z = Λ, and ZT BT

2 B2 Z = I.

Assuming that
(
I ⊗Z−1

)
u = v and

(
I ⊗ZT BT

2

)
F = g, then the expression (3.3) becomes

(A1 ⊗ I +B1 ⊗ Λ) v = g. (3.4)

Now the matrix system (3.4) can be solved by following the steps mentioned below.

Step 1. Compute g =
(
I ⊗ZT BT

2

)
F .

Step 2. Solve (A1 ⊗ I +B1 ⊗ Λ) v = g.
Step 3. Compute the approximate solution u = (I ⊗Z) v.

By the definition of Kronecker product, the system defined in (3.4) can be simplified in the form

(A1 + λiB1)uij = gij , i = 1, 2, . . . , 2N, j = 1, 2, . . . , 4N + 2. (3.5)

Suppose Ei = A1 + λiB1, for i = 1, 2, . . . , 2N . Now the system (3.5) becomes

Eiuij = gij , i = 1, 2, . . . , 2N, j = 1, 2, . . . , 4N + 2. (3.6)

The matrix form of the system (3.6) is

Lb

S1 T1

−C1 −D1 I2
. . .

Si Ti

−Ci −Di I2
. . .

SN TN

−CN −DN I2
Rb





u0,i

v0,i
u1,i

...
uj−1,i

vj−1,i

...
uN−1,i

vN−1,i

uN,i


=



g0
f1
0
...
fi
d
...
fN
0
g1


, (3.7)

where Lb = [1 0] and Rb = [1 0], arise from the left and right boundary conditions of (1.2), respectively. Furthermore,

uji = [uj1,i uj2,i]
T , vji = [vj1,i vj2,i]

T for i = 1, 2, . . . , 2N , and I2 is the identity matrix of order 2. In (3.7), d =

[
α
β

]
is obtained from (1.4). In connection with (3.7), the entries of the matrices Si and Ti on the intervals [x0, x1], [x1, x2],
. . ., [xi−1, xi] are

Si =

[
ω2
− + λi

1
2 (λi + 1)θ1h

ω2
− + λi

1
2 (λi + 1)θ2h

]
,

Ti =

[
2 + (ω2

− + λi)(
1
2θ1h)

2 3θ1h+ (ω2
− + λi)(

1
2θ1h)

3

2 + (ω2
− + λi)(

1
2θ2h)

2 3θ2h+ (ω2
− + λi)(

1
2θ2h)

3

]
,

and on the intervals [xi, xi+1], [xi+1, xi+2], · · · , [xN−1, xN ]

Si =

[
(ω2

+ + λi)
1
2θ1h

(ω2
+ + λi)

1
2θ2h

]
,

Ti =

[
2 + (ω2

+ + λi)(
1
2θ1h)

2 3θ1h+ (ω2
+ + λi)(

1
2θ1h)

3

2 + (ω2
+ + λi)(

1
2θ2h)

2 3θ2h+ (ω2
+ + λi)(

1
2θ2h)

3

]
,

where θ1 = 1 + ρ1 and θ2 = 1 + ρ2.
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It can be observed that for every value of h = 1
N with different θ1 and θ2, the columns of matrices Ti, i = 1, 2, . . . , N

are linearly independent. Therefore, the matrices Ti are non-singular. In the next theorem, it is proved that the system
(3.7) has one and only one solution.

Theorem 3.1. Let Ti, i = 1, 2, . . . , N be non-singular matrices. Then the almost block diagonal linear system of
order 4N + 2 defined in (3.7) has a unique solution.

Proof. Given that the matrices Ti are non-singular for i = 1, 2, . . . , N , to prove that the coefficient matrix defined
in (3.7) is non-singular, it is sufficient to show that there exists a trivial solution to the homogeneous system (3.7).
Hence from (3.7), we obtain

Lb u0,i = 0, (3.8)

S1 u0,i + T1 v0,i = 0, (3.9)

− C1 u0,i −D1 v0,i + I2 u1,i = 0. (3.10)

From (3.8), we have u0,i = 0. Further, substituting u0,i = 0 in (3.9), we get

T1 v0,i = 0, (3.11)

and since T1 is non-singular implies that v0,i = 0. Again substituting u0,i and v0,i in (3.10) gives u1,i = 0. Since each
Ti is non-singular, solve the ith row equation of (3.7) as follows

