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Abstract

In this paper, the improved tan (Φ(ξ)/2)-expansion method (ITEM) is proposed to obtain the fractional Biswas-
Milovic equation. The exact particular solutions contain four types: hyperbolic function solution, trigonometric

function solution, exponential solution, and rational solution. We obtained further solutions compared with other
methods, such as [2]. Recently, this method has been developed for searching exact travelling wave solutions of

nonlinear partial differential equations. These solutions might play an important role in nonlinear optics and

physics. It is shown that this method, with the help of symbolic computation, provides a straightforward and
powerful mathematical tool for solving problems in nonlinear optics.
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1. Introduction

In the recent decade, fractional nonlinear differential equations have been demonstrated in numerous applications
seemingly different fields of engineering sciences, physics, finance, applied mathematics, and others [9, 11, 19, 42, 44].
Different researchers worked on nonlinear fractional equations. In this paper, we consider the fractional Biswas-Milovic
equation [2, 7] as follows

iDα
t q

n + λD2β
x qn + µF (|q|2)qn = 0, (1.1)

where λµ > 0, 0 < α ≤ 1, 0 < β ≤ 1, n ≥ 1 and q = q(x, t) is a complex valued function. The coefficients λ and µ
represent the coefficients of group velocity dispersion and nonlinearity, respectively. In Eq. (1.1), F is a real-valued
algebraic function and to satisfy the necessary condition of having smoothness of the complex function F (|q|2)q, the
function F (|q|2)q is considered to be k times continuously differentiable [6, 27]. A real understanding of the dynamics
of optical solitons with a generalized flavor is considered by using the BM equation. Also, the governing equation is
of special interest in the nonlinear fiber optics community [27]. For further information on the dynamics of solitons in
optical fibers, please refer to ([5]–[45]). To solve the BM equation with variable physical properties, different methods
have been proposed by authors ([3, 6, 17, 18, 21, 43]). The nonlinear partial differential equations play a key role in
describing key scientific phenomena. In fact, it has been discovered that many models in mathematics and physics
are described by nonlinear partial differential equations. With the rapid development of nonlinear sciences based on
computer algebraic systems, many effective methods have been presented, such as the homotopy analysis method [13],
the variational iteration method [15], the Adomian decomposition method [20], the homotopy perturbation method
[12], the tanh-coth method [28], the Exp-function method [14, 23, 29], the G′/G-expansion method [32, 33], the
homogeneous balance method [49], the formal linearization method [40], and so on.
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In this paper, we have two goals. First, we introduce a general form of the ITEM [1, 24, 25, 30, 31, 34, 35, 46, 48],
which is a new method. Next, we obtain the exact solutions of the Biswas-Milovic equation for one type of nonlinearity
by the aforementioned method.

Authors of [10] explained the generalized fifth-order KdV-like equation with prime number p = 3 via a generalized bi-
linear differential operator. N-lump was investigated to the variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada
equation [36]. Applications of tan(ϕ/2)-expansion method for the Biswas-Milovic equation [37], the Gerdjikov-Ivanov
model [38], the Kundu-Eckhaus equation [39], and the fifth-order integrable equations [22] were studied. Lump so-
lutions were analyzed to the fractional generalized CBS-BK equation [47] and the (3+1)-D Burger system [16]. The
approximations of a one-dimensional hyperbolic equation with non-local integral conditions were constructed by the
reduced differential transform method [41]. The generalized Hirota bilinear strategy by the prime number was used
for the (2+1)-dimensional generalized fifth-order KdV-like equation [26]. The traveling wave solutions and analytical
treatment of the simplified MCH equation and the combined KdV-mKdV equations were studied [4].
The outline of this paper is organized as follows:
In section 2, we describe the ITEM. In section 3, we apply the mathematical analysis of the Biswas-Milovic equation.
Section 4 will be further analyzed the Kerr law nonlinearity. Also, the conclusion is given in section 5.

2. Description of the ITEM

The ITEM is well-known analytical method which was improved and developed by Manafian.
Step 1. We suppose that the given nonlinear partial differential equation for u(x, t) is in the form

N (u, ux, ut, uxx, utt, ...) = 0, (2.1)

which can be converted to an ODE

Q(u, u′,−µu′, u′′, µ2u′′, ...) = 0, (2.2)

by the transformation ξ = x− µt is the wave variable. Also, µ is constant to be determined later.
Step 2. Suppose the traveling wave solution of Eq. (2.2) can be expressed as follows:

u(ξ) = S(ϕ) =

m∑
k=−m

Ak [p+ tan(ϕ/2)]
k
, (2.3)

where Ak(0 ≤ k ≤ m) and A−k = Bk(1 ≤ k ≤ m) are constants to be determined, such that Am ̸= 0, Bm ̸= 0, and
ϕ = ϕ(ξ) satisfy the following ordinary differential equation:

ϕ′(ξ) = a sin(ϕ(ξ)) + b cos(ϕ(ξ)) + c. (2.4)

We will consider the following special solutions of Eq. (2.4):
Family 1: When ∆ = a2 + b2 − c2 < 0 and b− c ̸= 0, then

ϕ(ξ) = 2 tan−1
[

a
b−c −

√
−∆

b−c tan
(√

−∆
2 ξ

)]
.

Family 2: When ∆ = a2 + b2 − c2 > 0 and b− c ̸= 0, then

ϕ(ξ) = 2 tan−1
[

a
b−c +

√
∆

b−c tanh
(√

∆
2 ξ
)]

.

