- [1] S. Abbasbandy and B. Azarnavid, Some error estimates for the reproducing kernel Hilbert spaces method, J. Comput. Appl. Math., 296 (2016), 789-797.
- [2] O. Abu Arqub and N. Shawagfeh, Solving optimal control problems of Fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis, Math. Method Appl. Sci., 44 (2021), 7915-7932.
- [3] O. Abu Arqub, H. Alsulami, and M. Alhodaly, Numerical Hilbert space solution of fractional Sobolev equation in (1+1)-dimensional space, Math. Sci., 18 (2024), 217-228.
- [4] O. Abu Arqub, Tasawar Hayat, and M. Alhodaly, Reproducing kernel Hilbert pointwise numerical solvability of fractional Sine-Gordon model in time-dependent variable with Dirichlet condition, Phys. Scr., 96 (2021), 104005.
- [5] N. Attia, A. Akgul, D. Seba, A. Nour, and M. B. Riaz, Reproducing kernel Hilbert space method for solving fractal fractional differential equations, Results Phys., 25 (2022), 105225.
- [6] Z. B. Bai, W. Lian, and S. J. Sun, Solvability for some fourth-order two-point boundary value problems, AIMS Math., 5 (2020), 4983-4994.
- [7] S. H. Chang, Existence-uniqueness and fixed-point iterative method for general nonlinear fourth-order boundary value problems, J. Appl. Math. Comput., 67 (2021), 121-131.
- [8] Z. Chen, W. Jiang, and H. Du, A new reproducing kernel method for Duffing equations, Int. J. Comput. Math., 98 (2021), 1-13.
- [9] F. A. Costabile and A. Napoli, Collocation for high order differential equations with two-points hermite boundary conditions, Appl. Numer. Math., 87 (2015), 157-167.
- [10] F. Z. Geng, A new reproducing kernel Hilbert space method for solving nonlinear fourth-order boundary value problems, Appl. Math. Comput., 213 (2009), 163-169.
- [11] F. Z. Geng and M. G. Cui, Solving a nonlinear system of second order boundary value problems, J. Math. Anal. Appl., 327 (2007), 1167-1181.
- [12] F. Z. Geng and X. Y. Wu, Reproducing kernel functions based univariate spline interpolation, Appl. Math. Lett., 122 (2021), 107525.
- [13] F. Z. Geng and X. Y. Wu, Reproducing kernel function-based Filon and Levin methods for solving highly oscillatory integral, Appl. Math. Comput., 397 (2021), 125980.
- [14] F. Z. Geng and X. Y. Wu, A Kernel functions-based approach for distributed order diffusion equations, Numer. Methods. Partial Differential Eq., 37 (2021), 1269-1281.
- [15] F. Z. Geng and X. Y. Wu, A novel kernel functions algorithm for solving impulsive boundary value problems, Appl. Math. Lett., 134 (2022), 108318.
- [16] X. Y. Li, H. L. Wang, and B. Y. Wu, A stable and efficient technique for linear boundary value problems by applying kernel functions, Appl. Numer. Math., 172 (2022), 206-214.
- [17] X. Y. Li and B. Y. Wu, A new kernel functions based approach for solving 1-D interface problems, Appl. Math. Comput., 380 (2020), 125276.
- [18] B. Maayah and O. Abu Arqub, Hilbert approximate solutions and fractional geometric behaviors of a dynamical fractional model of social media addiction affirmed by the fractional Caputo differential operator, Chaos Soliton. Fract. X, 10 (2023), 100092.
- [19] S. Momani and M. A. Noor, Numerical comparison of methods for solving a special fourth-order boundary value problem, Appl. Math. Comput., 191 (2007), 218-224.
- [20] M. A. Noor and S. T. Mohyud-Din, An efficient method for fourth-order boundary value problems, Comput. Math. Appl., 54 (2007), 1101-1111.
- [21] M. A. Noor and S. T. Mohyud-Din, Variational iteration technique for solving higher order boundary value problems, Appl. Math. Comput., 189(2) (2007), 1929-1942.
- [22] H. Sahihi, T. Allahviranloo, and S. Abbasbandy, Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a delay, Appl. Math. Comput., 361 (2019), 583-598.
- [23] L. X. Sun, J. Niu, and J. J. Hou, A high order convergence collocation method based on the reproducing kernel for general interface problems, Appl. Math. Lett., 112 (2021), 106718.
- [24] K. N. S. K. Viswanadham and S. Ballem, Numerical solution of fourth-order boundary value problems by Galerkin method with cubic b-splines, Int. J. Eng. Sci. Innov. Technol., 2 (2013), 41-53.
- [25] Y. L. Wang, L. N. Jia, and H. L. Zhang, Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method, Int. J. Comput. Math., 96 (2019), 2100-2111.
- [26] Y. F. Wei, Q. L. Song, and Z. B. Bai, Existence and iterative method for some fourth-order nonlinear boundary value problems, Appl. Math. Lett., 87 (2019), 101-107.
- [27] M. Q. Xu, Y. Z. Lin, and Y. H. Wang, A new algorithm for nonlinear fourth-order multi-point boundary value problems, Appl. Math. Comput., 274 (2016), 163-168.
- [28] M. Xu, L. Zhang, and E. Tohidi, A fourth-order least-squares based reproducing kernel method for one-dimensional elliptic interface problems, Appl. Numer. Math., 162 (2021), 124-136.
- [29] Y. Y. Zha, Z. Li, and L. J. Yi, Superconvergent postprocessing of the C1-conforming finite element method for fourth-order boundary value problems, Appl. Numer. Math., 193 (2023), 67-82.
- [30] Y. Q. Zhang, Y. Z. Lin, and Y. Shen, A new multiscale algorithm for solving second order boundary value problems, Appl. Numer. Math., 156 (2020), 528-541.
|