Si uj−1,i + Ti vj−1,i = 0, (3.12)

− Ci uj−1,i −Di vj−1,i + I2 uj,i = 0. (3.13)

Similar to the above analysis, it is conclusive that uj−1,i = vj−1,i = uj,i = 0 for i = 1, 2, . . . , N . Hence, the only
solution that exists is trivial. Therefore, the coefficient matrix in (3.7) is invertible and has a unique solution. □

4. Numerical Results

In this section, the numerical implementation of the proposed method is demonstrated to show the accuracy and
order of convergence of Helmholtz interface problems that involve different forms of Neumann boundary conditions.
Furthermore, we have shown that the order of convergence of the proposed scheme is better (for Neumann bound-
ary conditions) than the order of convergence of discontinuous problems obtained using the finite difference scheme
mentioned in [18, 20, 22, 23]. The performance of this method is computed using L∞, L2, and H1 norms, where L∞

error is estimated by determining the maximum absolute error at 10 × 10 equally spaced points in each sub-interval
Ij × Ij , j = 1, . . . , N. To estimate the L2 and H1 error, the composite three-point Gauss quadrature is used. It is
assumed that uh is the approximate solution with step size h corresponding to the exact solution u(x, y). Furthermore,
the maximum absolute error and the first derivatives at the nodes are computed using the ℓ∞ norm. It is noted that
the input N generates the matrices of size (4N + 2) × 2N of the required order. In the following examples, the
consideration of degree r piecewise polynomials in OSCM ensures the spatial accuracy of r + 1 in the L∞ and L2

norms, and r in H1 norm. We also expect 2r − 2 order superconvergence in the ℓ∞ norm of the approximation and
its first spatial derivative.

In the following example, Helmholtz interface problem is considered with piecewise constant wave numbers and
hence computed the error bounds along with order of convergence.

Example 4.1. The two-dimensional interface problem under consideration is

uxx(x, y) + uyy(x, y) + w2u(x, y) = f(x, y), (x, y) ∈ [0, 1]× [0, 1],

ux(0, y) = 0, ux(1, y) = 1, on ∂Ω,

uy(x, 0) = 0, uy(x, 1) = 0, on ∂Ω,

where

w2(x) =

{
w2

− , x ∈ [0, 0.5]× [0, 1],

w2
+ , x ∈ (0.5, 1]× [0, 1].
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Table 1. Order of convergence and error using ℓ∞ norm.

w2
− = 1 w2

+ = 9 w2
− = 25 w2

+ = 100
error error

N ∥u− uh∥ℓ∞ order ∥u− uh∥ℓ∞ order

4 7.6926× 10−4 1.4989× 10−3

8 4.7442× 10−5 4.0192 9.4696× 10−5 3.9845
12 9.3467× 10−6 4.0065 1.8757× 10−5 3.9932
16 2.9546× 10−6 4.0032 5.9411× 10−6 3.9963
20 1.2097× 10−6 4.0019 2.4347× 10−6 3.9977
24 5.8323× 10−7 4.0013 1.1745× 10−6 3.9984

Table 2. Order of convergence and error using L2 norm.

w2
− = 1 w2

+ = 9 w2
− = 25 w2

+ = 100
error error

N ∥u− uh∥L2 order ∥u− uh∥L2 order

4 1.0134× 10−3 1.1293× 10−3

8 6.2114× 10−5 4.0281 6.9111× 10−5 4.0303
12 1.2224× 10−5 4.0091 1.3638× 10−5 4.0024
16 3.8628× 10−6 4.0045 4.3147× 10−6 4.0005
20 1.5813× 10−6 4.0027 1.7673× 10−6 4.0001
24 7.6232× 10−7 4.0018 8.5227× 10−7 4.0000

The exact solution is given by,

u(x, y) =

{
cos(πx) cos(πy), (x, y) ∈ Ω−,

x+ cos(πx) cos(πy), (x, y) ∈ Ω+,

and the interface conditions at x = 1
2 are

[u] = −1

2
, [ux] = 1.