Family 3: When ∆ = a2 + b2 − c2 > 0, b ̸= 0 and c = 0, then ϕ(ξ) = 2 tan−1
[
a
b +

√
b2+a2

b tanh
(√

b2+a2

2 ξ
)]

.

Family 4: When ∆ = a2 + b2 − c2 < 0, c ̸= 0 and b = 0, then ϕ(ξ) = 2 tan−1
[
−a

c +
√
c2−a2

c tan
(√

c2−a2

2 ξ
)]

.

Family 5: When ∆ = a2 + b2 − c2 > 0, b− c ̸= 0 and a = 0, then ϕ(ξ) = 2 tan−1
[√

b+c
b−c tanh

(√
b2−c2

2 ξ
)]

.

Family 6: When a = 0 and c = 0, then ϕ(ξ) = tan−1
[
e2bξ−1
e2bξ+1

, 2ebξ

e2bξ+1

]
.

Family 7: When b = 0 and c = 0, then ϕ(ξ) = tan−1
[

2eaξ

e2aξ+1
, e2aξ−1

e2aξ+1

]
.

Family 8: When a2 + b2 = c2, then ϕ(ξ) = 2 tan−1
[

aξ+2

(b−c)ξ

]
.

Family 9: When a = b = c = ka, then ϕ(ξ) = 2 tan−1
[
ekaξ − 1

]
.
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Family 10: When a = c = ka and b = −ka, then ϕ(ξ) = −2 tan−1
[

ekaξ

−1+ekaξ

]
.

Family 11: When c = a, then ϕ(ξ) = −2 tan−1

[
(a+b)ebξ−1

(a−b)ebξ−1

]
.

Family 12: When a = c, then ϕ(ξ) = 2 tan−1

[
(b+c)ebξ+1

(b−c)ebξ−1

]
.

Family 13: When c = −a, then ϕ(ξ) = 2 tan−1
[
ebξ+b−a
ebξ−b−a

]
.

Family 14: When b = −c, then ϕ(ξ) = 2 tan−1
[

aeaξ

1−ceaξ

]
.

Family 15: When b = 0 and a = c, then ϕ(ξ) = −2 tan−1
[
cξ+2

cξ

]
.

Family 16: When a = 0 and b = c, then ϕ(ξ) = 2 tan−1
[
cξ
]
.

Family 17: When a = 0 and b = −c, then ϕ(ξ) = −2 tan−1
[

1
cξ

]
.

Family 18: When a = 0 and b = 0, then ϕ(ξ) = cξ + C.

Family 19: When b = c then ϕ(ξ) = 2 tan−1
[
eaξ−c

a

]
, where ξ = ξ + C, p,A0, Ak, Bk(k = 1, 2, ...,m), a, b and c are

constants to be determined later.
Step 3. Determine m. This, usually, can be accomplished by balancing the linear term(s) of highest order with the
highest-order nonlinear term(s) in Eq. (2.2). However, the positive integer m can be determined by considering the
homogeneous balance between the highest order derivatives and nonlinear terms appearing in Eq. (2.2).
Step 4. Substituting (2.3) into Eq. (2.2) with the value of m obtained in Step 2. Collecting the coefficients of
tan(ϕ/2)k, cot(ϕ/2)k(k = 0, 1, 2, ...), then setting each coefficient to zero, we can get a set of over-determined equations
for A0, Ak, Bk(k = 1, 2, ...,m), a, b, c, and p with the aid of symbolic computation Maple.
Step 5. Solving the algebraic equations in Step 3, then substituting A0, A1, B1, ..., Am, Bm, µ, and p in (2.3).

3. Mathematical analysis of the fractional BM equation

In this section, we consider the dimensionless form of the fractional BM equation to be studied in this paper which
is given in

iDα
t q

n + λD2β
x qn + µF (|q|2)qn = 0, (3.1)

where λµ > 0, 0 < α ≤ 1, 0 < β ≤ 1, n ≥ 1 and q = q(x, t) is a complex valued function. The coefficients λ and µ
represent the coefficients of group velocity dispersion and nonlinearity, respectively. Thus, if n = 1, Eq. (3.1) collapses
to NLSE that arises in nonlinear optics, fluid dynamics, plasma physics, mathematical biology, and several other areas.
In this paper, we search for the stationary solution to (3.1). The starting hypothesis is taken to be

q(x, t) = u(ξ) exp(iθ), ξ = x− ηtα

Γ(1 + α)
, θ =

stβ

Γ(1 + β)
+

rtα

Γ(1 + α)
, (3.2)

where α represents the soliton wave number, β is the soliton frequency, and γ is the phase constant. Thus, from (3.1)

Dα
t q

n = nun−1(−ηu′ + iru)einθ, (3.3)

Dβ
xq

n = nun−1(u′ + isu)einθ, (3.4)

D2β
x qn = nun−2[(n− 1)(u′ + isu)2 + u(u′′ + 2isu′ − s2u)]einθ. (3.5)

Inserting (3.3) into (3.5) separating to real and imaginary parts, the results are
Real part:

−n(r + λns2)un + λn(n− 1)un−2(u′)2 + λnun−1u′′ + µF (u2)un = 0. (3.6)

Imaginary part:

iu′un−1[−ηn+ 2λn2s] = 0, ⇒ η = 2λns. (3.7)
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4. Kerr law nonlinearity

This section will be further analyzed the Kerr law nonlinearity via tan(ϕ/2)-expansion method.

