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Abstract

In this manuscript, we studied the Hyers-Ulam and exponential stabilities of autonomous and non-autonomous

difference equations of first and second order. Ultimately, we provide some examples to support our results.
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1. Introduction

Differential equations have been used to analyze a variety of biological systems and models for a very long time
in mathematics. Differential equations have several uses in a variety of disciplines, including engineering, economics,
statistics, and the natural sciences [9, 16–18]. Even while differential equations are quite useful, some real-world issues
call for discrete data sampling, which necessitates the usage of difference equations [6, 8]. Difference equations have
become crucial tools in the study of biological systems as well as in the sciences, technology and mathematical physics.
They offer a structure for precisely describing phenomena, such as wind flow dynamics and monographs, which helps
in problem-solving in these fields.

Stability is one of the key qualitative characteristics of different systems that has a vital impact. System performance
must be ensured by stability assessment. Due to its applicability in a variety of situations, Hyers-Ulam stability has
attracted a lot of attention from researchers. The concept of Hyers-Ulam stability emerged almost eighty years
ago in 1940 when Ulam [30] put a question before mathematicians at a conference about the existence of a group
homomorphism that is near to an approximate group homomorphism on groups. After a year in 1941, Hyers [11]
addressed Ulam’s puzzles by considering the group as a Banach space and provided solutions. Consequently, the
stability was named Hyers-Ulam stability. Donald H. Hyers made significant contributions in this field by providing a
partially positive response to Ulam’s query in the case of additive mappings within Banach spaces. Since then, many
works have been published regarding various extensions of Ulam’s problem and Hyers’ theorem. In 1978, Rassias
[21] provided an overview of this stability and applied the concept to the Cauchy problem. Furthermore, Obloza [20]
use this concept in the field of differential equations, while Jung [13] and Khan et al. [14] discussed the idea for
difference equations. Z. Gao et al. [10] and S. O. Shah et al. [22] reported the same stability results on a delayed
first-order nonlinear dynamic system. Recent studies have focused on generalized Hyers-Ulam stability. A. R. Aruldass
[1]. Additionally, investigations were made on the Hyers-Ulam stability of differential equations of order two utilizing
the Mahgoub type. For other models and their solution we refer to [3, 23]. Hyers-Ulam stability is a mathematical
concept related to functional equations. Hyers-Ulam stability is a mathematical concept that deals with the stability
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of functional equations. More precisely, it concerns the question of whether small perturbations of the inputs of a
functional equation lead to correspondingly small perturbations of the output. Additionally, Ulam type stabilities
several different mathematical models have been investigated [24–29] and some interesting results have been obtained
in these sources.

In this paper, we describe the exponential stability and Hyers-Ulam stability of autonomous and non-autonomous
difference systems of the type.{

yn+1 = (1 + r)yn, n ≥ 0,

y0 = θ,
(1.1)


yn+2 = (1 + r)yn, n ≥ 0,

y0 = a,

y1 = b,

(1.2)

{
yn+1 = rnyn, n ≥ 0,

y0 = θ,
(1.3)

and 
yn+2 = rnyn, n ≥ 0,

y0 = α,

y1 = β,

(1.4)

where r, rn ∈ R, yn ∈ C(Z+,X) where C(Z+,X) is the space of convergent sequences equiped with norm supremum,
Z+ = {0, 1, 2, · · · } and X = Rm.

For other recent work related to the Hyers-Ulam stability of different type of difference equations we refer to
[2, 5, 12, 15, 19].

2. Preliminaries

Throughout the paper, we will use the following notations: the vector norm will be denoted by ∥·∥, the n-dimensional
Euclidean space will be represented by the symbol X = Rm. The collection of real, integer, and non-negative integer
numbers are represented by the symbols R,Z, and Z+, respectively.

Definition 2.1. We recall that a family E = {E(n, k) : n ≥ k ≥ 0} of bounded linear operators acting on a Banach
space X is called a discrete evolution family if it satisfies the following two conditions:

(i) E(n, n) = I for all n ≥ 0,
(ii) E(n, s)E(s, k) = E(n, k) for all n ≥ s ≥ k ≥ 0.

In the solutions of non-autonomous systems, we can take the evolution family as given below:

E(n, k) :=

{
I, if all n = k;
rn−1rn−2rn−3...rk, for all n ≥ k ≥ 0.

Definition 2.2. The systems (1.1) to (1.4) are said to be uniformly exponentially stable if there are two positive real
numbers ξ and µ, such that ∥yn∥ ≤ ξe−µn, ∀n ≥ 0.

