- [1] M. F. Aghdaei and J. Manafian, Optical soliton wave solutions to the resonant Davey-Stewartson system, Opt. Quant. Electron, 48 (2016), 1-33.
- [2] S. Ahmadiana and M. T. Darvishi, A new fractional Biswas-Milovic model with its periodic soliton solutions, Optik-International Journal for Light and Electron Optics, 38 (2016), 3763-3767.
- [3] I. Ahmed, C. Mu, and F. Zhang, Exact solution of the Biswas-Milovic equation by Adomian decomposition method, Int. J. Appl. Math. Research, 2 (2011), 418-422.
- [4] N. H. Ali, S. A. Mohammed, and J. Manafian, Study on the simplified MCH equation and the combined KdVmKdV equations with solitary wave solutions, Partial Diff. Eq. Appl. Math., 9 (2024), 100599.
- [5] A. Biswas, C. Cleary, J. E. Watson, and D. Milovic, Optical soliton perturbation with time-dependent coefficients in a log law media, Appl. Math. Comput., 217 (2010), 2891-2894.
- [6] A. Biswas and D. Milovic, Bright and dark solitons of the generalized nonlinear Schrodinger’s equation, Commu. Nonlinear Sci. Num. Simul., 15 (2010), 1473-1484.
- [7] A. Biswas and D. Milovic, Optical solitons with log law nonlinearity, Commu. Nonlinear Sci. Num. Simul., 15 (2010), 3763-3767.
- [8] A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons, CRC Press, Boca Raton, FL, USA, (2006).
- [9] M. Caputo, Elasticita e dissipazione, Zani-Chelli, Bologna, 1969.
- [10] H. Chen, A. Shahi, G. Singh, J. Manafian, B. Baharak Eslami, and N. A. Alkader, Behavior of analytical schemes with non-paraxial pulse propagation to the cubic-quintic nonlinear Helmholtz equation, Math. Comput. Simul., 220 (2024), 341-356.
- [11] L. Debnath, Fractional integrals and fractional differential equations in fluid mechanics, Frac. Calc. Appl. Anal., 6 (2003), 119-155.
- [12] M. Dehghan and J. Manafian, The solution of the variable coefficients fourth–order parabolic partial differential equations by homotopy perturbation method, Z. Naturforsch, 64a (2009), 420-430.
- [13] M. Dehghan, J. Manafian, and A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Num. Meth. Partial Diff.l Eq. J., 26 (2010), 448-479.
- [14] M. Dehghan, J. Manafian, and A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int J. Num. Methods Heat Fluid Flow, 21 (2011), 736-753.
- [15] M. Dehghan, J. Manafian, and A. Saadatmandi, Application of semi–analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses, Math. Meth. Appl. Sci., 33 (2010), 1384-1398.
- [16] Y. Gu, S. Malmir, J. Manafian, O. A. Ilhan, A. A. Alizadeh, and A. J. Othman, Variety interaction between k-lump and k-kink solutions for the (3+1)-D Burger system by bilinear analysis, Results Phys., 43 (2022), 106032.
- [17] H. Jafari, A. Soorakia, and C. M. Khalique, Dark solitons of the Biswas-Milovic equation by the first integral method, Optik, 124 (2013), 3929-3932.
- [18] C. M. Khalique, Stationary solutions for the Biswas-ilovic equation, Appl. Math. Comput., 217 (2011) 7400-7404.
- [19] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
- [20] X. G. Luo, Q. B. Wub, and B. Q. Zhang, Revisit on partial solutions in the Adomian decomposition method: Solving heat and wave equations, J. Math. Anal. Appl., 321 (2006), 353-363.
- [21] R. Kohla, R. Tinaztepeb, and A. Chowdhury, Soliton perturbation theory of Biswas-Milovic equation, Optik, 125 (2014), 1926-1936.
- [22] M. Lakestani, J. Manafian, A. R. Najafizadeh, and M. Partohaghighi, Some new soliton solutions for the nonlinear the fifth-order integrable equations, Comput. Meth. Diff. Equ., 10(2) (2022).
- [23] J. Manafian, On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, Eur. Phys. J. Plus, 130 (2015), 1-20.
- [24] J. Manafian, Optical soliton solutions for Schrodinger type nonlinear evolution equations by the tan(ϕ/2)-expansion method, Optik-Int. J. Elec. Opt., 127 (2016), 4222-4245.
- [25] J. Manafian, M. F. Aghdaei, and M. Zadahmad, Analytic study of sixth-order thin-film equation by tan(ϕ/2)expansion method, Opt. Quant. Electron, 48 (2016), 1-16.