4.1. The Case n=1 case for the fractional BME. We start our study by assuming n = 1 in (3.6), therefore we
have

−(r + λs2)u(ξ) + λu′′(ξ) + µF(u2(ξ))u(ξ) = 0. (4.1)

In the presence of perturbation terms, the fractional BME with Kerr law nonlinearity (F(w) = w) is given by

−(r + λs2)u(ξ) + λu′′(ξ) + µu3(ξ) = 0. (4.2)

The next step is to expand the unknowns u(ξ) in power series in terms of p+ tan(ϕ/2),

u(ξ) =

m∑
k=−m

Ak [p+ tan(ϕ(ξ)/2)]
k
, (4.3)

which A−k = Bk. In order to determine value of m, we balance the linear term of the highest order u′′ with the
highest order nonlinear term u3 in Eq. (4.2) we get

u(ξ) = Am (tan(ϕ(ξ)/2))
m
+ ..., (4.4)

u3(ξ) = A3
m (tan(ϕ(ξ)/2))

3m
+ ..., (4.5)

du(ξ)

dξ
=

m(c− b)

2
Am (tan(ϕ(ξ)/2))

m+1
+ ..., (4.6)

d2u(ξ)

dξ2
=

m(m+ 1)(c− b)2

2
Am (tan(ϕ(ξ)/2))

m+2
+ .... (4.7)

By considering the homogeneous balance principle between the highest order derivatives u′′ and nonlinear terms u3,
we obtain m+ 2 = 3m, then m = 1. Suppose that the solutions for Eq. (4.2) can be expressed in the following form

u(ξ) =

1∑
k=−1

Ak(p+ tan(ϕ/2))k, (4.8)

Substituting (4.8) and (2.4) into Eq. (4.2) and collecting all terms with the same order of tan (Φ(ξ)/2) together, and
setting each coefficient of each polynomial to zero, we derive a set of algebraic equations for a, b, c, k, w,A0, A1, and
B1 as follows:
Coefficients of Y = tan(ϕ(ξ)/2)

Y 0 : λ(b+ c)(B1b−B1pa+A1p
3a+B1c) + 2(B1 +A1p

2 + pA0)

(µA2
1p

4 + 2µA0p
3A1 + 2p2µB1A1 − p2λs2 − p2r + µA2

0p
2 + 2µA0B1p+ µB2

1) = 0,

Y 1 : λ[p(2a2 + c2 − b2)(A1p
2 −B1) + 3a(A1p

2 +B1)(b+ c)] + 4p(B1 + 2A1p
2)(3µB1A1 − λs2 + 3µA2

0 − r)

+ 12µA3
1p

5 + 30µA0A
2
1p

4 + 6A0p
2(µA2

0 − r + 6µB1A1 − λs2) + 6µA0B
2
1 = 0,

Y 2 : −3apλ(p2A1b− p2A1c−A1b+B1c−B1b−A1c) + λ(−b2 + c2 + 2a2)(B1 + 3A1p
2) + 30µA3

1p
4

+ 6A0p(10p
2µA2

1 + µA2
0 − r + 6µB1A1 − λs2) + 2(6A1p

2 +B1)(3µB1A1 + 3µA2
0 − λs2 − r) = 0,

Y 3 : pλ[A1c
2(p2 + 3) +A1b

2(p2 − 3)− 2p2A1bc−B1b
2 + 2B1bc−B1c

2 + 6A1a
2]

− aλ(9A1bp
2 − 9A1cp

2 −A1b−A1c−B1c+B1b)

+ 8A1p(5µA
2
1p

2 + 3µB1A1 + 3µA2
0 + λs2 − r) + 2A0(µA

2
0 + 30µA2

1p
2 + 6µB1A1 − r − λs2) = 0,

Y 4 : 3p2λA1(b− c)2 + λA1(−9abp+ 9acp+ 2a2 − b2 + c2) + 30µA3
1p

2

+ 2A1(3µB1A1 + 15A1µA0p+ 3µA2
0 − r − λs2) = 0,

Y 5 : −3λA1(b− c)(−pb+ pc+ a) + 6µA2
1(2pA1 +A0) = 0,
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Y 6 : A1(2µA
2
1 + λc2 + λb2 − 2λcb) = 0. (4.9)

Solving the set of algebraic equations using Maple, we get the following results:
Case I

a = a, b = b, c = c, p = p, ∆ = a2 + b2 − c2, A0 = (a+ p(b− c))

√
−λ

2µ
,

A1 = (b− c)

√
−λ

2µ
, B1 = 0, s = s, r = −λ

2
(2s2 +∆), u(ξ) = A0 +A1 [p+ tan(ϕ(ξ)/2)] . (4.10)

By using of (4.10) and Families 1, 2, 6, 8, 12, and 15, respectively, can be written as

u1(ξ) = (a+ 2p(b− c))

√
−λ

2µ
+

√
−λ

2µ

[
a−

√
−∆tan

(√
−∆

2
ξ

)]
, (4.11)

u2(ξ) = (a+ 2p(b− c))