Definition 2.3. A sequence Ψn is referred to as an ϵ-approximate solution of (1.1), (1.2), (1.3), and (1.4) if the
following inequalities hold

∥Ψn+1 − (1 + r)Ψn∥ ⩽ ϵ, n ≥ 0, (2.1)

∥Ψn+2 − (1 + r)Ψn∥ ⩽ ϵ, n ≥ 0, (2.2)

∥Ψn+1 − rnΨn∥ ⩽ ϵ, n ≥ 0, (2.3)

∥Ψn+2 − rnΨn∥ ⩽ ϵ, n ≥ 0. (2.4)
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Remark 2.4. From Definition 2.3, we have that yn ∈ C(Z+,X) will satisfy (2.1), (2.2), (2.3), and (2.4) if and only if
there is a sequence f ∈ C(Z+,X) with ∥fn∥ ⩽ ϵ such that{

yn+1 = (1 + r)yn + fn, n ≥ 0,

y0 = θ,
yn+2 = (1 + r)yn + fn, n ≥ 0,

y0 = a

y1 = b,{
yn+1 = rnyn + fn, n ≥ 0,

y0 = θ,
yn+2 = rnyn + fn, n ≥ 0,

y0 = α,

y1 = β.

Lemma 2.5. The systems (1.1), (1.2), (1.3), and (1.4) have the solutions:

yn = (1 + r)nθ,

yn =

{
(1 + r)

n
2 a, when n is even,

(1 + r)
n−1
2 b, when n is odd,

yn = E(n, 0)θ,

and

yn =

{∏n
2

λ=1 rn−2λα, when n is even,∏n−1
2

λ=1 rn−2λβ, when n is odd.

respectively.

Lemma 2.6. The systems (1.1), (1.2), (1.3), and (1.4) have the approximate solutions:

φn = (1 + r)nγ +

n−1∑
λ=0

(1 + r)n−1−kfλ,

ψn =

{
(1 + r)

n
2 a+

∑n
2 −1

λ=0 (1 + r)
n
2 −1−λf2λ, n = 2, 4, 6, 8, ...

(1 + r)
n−1
2 b+

∑n−1
2 −1

λ=0 (1 + r)
n−1
2 −1−λf2λ+1, n = 1, 3, 5, 7, ...

ϕn = E(n, 0)θ +

n∑
λ=1

E(n, λ)fλ−1,

and

Ψn =

{∏n
2

λ=1(rn−2λ)α+
∑n

2 −1
j=1

∏j
λ=1(rn−2λ)fn−2λ−2 + fn−2, n = 2, 4, 6, 8, ...,∏n−1

2

λ=1 (rn−2λ)β +
∑n−1

2 −1
j=1

∏j
λ=1(rn−2λ)fn−2λ−2 + fn−2, n = 1, 3, 5, 7, ...,

respectively.

The solutions in Lemmas 2.5 and 2.6 can easily be obtained by putting the values of n.

Definition 2.7. The systems (1.1), (1.2), (1.3), and (1.4) are said to be Hyers-Ulam stable if there exists a positive
real numbers L such that for every approximate solutions ψn of the system (1.1), (1.2), (1.3), and (1.4) there are
solutions yn of (1.1), (1.2), (1.3), and (1.4) such that

∥yn − ψn∥ ≤ Lϵ, n ∈ I.
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Remark 2.8. [7] Every semigroup is an evolution, but the converse is not true in general.

Remark 2.9. [7] An evolution family is a semigroup if it is periodic of period one.

From Remarks 2.8 and 2.9, the relation between autonomous and non-autonomous is very clear that every au-
tonomous may be considered as non-autonomous, but for the reverse it is necessary that the time-dependent matrix
must be periodic with period 1.

3. Hyers-ulam stability of autonomous systems

In this section, we study the Hyers-Ulam stability of autonomous difference systems of first and second order. For
both the results, we need the following assumption:

Λ1 : |1 + r| < 1.

Theorem 3.1. If Λ1 holds, then the system (1.1) is Hyer-Ulam stable.

