
تعداد نشریات | 45 |
تعداد شمارهها | 1,414 |
تعداد مقالات | 17,372 |
تعداد مشاهده مقاله | 56,029,364 |
تعداد دریافت فایل اصل مقاله | 18,258,489 |
Application of $tan(\phi/2)$-expansion method for solving the fractional Biswas-Milovic equation for Kerr law nonlinearity | ||
Computational Methods for Differential Equations | ||
مقاله 24، دوره 13، شماره 4، دی 2025، صفحه 1408-1424 اصل مقاله (785.28 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2024.61349.2636 | ||
نویسندگان | ||
Dmitry Fugarov* 1؛ Alexey Dengaev2؛ Ilya Drozdov2؛ Vladimir Shishulin2؛ Anastasiya Ostrovskaya3 | ||
1Don State Technical University, Rostov-on-Don, Russia. | ||
2Gubkin Russian State University of Oil and Gas, Moscow, Russia. | ||
3Kuban State University, Krasnodar, Russia. | ||
چکیده | ||
In this paper, the improved $\tan\left(\Phi(\xi)/2\right)$-expansion method (ITEM) is proposed to obtain the fractional Biswas-Milovic equation. The exact particular solutions contain four types: hyperbolic function solution, trigonometric function solution, exponential solution, and rational solution. We obtained further solutions compared with other methods, such as [2]. Recently, this method has been developed for searching exact travelling wave solutions of nonlinear partial differential equations. These solutions might play an important role in nonlinear optics and physics. It is shown that this method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving problems in nonlinear optics. | ||
کلیدواژهها | ||
Improved $\tan\left(\Phi(\xi)/2\right)$-expansion method؛ Fractional Biswas-Milovic equation؛ Exact soliton solution | ||
آمار تعداد مشاهده مقاله: 184 تعداد دریافت فایل اصل مقاله: 271 |