√
−λ

2µ
+

√
−λ

2µ

[
a+

√
∆tanh

(√
∆

2
ξ

)]
,

u3(ξ) = 2pb

√
−λ

2µ
+ b

√
−λ

2µ
tan

(
1

2
arctan

[
2eb(ξ+C)

e2b(ξ+C) + 1
,
e2b(ξ+C) − 1

e2b(ξ+C) + 1

])
,

u4(ξ) = (a+ 2p(b− c))

√
−λ

2µ
+

√
−λ

2µ

[
a(ξ + C) + 2

(ξ + C)

]
,

u5(ξ) = (c+ 2p(b− c))

√
−λ

2µ
+ (b− c)

√
−λ

2µ

[
(b+ c)eb(ξ+C) + 1

(b− c)eb(ξ+C) − 1

]
,

u6(ξ) = (c− 2pc)

√
−λ

2µ
−

√
−λ

2µ

[
c(ξ + C) + 2

(ξ + C)

]
,

where q(x, t) = u(ξ)eiθ, ξ = x− 2λstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
λ(2s2+∆)tα

2Γ(1+α) .

Case II

a = 0, b = b, c = c, p = 0, A0 = 0, A1 = (b− c)

√
−λ

2µ
, (4.12)

B1 = 0, s = s, r = −λ

2
(2s2 + b2 − c2), u(ξ) = A1 [p+ tan(ϕ(ξ)/2)] .

By using of (4.12) and Families 5, 6, 11, and 17, respectively, can be written as

u7(ξ) =

√
−λ(b2 − c2)

2µ
tanh

(√
b2 − c2

2
(ξ + C)

)
, (4.13)

u8(ξ) = b

√
−λ

2µ
tan

(
1

2
arctan

[
2eb(ξ+C)

e2b(ξ+C) + 1
,
e2b(ξ+C) − 1

e2b(ξ+C) + 1

])
,

u9(ξ) = b

√
−λ

2µ

[
beb(ξ+C) − 1

beb(ξ+C) + 1

]
, u10(ξ) = 2

√
−λ

2µ

1

ξ + C
,

where q(x, t) = u(ξ)eiθ, ξ = x− 2λstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
λ(2s2+b2−c2)tα

2Γ(1+α) .

Case III

a = a, b = b, c = c, p = p, ∆ = a2 + b2 − c2, A0 = (a+ p(b− c))

√
−λ

2µ
, A1 = 0, (4.14)
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B1 = −(p2(b− c) + 2ap− b− c)

√
−λ

2µ
, s = s, r = −λ

2
(2s2 +∆), u(ξ) = A0 +B1 [p+ tan(ϕ(ξ)/2)]

−1
.

By using of (4.14) and Families 1, 2, 6, 8, 12, and 15, respectively, can be written as

u11(ξ) = (a+ p(b− c))

√
−λ

2µ
− (p2(b− c) + 2ap− b− c)

√
−λ

2µ

[
p+

a

b− c
−

√
−∆

b− c
tan

(√
−∆

2
ξ

)]−1

, (4.15)

u12(ξ) = (a+ p(b− c))

√
−λ

2µ
− (p2(b− c) + 2ap− b− c)

√
−λ

2µ

[
p+

a

b− c
+

√
∆

b− c
tanh

(√
∆

2
ξ

)]−1

,

u13(ξ) = pb

√
−λ

2µ
− b(p2 − 1)

√
−λ

2µ

[
p+ tan

(
1

2
arctan

[
2eb(ξ+C)

e2b(ξ+C) + 1
,
e2b(ξ+C) − 1

e2b(ξ+C) + 1

])]−1

,

u14(ξ) = (a+ p(b− c))

√
−λ

2µ
− (p2(b− c) + 2ap− b− c)

√
−λ

2µ

[
p+

a(ξ + C) + 2

(b− c)(ξ + C)

]−1

,

u15(ξ) = (c+ p(b− c))

√
−λ

2µ
− (p2(b− c) + 2cp− b− c)

√
−λ

2µ

[
p+

(b+ c)eb(ξ+C) + 1

(b− c)eb(ξ+C) − 1

]−1

,

u16(ξ) = c(1− p)

√
−λ

2µ
+ c(p− 1)2

√
−λ

2µ

[
p+

c(ξ + C) + 2

c(ξ + C)

]−1

,

where q(x, t) = u(ξ)eiθ, ξ = x− 2λstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
λ(2s2+∆)tα

2Γ(1+α) .

Case IV

a = a, b = c, c = c, p = p, A0 = a

√
−λ

2µ
, A1 = 0, (4.16)

B1 = (ap− c)

√
−2λ

µ
, s = s, r = −λ

2
(2s2 + a2), u(ξ) = A0 +B1 [p+ tan(ϕ(ξ)/2)]

−1
.

By using of (4.16) and Families 7, 13, and 16, respectively, can be written as

u17(ξ) = a

√
−λ

2µ
+ (ap− c)

√
−2λ

µ

[
p+ tan

(
1

2
arctan

[
2ea(ξ+C)

e2a(ξ+C) + 1
,
e2a(ξ+C) − 1

e2a(ξ+C) + 1

])]−1

, (4.17)

u18(ξ) = −c

√
−λ

2µ
− c(p+ 1)

√
−2λ

µ

[
eb(ξ+C) + 2c

eb(ξ+C)

]−1

, u19(ξ) = −c

√
−2λ

µ

1

p+ c(ξ + C)
,

where q(x, t) = u(ξ)eiθ, ξ = x− 2λstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
λ(2s2+a2)tα

2Γ(1+α) .