Proof. By Lemmas 2.5 and 2.6 the system (1.1) has the exact and approximate solutions:

yn = (1 + r)nγ,

and

φn = (1 + r)nγ +

n−1∑
λ=0

(1 + r)n−1−kfλ,

respectively.
Now consider

∥yn − φn∥ = ∥(1 + r)nγ − (1 + r)nγ −
n−1∑
λ=0

(1 + r)n−1−λfλ∥

= ∥
n−1∑
λ=0

(1 + r)n−1−λfλ∥ ⩽ ε

n−1∑
λ=0

(1 + r)n−1−λ

= ε(an−1 + an−2 + ...+ a0) = ε(1 + a1 + a2 + ...+ an−1)

⩽ ε(1 + a1 + a2 + ...) =
ε

1− a
=

ε

1− (1 + r)
=

ε

−r
= Lε,

where L = 1
−r , hence the system is Hyers-Ulam stable. □

Theorem 3.2. If Λ1 holds, then the system (1.2) is Hyer-Ulam stable.

Proof. By Lemmas 2.5 and 2.6, the system (1.2) has the exact and approximate solutions

yn =

{
(1 + r)

n
2 a, n = 2, 4, 6, 8, ...,

(1 + r)
n−1
2 b, n = 1, 3, 5, 7, ...,

and

ψn =

{
(1 + r)

n
2 a+

∑n
2 −1

λ=0 (1 + r)
n
2 −1−λf2λ, n = 2, 4, 6, 8, ...,

(1 + r)
n−1
2 b+

∑n−1
2 −1

λ=0 (1 + r)
n−1
2 −1−λf2λ+1, n = 1, 3, 5, 7, ...,

Now if n is even, we have

∥yn − ψn∥ = ∥(1 + r)
n
2 a− (1 + r)

n
2 a−

n
2 −1∑
λ=0

(1 + r)
n
2 −1−λf2λ∥

= ∥
n
2 −1∑
λ=0

(1 + r)
n
2 −1−λf2λ∥
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⩽ ε

n
2 −1∑
λ=0

|1 + r|n2 −1−λ

⩽ ε

∞∑
λ=0

|1 + r|λ = ε(1 + c1 + c2 + c3 + ...)

= ε
c

1− c

= ε
1 + r

1− (1 + r)

= ε
1 + r

−r
= Lε. (3.1)

Now if n is odd, we have

∥yn − ψn∥ = ∥(1 + r)
n−1
2 b− (1 + r)

n−1
2 b−

n−1
2 −1∑
λ=0

(1 + r)
n−1
2 −1−λf2λ+1∥

= ∥

n−1
2 −1∑
λ=0

(1 + r)
n−1
2 −1−λf2λ+1∥

⩽ ε

n−1
2 −1∑
λ=0

(1 + r)
n−1
2 −1−λ

⩽ ε

∞∑
λ=0

|1 + r|λ

= ε(1 + c1 + c2 + c3 + ...)

= ε
c

1− c

= ε
1 + r

1− (1 + r)

= ε
1 + r

−r
= Lε, (3.2)

where L = 1+r
−r , hence the system is Hyers-Ulam stable. □

4. Hyers-ulam stability of non-autonomous systems

In this section, we study the Hyers-Ulam stability of non-autonomous difference systems of first and second order.
For the next two results, we need the following assumptions:

Λ3 : |r(n, λ+ 1)| ≤Me−γ(n−λ−1),

Λ4 : |
j∏

λ=1

(rn−2λ)| < Me−µ(j−1).

Theorem 4.1. If Λ3 holds, then the system (1.3) is Hyer-Ulam stable.

Proof. By Lemmas 2.5 and 2.6 the system (1.3) has the exact and approximate solutions

yn = E(n, 0)θ,
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and

ϕn = E(n, 0)θ +

n∑
λ=1

E(n, λ)fλ−1,

where E(n, k) is the evolution family. Now consider

∥yn − ϕn∥ = ∥r(n, 0)θ − r(n, 0)θ +

n−2∑
λ=0

r(n, λ+ 1)fλ + fn−1∥

= ∥ −
n−2∑
λ=0

r(n, λ+ 1)fλ + fn−1∥ = ∥
n−2∑
λ=0

r(n, λ+ 1)fλ + fn−1∥

⩽ ϵM

n−2∑
λ=0

e−γ(n−λ−1)

= ϵM(e−γ(n−1) + e−γ(n−2) + e−γ(n−3) + ..+ 1)

⩽ ϵM(1 + e−γ + e−2γ + e−3γ + e−4γ + ...)

= ϵM
1

1− e−γ
= ϵM

1

1− 1
eγ

= ϵM
eγ

eγ − 1
= ϵL, (4.1)

where L =M eγ

eγ−1 , hence the system (1.3) is Hyers-Ulam stable. □

Theorem 4.2. If Λ4 holds, then the system (1.4) is Hyers-Ulam stable.