The source function f(x, y) is computed with the help of the exact solution, i.e.,

f(x, y) =

{(
−2π2 + w2

−
)
cos(πx) cos(πy), (x, y) ∈ Ω−,(

−2π2 + w2
+

)
cos(πx) cos(πy) + w2

+x, (x, y) ∈ Ω+.

We have computed the approximate solutions by considering the following wave numbers: w2
− = 1, w2

+ = 9 and
w2

− = 25, w2
+ = 100. The size of the matrices versus the order of convergence and the error concerning ℓ∞, L2,

L∞, and H1 norms are presented in the Tables 1-4. It is observed that when the matrices size increases, this method
confers the expected order of convergence, which is close to 4.

For the super-convergence result, we have calculated the partial derivatives of the solution with respect to x, y, and
xy and thereafter its error is elaborated in the Tables 5-7. Generally, at the nodal points, the order of convergence of
solution derivatives reduces the actual order of convergence by 1 while OSC method for this problem gives the actual
order of convergence that appears in the Tables 5-7.
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Table 3. Order of convergence and error using L∞ norm.

w2
− = 1 w2

+ = 9 w2
− = 25 w2

+ = 100
error error

N ∥u− uh∥L∞ order ∥u− uh∥L∞ order

4 1.3441× 10−3 1.2855× 10−3

8 9.2106× 10−5 3.8672 8.1217× 10−5 3.9844
12 1.8500× 10−5 3.9589 1.6088× 10−5 3.9930
16 5.8875× 10−6 3.9798 5.0960× 10−6 3.9961
20 2.4180× 10−6 3.9880 2.0885× 10−5 3.9976
24 1.1678× 10−6 3.9920 1.0075× 10−6 3.9984

Table 4. Order of convergence and error using H1 norm.

w2
− = 1 w2

+ = 9 w2
− = 25 w2

+ = 100
error error

N ∥u− uh∥H1 order ∥u− uh∥H1 order

4 1.2322× 10−2 1.2702× 10−2

8 1.5131× 10−3 3.0256 1.5171× 10−3 3.0657
12 4.4684× 10−4 3.0082 4.4723× 10−4 3.0125
16 1.8829× 10−4 3.0041 1.8837× 10−4 3.0056
20 9.6353× 10−5 3.0024 9.6378× 10−5 3.0032
24 5.5744× 10−5 3.0016 5.5753× 10−5 3.0021

Table 5. Order of convergence and error of ux using ℓ∞ norm.

w2
− = 1 w2

+ = 9 w2
− = 25 w2

+ = 100
error error

N ∥ux − uhx∥ℓ∞ order ∥ux − uhx∥ℓ∞ order

4 7.2882× 10−4 3.4461× 10−3

8 4.7485× 10−5 3.9400 2.2542× 10−4 3.9343
12 9.3863× 10−6 3.9983 3.9770× 10−5 3.9882
16 2.9418× 10−6 4.0331 1.4269× 10−5 3.9882
20 1.2130× 10−6 3.9703 5.8541× 10−6 3.9928
24 5.8436× 10−7 4.0056 2.8256× 10−6 3.9952

In the next example, the wave numbers are defined at two interface conditions and the order of convergence, and
error with regard to different norms are evaluated.

Example 4.2. We consider the following two-dimensional interface problem

uxx(x, y) + uyy(x, y) + w2u(x, y) = f(x, y), (x, y) ∈ [0, 1]× [0, 1],

u(0, y) = 0, u(1, y) = 0, on ∂Ω,

uy(x, 0) = 0, uy(x, 1) = 0, on ∂Ω,
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Table 6. Order of convergence and error of uy using ℓ∞ norm.

w2
− = 1 w2

+ = 9 w2
− = 25 w2

+ = 100
error error

N ∥uy − uhy∥ℓ∞ order ∥uy − uhy∥ℓ∞ order

4 1.3472× 10−3 3.4403× 10−3

8 8.0430× 10−5 4.0661 2.2595× 10−4 3.9285
12 1.5748× 10−5 4.0218 4.5055× 10−5 3.9767
16 4.9673× 10−6 4.0108 1.4304× 10−5 3.9882
20 2.0316× 10−6 4.0065 5.8685× 10−6 3.9929
24 9.7900× 10−7 4.0043 2.8325× 10−6 3.9952

Table 7. Order of convergence and error of uxy using ℓ∞ norm.