Case V

a = a, b = b, c = c, p = − a

b− c
, A0 = 0, A1 = 0, B1 = [p2(b− c) + b+ c]

√
−λ

2µ
, (4.18)

∆ = a2 + b2 − c2, s = s, r = −λ

2
(2s2 +∆), u(ξ) = B1 [p+ tan(ϕ(ξ)/2)]

−1
.

By using of (4.14) and Families 1, 2, 6, 8, 12, and 15, respectively, can be written as

u19(ξ) = −[p2(b− c) + b+ c]

√
−λ

2µ

b− c√
−∆

cot

(√
−∆

2
ξ

)
, (4.19)
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u20(ξ) = [p2(b− c) + b+ c]

√
−λ

2µ

b− c√
∆

coth

(√
∆

2
ξ

)
,

u21(ξ) = b

√
−λ

2µ
cot

(
1

2
arctan

[
2eb(ξ+C)

e2b(ξ+C) + 1
,
e2b(ξ+C) − 1

e2b(ξ+C) + 1

])
,

u22(ξ) = [p2(b− c) + b+ c]

√
−λ

2µ

[
− a

b− c
+

a(ξ + C) + 2

(b− c)(ξ + C)

]−1

,

u23(ξ) = [p2(b− c) + b+ c]

√
−λ

2µ

[
− c

b− c
+

(b+ c)eb(ξ+C) + 1

(b− c)eb(ξ+C) − 1

]−1

,

u24(ξ) = [−p2c+ c]

√
−λ

2µ

[
−1 +

c(ξ + C) + 2

c(ξ + C)

]−1

,

where q(x, t) = u(ξ)eiθ, ξ = x− 2λstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
λ(2s2+∆)tα

2Γ(1+α) .

Case VI

a = 0, b =

√
− µ

2λ
B1, c =

√
− µ

2λ
B1, p = p, A0 = 0, A1 = 0, (4.20)

B1 = B1, s = s, r = −λs2, u(ξ) = B1 [p+ tan(ϕ(ξ)/2)]
−1

.

By using of (4.20) and Family 16, we can write

u25(ξ) =
B1

c(ξ + C)
, (4.21)

where q(x, t) = u(ξ)eiθ, ξ = x− 2λstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
λs2tα

Γ(1+α) .

Case VII

a = 0, b = b, c = c, p = 0, A0 = 0, A1 = (b− c)

√
−λ

2µ
, B1 = (b+ c)

√
−λ

2µ
, (4.22)

s = s, r = −λ

2
(2s2 + 4(b2 − c2)), u(ξ) = A1 [p+ tan(ϕ(ξ)/2)] +B1 [p+ tan(ϕ(ξ)/2)]

−1
.

By using of (4.22) and Families 5, 6, and 11, respectively, can be written as

u26(ξ) =

√
−λ

2µ

√
b2 − c2

[
tanh

(√
b2 − c2

2
(ξ + C)

)
+ coth

(√
b2 − c2

2
(ξ + C)

)]
, (4.23)

u27(ξ) = b

√
−λ

2µ

[
tan

(
1

2
tan−1

[
2eb(ξ+C)

e2b(ξ+C) + 1
,
e2b(ξ+C) − 1

e2b(ξ+C) + 1

])
+ cot

(
1

2
tan−1

[
2eb(ξ+C)

e2b(ξ+C) + 1
,
e2b(ξ+C) − 1

e2b(ξ+C) + 1

])]
,

u28(ξ) = 2b

√
−λ

2µ

[
b2e2b(ξ+C) + 1

b2e2b(ξ+C) − 1

]
,

where q(x, t) = u(ξ)eiθ, ξ = x− 2λstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
λ(2s2+4(b2−c2))tα

2Γ(1+α) .

Case VIII

a = pA1

√
−2µ

λ
, b = −(A1p

2 −A1 +B1)

√
− µ

2λ
, c = (A1p

2 +A1 +B1)

√
− µ

2λ
, (4.24)

p = p, A0 = 0, A1 = A1,

B1 = B1, s = s, r = 2µA1B1 − λs2, u(ξ) = A1 [p+ tan(ϕ(ξ)/2)] +B1 [p+ tan(ϕ(ξ)/2)]
−1

.
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By using of (4.24) and Families 1 and 2, respectively, can be written as

u29(ξ) = −2λ

µ

√
A1B1 tan

(
1

2

√
−2µA1B1

λ
(ξ + C)

)
− µ

2λ

√
A1B1 cot

(
1

2

√
−2µA1B1

λ
(ξ + C)

)
, (4.25)

u30(ξ) =
2λ

µ

√
−A1B1 tanh

(
1

2

√
2µA1B1

λ
(ξ + C)

)
+

µ

2λ

√
−A1B1 cot

(
1

2

√
2µA1B1

λ
(ξ + C)

)
,

where q(x, t) = u(ξ)eiθ, ξ = x− 2λstα

Γ(1+α) , and θ = stβ

Γ(1+β) +
(2µA1B1−λs2)tα

Γ(1+α) .

Case IX

a = pA1

√
−2µ

λ
, b = −(A1p

2 −A1 −B1)

√
− µ

2λ
,

c = (A1p
2 +A1 −B1)

√
− µ

2λ
, p = p, A0 = 0, A1 = A1, (4.26)

B1 = B1, s = s, r = 4µA1B1 − λs2, u(ξ) = A1 [p+ tan(ϕ(ξ)/2)] +B1 [p+ tan(ϕ(ξ)/2)]
−1

.