Proof. By Lemmas 2.5 and 2.6 the system (1.4) has the exact and approximate solutions

yn =

{∏n
2

λ=1 rn−2λα, n = 2, 4, 6, 8, ...,∏n−1
2

λ=1 rn−2λβ, n = 1, 3, 5, 7, ...,

and

Ψn =

{∏n
2

λ=1(rn−2λ)α+
∑n

2 −1
j=1

∏j
λ=1(rn−2λ)fn−2λ−2 + fn−2, n = 2, 4, 6, 8, ...,∏n−1

2

λ=1 (rn−2λ)β +
∑n−1

2 −1
j=1

∏j
λ=1(rn−2λ)fn−2λ−2 + fn−2, n = 1, 3, 5, 7, ....

Now if n is even, we have

∥yn −Ψn∥ = ∥
n
2∏

λ=1

(rn−2λ)α−
n
2∏

λ=1

(rn−2λ)α−
n
2 −1∑
j=1

j∏
λ=1

(rn−2λ)fn−2λ−2 + fn−2∥

= ∥
n
2 −1∑
j=1

j∏
λ=1

(rn−2λ)fn−2λ−2 + fn−2∥ ⩽ ϵ∥
n
2 −1∑
j=1

j∏
λ=1

(rn−2λ)∥

⩽ ϵM

n
2 −1∑
j=1

e−µ(j−1) = ϵM(1 + e−µ + e−2µ + e−3µ + ..+ e−(n−4
2 )µ

⩽ ϵM(1 + e−µ + e−2µ + e−3µ + ...) = ϵM
1

1− e−µ
= ϵM

eµ

eµ − 1
= ϵL. (4.2)

Now if n is odd, we have

∥yn −Ψn∥ = ∥

n−1
2∏

λ=1

(rn−2λ)β −

n−1
2∏

λ=1

(rn−2λ)β −

n−1
2 −1∑
j=1

j∏
λ=1

(rn−2λ)fn−2λ−2 + fn−2∥
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= ∥

n−1
2 −1∑
j=1

j∏
λ=1

(rn−2λ)fn−2λ−2 + fn−2∥ ⩽ ϵ∥

n−1
2 −1∑
j=1

j∏
λ=1

(rn−2λ)∥

⩽ ϵM

n−1
2 −1∑
j=1

e−µ(j−1) = ϵM(1 + e−µ + e−2µ + e−3µ + ..+ e−(n−5
2 )µ

⩽ ϵM(1 + e−µ + e−2µ + e−3µ + ...) = ϵM
1

1− e−µ
= ϵM

eµ

eµ − 1
= ϵL, (4.3)

where L =M eµ

eµ−1 , hence the system is Hyers-Ulam stable. □

5. Uniform exponential stability

In this section, we study the uniform exponential stability of autonomous difference systems.

Theorem 5.1. If Λ1 holds, then the system (1.1) is uniformly exponentially stable.

Proof. System (1.1) has the solution
yn = (1 + r)nγ.

Consider

∥yn∥ = ∥anγ∥ ⩽ |γ|∥a∥n ≤ ξe−µn, (5.1)

where a = 1+r and an = eln |a|n = en ln |a| = e−µn, 0 < a < 1, ln |a| = −µ, hence the system is uniformly exponentially
stable. □

Theorem 5.2. If Λ1 holds, then the system (1.2) is uniformly exponentially stable.

Proof. The system (1.2) has the solution:

yn =

{
(1 + r)

n
2 a, n = 2, 4, 6, 8, ...,

(1 + r)
n−1
2 b, n = 1, 3, 5, 7, ....

Now if n is even, we have

∥yn∥ = ∥(1 + r)
n
2 a∥ = ∥λn

2 a∥ ⩽ |a|∥λ∥n
2 ⩽ |a|∥λ∥n ⩽ Ψe−µn. (5.2)

Now if n is odd, we have

∥yn∥ = ∥(1 + r)
n−1
2 b∥ = ∥λ

n−1
2 b∥ ⩽ |b|∥λ∥

n−1
2 ⩽ |b|∥λ∥n ⩽ Ψe−µn, (5.3)

where λ = 1 + r and λn = eln |λ|n = en ln |λ| = e−µn, 0 < λ < 1 ln |λ| = −µ, hence the system is UES. □

6. Examples

In this section, we will present some examples which will elaborate on the above results. For the autonomous and
first order difference equation, we have the following example.