w2
− = 1 w2

+ = 9 w2
− = 25 w2

+ = 100
error error

N ∥uxy − uhxy∥ℓ∞ order ∥uxy − uhxy∥ℓ∞ order

4 1.1690× 10−3 7.9871× 10−3

8 7.8204× 10−5 3.9018 4.6827× 10−4 4.0922
12 1.5633× 10−5 3.9706 9.6344× 10−5 3.8995
16 4.9733× 10−6 3.9811 3.0906× 10−5 3.9522
20 2.0460× 10−6 3.9803 1.2739× 10−5 3.9718
24 9.8862× 10−7 3.9894 6.1643× 10−6 3.9814

where

w2(x) =


w2

1, x ∈ Ω1 = [0, 0.25]× [0, 1],

w2
2, x ∈ Ω2 = (0.25, 0.75]× [0, 1],

w2
3, x ∈ Ω3 = (0.75, 1]× [0, 1].

The exact solution is

u(x, y) =


sin(πx) cos(πy), (x, y) ∈ Ω1,

x+ sin(πx) cos(πy), (x, y) ∈ Ω2,

1− x+ sin(πx) cos(πy), (x, y) ∈ Ω3,

and the interface conditions at x = 1
2 and at x = 3

4 are

[u] =
1

4
, [ux] = 1,

[u] = −1

2
, [ux] = −2,

respectively. The source function f(x, y) is calculated with the help of the exact solution as

f(x, y) =


(
−2π2 + w2

1

)
sin(πx) cos(πy), (x, y) ∈ Ω1,(

−2π2 + w2
2

)
cos(πx) cos(πy) + w2

2x, (x, y) ∈ Ω2,(
−2π2 + w2

3

)
cos(πx) cos(πy) + w2

3(1− x), (x, y) ∈ Ω3.
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Table 8. Order of convergence and error using ℓ∞ norm.

w2
1 = 1 w2

2 = 2 w2
3 = 3 w2

1 = 1 w2
2 = 10 w2

+ = 100
error error

N ∥u− uh∥ℓ∞ order ∥u− uh∥ℓ∞ order

4 6.9359× 10−4 7.8240× 10−4

8 4.2944× 10−5 4.0135 5.2043× 10−5 3.9101
12 8.4669× 10−6 4.0047 1.0363× 10−5 3.9801
16 2.6772× 10−6 4.0023 3.2878× 10−6 3.9907
20 1.0962× 10−6 4.0014 1.3499× 10−6 3.9893
24 5.2857× 10−7 4.0009 6.5076× 10−7 4.0020

Table 9. Order of convergence and error using L2 norm.

w2
1 = 1 w2

2 = 2 w2
3 = 3 w2

1 = 1 w2
2 = 10 w2

+ = 100
error error

N ∥u− uh∥L2 order ∥u− uh∥L2 order

4 9.0102× 10−4 8.8622× 10−4

8 5.5270× 10−5 4.0270 5.4318× 10−5 4.0282
12 1.0878× 10−5 4.0090 1.0709× 10−5 4.0047
16 3.4373× 10−6 4.0054 3.3866× 10−6 4.0019
20 1.4071× 10−6 4.0027 1.3869× 10−6 4.0010
24 6.7833× 10−7 4.0018 6.6873× 10−7 4.0006

Table 10. Order of convergence and error using L∞ norm.

w2
1 = 1 w2

2 = 2 w2
3 = 3 w2

1 = 1 w2
2 = 10 w2

+ = 100
error error

N ∥u− uh∥L∞ order ∥u− uh∥L∞ order

4 1.1068× 10−3 1.0655× 10−3

8 7.6518× 10−5 3.8544 7.0895× 10−5 3.9097
12 1.5390× 10−5 3.9555 1.4092× 10−5 3.9845
16 4.9000× 10−6 3.9783 4.4610× 10−6 3.9984
20 2.0218× 10−6 3.9871 1.8262× 10−6 4.0025
24 9.7221× 10−7 3.9914 8.8007× 10−7 4.0039

In the following Tables: 8–11, the error and order of convergence are computed for the wave numbers {w2
− = 1, w2

+ =
2, w2

3 = 3} and {w2
1 = 1, w2

2 = 10, w2 + 3 = 100}. It is also noticed that the fourth order of convergence is obtained
even if the size of the matrix is 144. Thereafter, we have presented the error and super-convergence result of the
partial derivatives of the solution corresponding to x, y, and xy that are shown in the Tables: 12–14. Additionally,
we have plotted the approximate and exact solution graph in Figures 1 and 2.