By using of (4.26) and Families 1 and 2, respectively, can be written as

u31(ξ) = −2λ

µ

√
−A1B1 tan

(
1

2

√
2µA1B1

λ
(ξ + C)

)
− µ

2λ

√
−A1B1 cot

(
1

2

√
2µA1B1

λ
(ξ + C)

)
, (4.27)

u32(ξ) =
2λ

µ

√
A1B1 tanh

(
1

2

√
−2µA1B1

λ
(ξ + C)

)
+

µ

2λ

√
A1B1 cot

(
1

2

√
−2µA1B1

λ
(ξ + C)

)
,

where q(x, t) = u(ξ)eiθ, ξ = x− 2λstα

Γ(1+α) , and θ = stβ

Γ(1+β) +
(4µA1B1−λs2)tα

Γ(1+α) .

Case X

a = −iB1

√
− µ

2λ
, b = 0, c = B1

√
− µ

2λ
, p = i, A0 = 0, A1 = −1

2
B1, (4.28)

B1 = B1, s = s, r = −2µB2
1 − λs2, u(ξ) = A1 [p+ tan(ϕ(ξ)/2)] +B1 [p+ tan(ϕ(ξ)/2)]

−1
.

By using of (4.28) and Family 1, we can write

u33(ξ) = −
√
2

2
B1 tan

(
1

2

√
−µ

λ
B1(ξ + C)

)
+

√
2

2
B1 cot

(
1

2

√
−µ

λ
B1(ξ + C)

)
, (4.29)

where q(x, t) = u(ξ)eiθ, ξ = x− 2λstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
(2µB2

1+λs2)tα

Γ(1+α) .

Case XI

a = −iB1

√
− µ

2λ
, b = 0, c = B1

√
− µ

2λ
, p = i, A0 = 0, A1 = −1

2
B1, (4.30)

B1 = B1, s = s, r = −2µB2
1 − λs2, u(ξ) = A1 [p+ tan(ϕ(ξ)/2)] +B1 [p+ tan(ϕ(ξ)/2)]

−1
.

By using of (4.30) and Family 1, we can write

u34(ξ) =

√
2

2
B1 tan

(
1

2

√
−µ

λ
B1(ξ + C)

)
+

√
2

2
B1 cot

(
1

2

√
−µ

λ
B1(ξ + C)

)
, (4.31)

where q(x, t) = u(ξ)eiθ, ξ = x− 2λstα

Γ(1+α) , and θ = stβ

Γ(1+β) +
(µB2

1−λs2)tα

Γ(1+α) .
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Figure 1. Panels ((a), (c)) and ((b), (d)) show the real and imaginary values respectively of (4.11), by
considering the values a = 2, b = 2, c = 3, p = 1, λ = 2, µ = 3, s = 2, α = 0.5, β = 0.1.

Figure 2. Panels ((a), (c)) and ((b), (d)) show the real and imaginary values respectively of (4.11), by
considering the values a = 2, b = 2, c = 3, p = 1, λ = 2, µ = 3, s = 2, α = 0.99, β = 0.99.
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Figure 3. Panels ((a), (c)) and ((b), (d)) show the real and imaginary values respectively of (4.11), by
considering the values a = 2, b = 3, c = 3, p = 1, λ = 2, µ = 3, s = 2, α = 0.5, β = 0.1.

Figure 4. Panels ((a), (c)) and ((b), (d)) show the real and imaginary values respectively of (4.11), by
considering the values a = 2, b = 3, c = 3, p = 1, λ = 2, µ = 3, s = 2, α = 0.99, β = 0.99.
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Figure 5. Panels ((a), (c)) and ((b), (d)) show the real and imaginary values respectively of (4.11), by
considering the values a = 3, b = 4, c = 5, p = 1, λ = 2, µ = 3, s = 2, α = 0.5, β = 0.1.

Figure 6. Panels ((a), (c)) and ((b), (d)) show the real and imaginary values respectively of (4.11), by
considering the values a = 3, b = 4, c = 5, p = 1, λ = 2, µ = 3, s = 2, α = 0.99, β = 0.99.
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Figure 7. Panels ((a), (c)) and ((b), (d)) show the real and imaginary values respectively of (4.11), by
considering the values a = 3, b = 5, c = 3, p = 1, λ = 2, µ = 3, s = 2, α = 0.5, β = 0.1.

Figure 8. Panels ((a), (c)) and ((b), (d)) show the real and imaginary values respectively of (4.11), by
considering the values a = 3, b = 5, c = 3, p = 1, λ = 2, µ = 3, s = 2, α = 0.99, β = 0.99.
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Remark 4.1. In Figures 1-8, we plot two dimensional and three dimensional graphics of absolute values of (4.11),
which denote the dynamics of solutions with appropriate parametric selections. We plot two and three dimensional
graphics of Figs 1-4 when −4 < x < 4,−4 < t < 4. Moreover, we plot two and three dimensional graphics of Figs 5-8
when 0 < x < 8, 0 < t < 8. To the best of our knowledge, these optical soliton solutions have not been submitted to
literature in advance. Figures 1 and 2 show periodic wave solutions, Figure 3 and 4 present soliton wave solutions.
Also, Figures 5 and 6 show rational wave solutions. Moreover, Figures 7 and 8 present exponential wave solutions.
We test our results based on different α and β.