Example 6.1. Consider the autonomous difference equation:{
yn+1 = (1 + r)yn, r = −0.5, n ≥ 0,

y0 = 0.3.

Then the following will be its solution:
yn = (1 + r)nγ = (0.5)n(0.3).

For approximate solution, let fn = ε0.6 and consider the purterb system:{
φn+1 = (1 + r)φn + ε0.6, r = −0.5, n ≥ 0,

φ0 = 0.3.
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Its solution is

φn = (0.5)n(0.3) +

n−1∑
j=0

(0.5)n−1−j(ε0.6),

which is the approximate solution of the above system.

Now consider

∥yn − φn∥ = ∥(0.5)n(0.3)− (0.5)n(0.3)−
n−1∑
j=0

(0.5)n−1−j(ε0.6)∥

≤ (ε0.6)

n−1∑
j=0

(0.5)n−1−j

≤ (ε0.6)

∞∑
j=0

(0.5)j =
ε0.6

0.5
=

6

5
ε.

Thus by Theorem 3.1 the above system is Hyer-Ulam stable.
Now for the uniform exponential stability, we have ∥yn∥ ≤ 0.3e−µn, where µ = ln 2, since e−µn = (0.5)n ⇒

ln(e−µn) = ln(0.5)n ⇒ −µn = n ln(0.5) ⇒ −µ = − ln 2 ⇒ µ = ln 2. Hence, by Theorem 5.1 the system is also
unifromly exponentially stable.

For a second order autonomous system, we have the following example.

Example 6.2. Consider the second order difference equation:
yn+2 = 1

2yn, n ≥ 0,

y0 = a,

y1 = b.

(6.1)

The solution is given as

yn =

{
( 12 )

n
2 a, when n is even,

( 12 )
n−1
2 b, when n is odd.

Since the axiom λ1 is satisfied so the system is Hyer-Ulam as well as uniformly exponentially stable.

The next example is for the case of a non-autonomous system.

Example 6.3. Consider the non-autonomous difference equation:{
yn+1 = 1

2n yn, n ≥ 0,

y0 = 0.3.

Then the following will be its solution:

yn = E(n, 0)θ =
1

2n−1

1

2n−2

1

2n−3
...

1

20
θ =

1

2
n(n−1)

2

θ.

The approximate solution of the above system will be:

ϕn = E(n, 0)θ +

n∑
λ=1

E(n, λ)fλ−1 =
1

2
n(n−1)

2

θ +

n∑
λ=1

1

2
n(n−1)−λ(λ−1)

2

fλ−1,

where ∥f∥ ≤ ϵ.
Consider

∥yn − ϕn∥ = ∥
n∑

λ=1

1

2
n(n−1)−λ(λ−1)

2

fλ−1∥ ≤ ϵ

n∑
λ=1

1

2λ
≤ ϵ

∞∑
λ=1

1

2λ
= 1.ϵ,
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hence by Theorem 4.1, the system is Hyers-Ulam stable.
For unifrom exponential stability, we have

∥yn∥ = ∥ 1

2
n(n−1)

2

θ∥ ≤ ∥θ∥ 1

2n
,

which goes to zero exponentially hence by Theorem 5.1, the system is uniformly exponentially stable.

On the same way, we can easily construct an example for a non-autonomous second order difference system which
we leave for the reader.

7. Cocnlusion

The study of difference equations is too important and has a lot of applications in different fields of science. The
main purpose of this paper is to discuss the solutions, Hyer-Ulam and uniform exponential stabilities of autonomous
and non-autonomous difference equations of first and second order. These models have not been discussed before and
therefore it can be fruitful for other researchers working in the field of difference equations and stability theory. Simple
conditions were provided for each system through which one can easily check the stability of the proposed models.
Some examples are also given to ensure the credibility of the main results.
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[29] O. Tunç and C. Tunç, On Ulam stabilities of iterative Fredholm and Volterra integral equations with multiple

time-varying delays, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 118(3) (2024), 20.
[30] S. M. Ulam, A Collection of Mathematical Problems, Inter science Publishers, 8 (1960).


	1. Introduction
	2. Preliminaries
	3. Hyers-ulam stability of autonomous systems
	4. Hyers-ulam stability of non-autonomous systems
	5. Uniform exponential stability
	6. Examples
	7. Cocnlusion
	Acknowledgments
	References