The following figures are the approximate solution and exact solution plot of Example 4.2 for N = 24 which gives
the matrix of order 4704. The values of (xi, yi) vary at the nodal points and the figure plotted corresponding to its
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Table 11. Order of convergence and error using H1 norm.

w2
1 = 1 w2

2 = 2 w2
3 = 3 w2

1 = 1 w2
2 = 10 w2

+ = 100
error error

N ∥u− uh∥H1 order ∥u− uh∥H1 order

4 1.2229× 10−2 1.2379× 10−2

8 1.5104× 10−3 3.0173 1.5123× 10−3 3.0331
12 4.4650× 10−4 3.0058 4.4668× 10−4 3.0077
16 1.8821× 10−4 3.0029 1.8825× 10−4 3.0036
20 9.6327× 10−5 3.0017 9.6339× 10−5 3.0021
24 5.5733× 10−5 3.0011 5.5738× 10−5 3.0014

Table 12. Order of convergence and error of ux using ℓ∞ norm.

w2
1 = 1 w2

2 = 2 w2
3 = 3 w2

1 = 1 w2
2 = 10 w2

+ = 100
error error

N ∥ux − uhx∥ℓ∞ order ∥ux − uhx∥ℓ∞ order

4 1.1170× 10−3 1.8858× 10−3

8 6.6909× 10−5 4.0613 2.0993× 10−4 3.1672
12 1.3109× 10−5 4.0202 4.4329× 10−5 3.8354
16 4.1357× 10−6 4.0100 1.4335× 10−5 3.9242
20 1.6917× 10−6 4.0060 5.9297× 10−6 3.9559
24 8.1525× 10−7 4.0040 2.8748× 10−6 3.9710

Table 13. Order of convergence and error of uy using ℓ∞ norm.

w2
1 = 1 w2

2 = 2 w2
3 = 3 w2

1 = 1 w2
2 = 10 w2

+ = 100
error error

N ∥uy − uhy∥ℓ∞ order ∥uy − uhy∥ℓ∞ order

4 1.1017× 10−3 1.3105× 10−3

8 6.6180× 10−5 4.0572 1.0064× 10−4 3.7028
12 1.2973× 10−5 4.0188 2.0654× 10−5 3.9058
16 4.0938× 10−6 4.0093 6.6217× 10−6 3.9542
20 1.6747× 10−6 4.0056 2.7288× 10−6 3.9728
24 8.0710× 10−7 4.0037 1.3203× 10−6 3.9819

uh(xi, yi) and u(xi, yi). These graphs signify that although there are discontinuities in the interface problem still the
approximate solution is almost equal to the exact solution.

In the last example, the Helmholtz interface problem is solved with a piecewise continuous wave function and the
order of convergence followed by the errors is presented.

Example 4.3. Let us assume the two-dimensional interface problem

uxx(x, y) + uyy(x, y) + w2u(x, y) = f(x, y), (x, y) ∈ [0, 1]× [0, 1],

ux(0, y) = 0, ux(1, y) = 1, on ∂Ω,
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Table 14. Order of convergence and error of uxy using ℓ∞ norm.

w2
1 = 1 w2

2 = 2 w2
3 = 3 w2

1 = 1 w2
2 = 10 w2

+ = 100
error error

N ∥uxy − uhxy∥ℓ∞ order ∥uxy − uhxy∥ℓ∞ order

4 1.4785× 10−4 1.7331× 10−3

8 1.0731× 10−5 3.7843 4.0482× 10−4 2.0980
12 2.5180× 10−6 3.5754 9.3134× 10−5 3.6240
16 8.4065× 10−7 3.8134 3.0888× 10−5 3.8364
20 3.5265× 10−7 3.8930 1.2918× 10−5 3.9066
24 1.7225× 10−7 3.9302 6.2992× 10−6 3.9392
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Figure 1. The plot of approximate
solution for N = 24.
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Figure 2. The plot of the exact so-
lution for N = 24.

uy(x, 0) = 0, uy(x, 1) = 0, on ∂Ω,

where

w2(x) =

{
w2

− = x+ 1 , x ∈ [0, 0.5]× [0, 1],

w2
+ = x+ 2 , x ∈ (0.5, 1]× [0, 1].