4.2. The Case n ≥ 2 case for the fractional BME. Now, we close this work by assuming n ≥ 2 in (3.6), therefore,
we have

−n(r + nλs2)u2(ξ) + n(n− 1)λ(u′(ξ))2 + nλu(ξ)u′′(ξ) + µF(u2(ξ))u2(ξ) = 0. (4.32)

In the presence of perturbation terms, the fractional BME with Kerr law nonlinearity (F(w) = w) is given by

−n(r + nλs2)u2(ξ) + n(n− 1)λ(u′(ξ))2 + nλu(ξ)u′′(ξ) + µu4(ξ) = 0. (4.33)

In order to determine value of m, we balance the linear term of the highest order uu′′ with the highest order nonlinear
term u4 in Eq. (4.33) we get

u(ξ) = Am (tan(ϕ(ξ)/2))
m
+ ..., (4.34)

u4(ξ) = A4
m (tan(ϕ(ξ)/2))

4m
+ ..., (4.35)

du(ξ)

dξ
=

m(c− b)

2
Am (tan(ϕ(ξ)/2))

m+1
+ ..., (4.36)

d2u(ξ)

dξ2
=

m(m+ 1)(c− b)2

2
Am (tan(ϕ(ξ)/2))

m+2
+ ..., (4.37)

u
d2u(ξ)

dξ2
=

m(m+ 1)(c− b)2

2
A2

m (tan(ϕ(ξ)/2))
2m+2

+ .... (4.38)

By considering the homogeneous balance principle between the highest order derivatives uu′′ and nonlinear terms u4,
we obtain 2m+ 2 = 4m, then m = 1. For simplicity we set p = 0 in (2.3). Then the trail solution is

u(ξ) =

1∑
k=−1

Ak(p+ tank(ϕ/2))k, (4.39)

Substituting (4.39) and (2.4) into Eq. (4.33) and collecting all terms with the same order of tan (Φ(ξ)/2) together,
and setting each coefficient of each polynomial to zero, we derive a set of algebraic equations for a, b, c, k, w,A0, A1,
and B1 as follows:

Coefficients of Y = tan(ϕ(ξ)/2)

Y 0 : B2
1(4µB

2
1 + 2nλcb+ 2n2λcb+ n2λb2 + nλc2 + n2λc2 + nλb2) = 0,

Y 1 : 2B1(8A0µB
2
1 + 2B1n

2λab+B1nλab+ 2B1n
2λac+B1nλac+ nλA0b

2 + nλA0c
2 + 2nλA0cb) = 0,

Y 2 : 2B1(8µA1B
2
1 −B1n

2λb2 + 2B1n
2λa2 + 12B1µA

2
0 +B1n

2λc2 − 2B1n
2λs2 − 2B1nr + 4nλcbA1

+3nλA0ba− n2λb2A1 + 2nλc2A1 − n2λc2A1 + 2nλb2A1 − 2n2λcbA1 + 3nλA0ca) = 0,
Y 3 : 2B1(−2B1n

2λab−B1nλac+B1nλab+ 2B1n
2λac+ 24B1µA0A1 + 8µA3

0 − 4n2λabA1 − 4nrA0

+2nλA0a
2 − nλA0b

2 − 4n2λs2A0 + nλA0c
2 + 8nλabA1 − 4n2λacA1 + 8nλcaA1) = 0,

Y 4 : −nλ(8na2A1B1 − 16a2A1B1 + 2A0baB1 − 2A0baA1 − 2A0caB1 − 2A0caA1 − nb2B2
1 − 4nb2A1B1

+b2B2
1 + b2A2

1 + 8b2A1B1 − nb2A2
1 − 2ncbA2

1 − 2cbB2
1 + 2ncbB2

1 + 2cbA2
1 − 8c2A1B1 + 4nc2A1B1 − nc2B2

1

−nc2A2
1 + c2B2

1 + c2A2
1)− 4n2λs2A2

0 + 4µA4
0 − 4nrA2

0 − 8nrA1B1 + 48µA2
0A1B1 − 8n2λs2A1B1 + 24µA2

1B
2
1 = 0,

Y 5 : 2A1(2n
2λabA1 − nλcaA1 − nλabA1 + 2n2λacA1 + 24A1µA0B1 + 8µA3

0 − 4nrA0 + nλA0c
2

+2nλA0a
2 − 8nλabB1 − nλA0b

2 − 4n2λs2A0 + 4n2λabB1 + 8nλcaB1 − 4n2λacB1) = 0,
Y 6 : 2A1(8µB1A

2
1 − 2nrA1 + n2λc2A1 + 2A1n

2λa2 − n2λb2A1 − 2n2λs2A1 + 12µA2
0A1 + 2n2λcbB1 + 3nλA0ca

−n2λB1b
2 + 2nλB1c

2 + 2nλB1b
2 − n2λB1c

2 − 4nλcbB1 − 3nλA0ba) = 0,
Y 7 : −2A1(−8µA0A

2
1 − 2n2λacA1 − nλcaA1 + 2n2λabA1 + nλabA1 − nλA0c

2 − nλA0b
2 + 2nλA0cb) = 0,

Y 8 : A2
1(4µA

2
1 + b2λn+ c2λn+ n2λc2 + n2λb2 − 2nλcb− 2n2λcb) = 0.
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(4.40)

Solving the set of algebraic equations using Maple, we get the following results:
Case I

a = 0, b =

√
− µ

n(n+ 1)λ
B1, c =

√
− µ

n(n+ 1)λ
B1, p = 0, A0 = 0, A1 = 0, (4.41)

B1 = B1, s = s, r = −nλs2, u(ξ) = B1 cot(ϕ(ξ)/2).