- [26] J. Manafian, L. A. Dawood, and M. Lakestani, New solutions to a generalized fifth-order KdV like equation with prime number p = 3 via a generalized bilinear differential operator, Partial Diff. Eq. Appl. Math., 9 (2024), 100600.
- [27] J. Manafian and M. Lakestani, Application of tan(ϕ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearityJalil, Optik, 127 (2016), 2040-2054.
- [28] J. Manafian and M. Lakestani, A new analytical approach to solve some the fractional-order partial differential equations, Indian J. Phys., 90 (2016), 1-16.
- [29] J. Manafian and M. Lakestani, Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity, Eur. Phys. J. Plus, 130 (2015), 1-12.
- [30] J. Manafian and M. Lakestani, Application of tan(ϕ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik-Int. J. Elec. Opt., 127 (2016), 2040-2054.
- [31] J. Manafian and M. Lakestani, Dispersive dark optical soliton with Tzitz´eica type nonlinear evolution equations arising in nonlinear optics, Opt. Quant. Electron, 48 (2016), 1-32.
- [32] J. Manafian and M. Lakestani, Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the G′/G-expansion method, Pramana- J. Phys., 130 (2015), 31-52.
- [33] J. Manafian, M. Lakestani, and A. Bekir, Comparison between the generalized tanh-coth and the G′/G-expansion methods for solving NPDE’s and NODE’s, Pramana. J. Phys., 87 (2016), 1-14.
- [34] J. Manafian, M. Lakestani, and A. Bekir, Study of the analytical treatment of the (2+1)-dimensional Zoomeron, the Duffing, and the SRLW equations via a new analytical approach, Int. J. Appl. Comput. Math., 2 (2016), 243-268.
- [35] J. Manafian and M. Lakestani, New improvement of the expansion methods for solving the generalized Fitzhugh-Nagumo equation with time-dependent coefficients, Int. J. Eng. Math., 2015 (2015), 1-35.
- [36] J. Manafian and M. Lakestani, N-lump and interaction solutions of localized waves to the (2+ 1)- dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Geom. Phys., 150 (2020), 103598.
- [37] J. Manafian and M. Lakestani, Application of tan(ϕ/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity, Optik, 127(4) (2016), 2040-2054.
- [38] J. Manafian and M. Lakestani, Optical soliton solutions for the Gerdjikov-Ivanov model via tan(ϕ/2)-expansion method, Optik, 127(20) (2016), 9603-9620.
- [39] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu-Eckhaus equation via tan(ϕ(ξ))expansion method, Optik, 127(14) (2016), 5543-5551.
- [40] M. Mirzazadeh and M. Eslami, Exact multisoliton solutions of nonlinear Klein-Gordon equation in 1 + 2 dimensions, The Eur. Phys. J. Plus, 128 (2015), 1-9.
- [41] S. R. Moosavi, N. Taghizadeh, and J. Manafian, Analytical approximations of one-dimensional hyperbolic equation with non-local integral conditions by reduced differential transform method, Comput. Meth. Diff. Equ., 8(3) (2020), 537-552.
- [42] K. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9-17.
- [43] B. Sturdevant, Topological 1-soliton solution of the Biswas-Milovic equation with power law nonlinearity, Nonlinear Analysis; Real World Appl., 11 (2010), 2871-2874.
- [44] G. O. Young, Definition of physical consistent damping laws with fractional derivatives, Z. Angew. Math. Mech., 75 (1995), 623-635.
- [45] Z. Y. Zhang, Z. H. Liu, X. J. Miao, and Y. Z. Chen, Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity, Phys. Let. A, 375 (2011), 1275-1280.
- [46] S. Zhang, J. Manafian, O. A. Ilhan, A. T. Jalil, Y. Yasin, and M. A. Gatea, Nonparaxial pulse propagation to the cubic-quintic nonlinear Helmholtz equation, International Journal of Modern Physics B, 38(8) (2024), 2450117.
- [47] M. Zhang, X. Xie, J. Manafian, O. A. Ilhan, and G. Singh, Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation, J. Adv. Res., 38 (2022), 131-142.
- [48] N. Zhao, J. Manafian, O. A. Ilhan, G. Singh, and R. Zulfugarova, Abundant interaction between lump and k-kink, periodic and other analytical solutions for the (3+1)-D Burger system by bilinear analysis, Int. J. Modern Phys. B, 35(13) (2021), 2150173.
- [49] X. Zhao, L. Wang, and W. Sun, The repeated homogeneous balance method and its applications to nonlinear partial differential equations, Chaos Solitons Fract., 28 (2006), 448-453.
|