The exact solution is given by

u(x, y) =

{
cos(πx) cos(πy), (x, y) ∈ Ω−

x+ cos(πx) cos(πy), (x, y) ∈ Ω+,
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Table 15. Order of convergence and error using ℓ∞ and L∞ norm.

w2
− = x+ 1 w2

+ = x+ 2 w2
− = x+ 1 w2

+ = x+ 2
error error

N ∥u− uh∥ℓ∞ order ∥u− uh∥L∞ order

4 7.0745× 10−4 1.1208× 10−3

8 4.3823× 10−5 4.0129 7.7459× 10−5 3.8550
12 8.6405× 10−6 4.0045 1.5579× 10−5 3.9555
16 2.7381× 10−6 4.0023 4.9602× 10−6 3.9782
20 1.1187× 10−6 4.0014 2.0376× 10−6 3.9870
24 5.3942× 10−7 4.0009 9.8412× 10−7 3.9914

Table 16. Order of convergence and error using L2 and H1 norm.

w2
− = x+ 1 w2

+ = x+ 2 w2
− = x+ 1 w2

+ = x+ 2
error error

N ∥u− uh∥L2 order ∥u− uh∥H1 order

4 9.0184× 10−4 1.2230× 10−2

8 5.5321× 10−5 4.0270 1.5105× 10−3 3.0173
12 1.0888× 10−5 4.0090 4.4650× 10−4 3.0058
16 3.4404× 10−6 4.0045 1.8821× 10−4 3.0029
20 1.4084× 10−6 4.0027 9.6327× 10−5 3.0017
24 6.7896× 10−7 4.0018 5.5733× 10−5 3.0011

and the interface conditions at x = 1
2 are

[u] = −1

2
, [ux] = 1.

The source function f(x, y) is determined by the help of the exact solution as

f(x, y) =

{(
−2π2 + w2

−
)
cos(πx) cos(πy), (x, y) ∈ Ω−,(

−2π2 + w2
+

)
cos(πx) cos(πy) + w2

+x, (x, y) ∈ Ω+.

We have calculated the estimate solutions by assuming the wave functions as w2
− = x + 1, w2

+ = x + 2 and w2
− =

x+ 1, w2
+ = x+ 2. Further, the computation of order of convergence and error concerning various norms is presented

in the Tables 15-17.

5. Conclusion

This article focuses on implementing the MDA algorithm for solving the two-dimensional Helmholtz interface
problem with Neumann boundary conditions. The MDA algorithm effectively resolves the problem, and we computed
the approximate solution for three different types of wave functions. This method remains effective even in scenarios
involving large wave numbers. The associated errors were presented using various norms. Moreover, we observed the
desired order of convergence and achieved superconvergence results at nodal points, even with a small matrix size. In
the future, the OSC method for solving Helmholtz interface problems can be extended to the annulus region and to a
disc. A theoretical convergence analysis for Helmholtz problems with interfaces and the extension of the OSC method
to Robbin boundary conditions are topics of future research.
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Table 17. Order of convergence and error of ux, uy and uxy using ℓ∞ norm.

w2
− = x+ 1 w2

+ = 2 + x

N ∥ux − uhx∥ℓ∞ order ∥uy − uhy∥ℓ∞ order ∥uxy − uhxy∥ℓ∞ order

4 1.0987× 10−3 1.1527× 10−3 1.0878× 10−4

8 6.5998× 10−5 4.0572 6.9056× 10−5 4.0611 9.8381× 10−6 3.4669
12 1.2938× 10−5 4.0188 1.3529× 10−5 4.0203 2.3422× 10−6 3.5396
16 4.0826× 10−6 4.0093 4.2683× 10−6 4.0101 7.8312× 10−7 3.8083
20 1.6701× 10−6 4.0056 1.7459× 10−6 4.0060 3.3128× 10−7 3.8555
24 8.0488× 10−7 4.0037 8.4136× 10−7 4.0040 1.6201× 10−7 3.9232
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