By using of (4.41) and Family 16, we can write as

u1(ξ) =
B1

c(ξ + C)
, (4.42)

where q(x, t) = u(ξ)eiθ, ξ = x− 2λnstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
nλs2tα

Γ(1+α) .

Case II

a = 0, b = −
√

− µ

n(n+ 1)λ
A1, c =

√
− µ

n(n+ 1)λ
A1, p = 0, A0 = 0, A1 = A1, (4.43)

B1 = 0, s = s, r = −nλs2, u(ξ) = A1 tan(ϕ(ξ)/2).

By using of (4.43) and Family 17, we can write as

u2(ξ) = − A1

c(ξ + C)
, (4.44)

where q(x, t) = u(ξ)eiθ, ξ = x− 2λnstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
nλs2tα

Γ(1+α) .

Case III

a = 0, b = b, c = c, p = 0, A0 = 0, A1 = −

√
−n(n+ 1)λ

4µ
(b− c), (4.45)

B1 =

√
−n(n+ 1)λ

4µ
(b+ c), s = s, r = nλ(b2 − c2 − s2), u(ξ) = A1 tan(ϕ(ξ)/2) +B1 cot(ϕ(ξ)/2).

By using of (4.45) and Families 5, 6, 11, 16, we can write as

u3(ξ) = −

√
−n(n+ 1)λ

4µ

√
b2 − c2

{
tanh

(√
b2 − c2

2
ξ

)
− coth

(√
b2 − c2

2
ξ

)}
,

(4.46)

where ξ = ξ + C, q(x, t) = u(ξ)eiθ, ξ = x− 2λnstα

Γ(1+α) , and θ = stβ

Γ(1+β) +
nλ(b2−c2−s2)tα

Γ(1+α) .

u4(ξ) = −

√
−n(n+ 1)λ

4µ
b

{
tan

(
1

2
arctan

[
e2bξ − 1

e2bξ + 1
,

2ebξ

e2bξ + 1

])
− cot

(
1

2
arctan

[
e2bξ − 1

e2bξ + 1
,

2ebξ

e2bξ + 1

])}
,

u5(ξ) = −

√
−n(n+ 1)λ

4µ
b

{
beb(ξ+C) − 1

beb(ξ+C) + 1
− beb(ξ+C) + 1

beb(ξ+C) − 1

}
,

where q(x, t) = u(ξ)eiθ, ξ = x− 2λnstα

Γ(1+α) , and θ = stβ

Γ(1+β) +
nλ(b2−s2)tα

Γ(1+α) .

u6(ξ) = −

√
−n(n+ 1)λ

µ

1

(ξ + C)
, q(x, t) = u(ξ)eiθ, ξ = x− 2λnstα

Γ(1 + α)
θ =

stβ

Γ(1 + β)
− nλs2tα

Γ(1 + α)
,
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Case IV

a = −
√

c2 − b2, b = b, c = c, p = 0, A0 =

√
− (b2 − c2)n(n+ 1)λ

4µ
, A1 =

√
−n(n+ 1)λ

4µ
(b− c), (4.47)

B1 = 0, s = s, r = −nλs2, u(ξ) = A0 +A1 tan(ϕ(ξ)/2).

By using of (4.47) and Families 8, we can write as

u7(ξ) =

√
− (b2 − c2)n(n+ 1)λ

4µ
+

√
−n(n+ 1)λ

4µ

aξ + 2

ξ
, (4.48)

where ξ = ξ + C, q(x, t) = u(ξ)eiθ, ξ = x− 2λnstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
nλs2tα

Γ(1+α) .

Case V

a =
√

c2 − b2, b = b, c = c, p = 0, A0 =

√
− (b2 − c2)n(n+ 1)λ

4µ
, A1 = 0, (4.49)

B1 =

√
−n(n+ 1)λ

4µ
(b+ c), s = s, r = −nλs2, u(ξ) = A0 +B1 cot(ϕ(ξ)/2).

By using of (4.49) and Families 8, we can write as

u8(ξ) =

√
− (b2 − c2)n(n+ 1)λ

4µ
+

√
−n(n+ 1)λ

4µ
(b2 − c2)

ξ

aξ + 2
, (4.50)

where ξ = ξ + C, q(x, t) = u(ξ)eiθ, ξ = x− 2λnstα

Γ(1+α) , and θ = stβ

Γ(1+β) −
nλs2tα

Γ(1+α) .

5. Conclusion

In this paper, we presented the improved tan (Φ(ξ)/2)-expansion method for solving the fractional Biswas-Milovic
(FBM) equation. We obtained abundant results for FBME. The exact particular solutions contain four types: the
hyperbolic function, the trigonometric function, the exponential, and the rational solution. Abundant exact travelling
wave solutions including solitons, kink, periodic, and rational solutions are attained. It is worth mentioning that some
of newly obtained solutions are identical to already published results. It has been shown that the applied method is
effective and more wide-ranging than the Exp-function method and sine-cosine method because it gives many new
solutions. Therefore, this method can be applied to study many other nonlinear partial differential equations which
frequently arise in engineering, mathematical physics, and nonlinear optics.
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